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1. Identifiability and Consistency of the proposed Bayesian model

1.1 Identifiability

Parameters in a finite mixture model are not identifiable due to label switching (Redner and

Walker, 1984). Nevertheless, there is usually a form of “local identifiability” guaranteeing the

existence of subsets of the parameter space within which the parameters are identifiable. See for

example Kim and Lindsay (2015). Here we provide heuristic discussions on identifiability in the

context of our model.

With respect to the likelihood function defined in (2.1) in Section 2 of the article, with

δ integrated out, the space of the vector of parameters θ = (β∗T ,ηT , σ2,K,pT )T , say Θ, is

unidentifiable if there exists θ, θ′ ∈ Θ, θ 6= θ′ such that

f(y|X, θ) = f(y|X, θ′) for all (y,X),
(S.1)

where y = (y1, · · · , yn)T and X = (z1,w1, · · · , zn,wn)T denote the response and covariates for
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all subjects in the sample, respectively, and

f(y|X, θ) = Πn
i=1

 K∑
j=1

pkf(y|z, w,β∗j ,η, σ)

 . (S.2)

Consider the parameter space Θ = {θ : K > 0; p1 · · · pK > 0; (β∗d0,β
∗
d
T

) 6= (β∗d′0,β
∗
d′

T
) for any d 6= d′},

where the restrictions exclude trivial or equivalent mixing components. Then Θ is still unidenti-

fiable under label switching, because, for example, θ = (β∗T = (β∗T1 ,β∗T2 ),ηT , σ2,K = 2,pT =

( 1
2 ,

1
2 ))T and a relabelling of its two equally weighted mixing components, θ′ = (β∗T = (β∗T2 ,β∗T1 ),ηT , σ2,K =

2,pT = ( 1
2 ,

1
2 ))T satisfy equation (S.1). For the corresponding Bayesian model, if the priors are

chosen to be invariant under label switching, then the posterior conditioning on any given K

has K! symmetric regions. This symmetry makes some standard Bayesian inference (such as

calculating marginal posterior means) meaningless for group-specific parameters. There is a rich

literature on how to tackle this problem. In this study, we use the R package label.switching for

the post processing of MCMC when needed.

In the regression setup, for the likelihood function (2.1) in Section 2 of this article, we state

below another possible source of nonidentifiability that we refer to as the partial switching non-

identifiability, which can be avoided under certain conditions, or otherwise makes little trouble

in practice by considering a restricted parameter space. As an illustration, consider the case of

K = 2, X is of dimension 1, and there are exactly two distinct values observed for X, namely,

{X(1),X(2)}. Then for any β∗ = (β∗10, β
∗
20, β

∗
1 , β
∗
2)T written in short as (α1, α2, β1, β2)T , define

β∗
′

as the solution to the linear system:
1 X(1) 0 0

1 X(2) 0 0

0 0 1 X(1)

0 0 1 X(2)



α′1
β′1
α′2
β′2

 =


0 0 1 X(1)

1 X(2) 0 0

1 X(1) 0 0

0 0 1 X(2)



α1

β1
α2

β2

 . (S.3)

Then β∗
′ 6= β∗ as long as (α1, β1) 6= (α2, β2). Equation (S.3) suggests that, at X(1), the mean

responses of subgroups 1 and 2 under θ agree with those of subgroups 2 and 1 under θ′, respec-

tively (hence the term “partial switching”); while at X(2), the mean responses of subgroups 1
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and 2 under θ agree with those of subgroups 1 and 2 under θ′, respectively. Eventually, when

the label is integrated out in (S.2), the set of means of y in the mixing components is the same

under β∗ and β∗
′
. Let θ and θ′ have group-specific regression coefficients equal to β and β′,

respectively, with common values for the other components. Then (S.1) holds for the marginal

likelihood in (S.2). One can see this cannot happen if there are three or more distinct values

observed for X. More generally, for q-dimensional X, the aforementioned partial switching non-

identifiability in the regression coefficients will not occur as long as the number of distinct values

of X in each dimension is three or more. Now consider regression setups where some covariates

are dichotomous. Let S denote the set of indices of dichotomous covariates, and A denote the

set of parameter values such that the vectors of group-wise coefficients for all non-dichotomous

covariates perfectly coincide in some subgroups, that is,

A = {θ : β∗dl = β∗d′l for all l /∈ S, for some d 6= d′, d, d′ ∈ {1, · · · ,K}}.

Then the mixture model (S.2) will not suffer from partial switching nonidentifiability on the

restricted parameter space Θ/A. Therefore, as long as A receives zero prior probability, there

will be no practical problem caused by this type of nonidentifiability. And the aforementioned

methods for handling the standard label switching nonidentifiability suffices.

1.2 Consistency

Broadly speaking, the Doob’s Theorem (Doob, 1949; Schwartz, 2008; Miller, 2018) says that, a

fixed Bayesian model with proper priors is posterior consistent under very general conditions.

Specifically for finite mixture models where the observations are iid, Nobile (1994, chap. 3) uses

the Doob’s Theorem to prove their posterior consistency. It is expected that such results can be

extended to the mixture of regression models in (2.1), if there are a finite number of covariates,

the model is identifiable, the prior on K assigns a nonzero probability to the true number of

subgroups, and the form of the mixture components (that is, the linear regression model based
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on a subset of the covariates within each group) are correctly specified.

To establish consistency when the number of covariates increases with n is very challenging

(and it may have more theoretical than practical implications). Here we provide a brief and

heuristic discussion. First, to achieve consistency, it is necessary to require the hyperparameters

in the spike and slab prior for the regression coefficients to depend on the number of covariates.

To see this, suppose that (1 − π0), the prior inclusion probability of a given imaging feature, is

fixed. Then the prior assigns disappearing probabilities to models of size o(p), failing to achieve

sparsity. On the other hand, suppose that τ∗, the variance of the slab part, is fixed. Then the

prior will be increasingly informative and overwhelm information from the sample. Indeed, had

the subgroups been correctly identified, for each subgroup, there would be various consistency

results for Bayesian variable selection models in the literature. One such result is given in Narisetty

and He (2014) on strong selection consistency, in the sense that the model that corresponds to

the true subset of covariates is assigned the highest posterior probability as sample size increases.

Essentially, the conditions needed for the prior in the context of our problem are that the prior

expected number of selected variables is bounded and that τ∗ grows to infinity as the number

of covariates grows. We have incorporated such considerations when specifying priors in our

numerical studies.

2. Additional discussions on updating the subgroup memberships

If the subgroup-specific parameters can be integrated out, and the marginal likelihood has a

closed form, which is generally the case when conjugate priors are used, then one can use the

algorithm referred to as “Algorithm 3” in Miller and Harrison (2018) when updating the latent-

subgroup memberships. In our model, non-conjugate priors for the subgroup-specific parameters

are used, and the marginal likelihood cannot be easily computed. Hence we choose to adopt the

auxiliary variable approach, which is referred to as “Algorithm 8” in Miller and Harrison (2018).
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The proposed sampler can be potentially coupled with the split-merge type algorithm, which

is referred to as Jain-Neal algorithm in Miller and Harrison (2018). The main purpose of using the

split-merge type algorithm is to improve the mixing on the number of subgroups. We instead use

a relatively big number of auxiliary variables, m = 10, when updating the subgroup memberships,

which we have found helpful for the mixing on the number of subgroups and sufficient for the

efficiency of the proposed sampler (Neal, 2000).
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3. Additional Numerical Results

Table S.1: Simulation results for Scenarios 3 and 4: mean(sd) based on 100 replicates. K̂: estimated
number of subgroups; ARI: adjusted rand index; TPR: true positive rate; FPR: false positive rate.

Subgroup
Scenario 3 Scenario 4

Proposed FMRLasso ICC BSGSS Proposed FMRLasso ICC BSGSS
Continuous E variables, a block-diagonal covariance matrix for I features

K̂ 2.000(0.00) 2.000(0.00)
ARI 0.860(0.05) 0.703(0.10) 0.787(0.13) 0.807(0.05) 0.653(0.12) 0.604(0.15)
Main I Effects
TPR 1 0.988(0.06) 0.504(0.36) 0.100(0.15) 0.951(0.09) 1.000(0.00) 0.890(0.22) 0.420(0.30) 0.952(0.10)

2 1.000(0.00) 0.844(0.27) 0.950(0.18) 1.000(0.00) 0.828(0.25) 0.290(0.28)
FPR 1 0.001(0.00) 0.023(0.03) 0.001(0.00) 0.762(0.08) 0.000(0.00) 0.010(0.01) 0.001(0.00) 0.728(0.05)

2 0.001(0.00) 0.004(0.01) 0.001(0.00) 0.001(0.00) 0.005(0.01) 0.000(0.00)
I-E Interactions
TPR 1 0.976(0.09) 0.657(0.22) 0.440(0.17) 0.958(0.07) 1.000(0.00) 0.892(0.19) 0.609(0.22) 0.952(0.10)

2 1.000(0.00) 0.967(0.08) 0.962(0.13) 1.000(0.00) 0.882(0.18) 0.583(0.22)
FPR 1 0.011(0.01) 0.035(0.02) 0.015(0.00) 0.770(0.08) 0.004(0.00) 0.030(0.01) 0.013(0.00) 0.731(0.05)

2 0.007(0.01) 0.091(0.02) 0.018(0.01) 0.003(0.00) 0.042(0.01) 0.012(0.00)
Discrete E variables, a block-diagonal covariance matrix for I features

K̂ 2.000(0.00) 2.000(0.00)
ARI 0.863(0.05) 0.751(0.08) 0.791(0.15) 0.809(0.06) 0.672(0.10) 0.631(0.15)
Main I Effects
TPR 1 0.980(0.10) 0.690(0.33) 0.174(0.20) 0.950(0.07) 1.000(0.00) 0.914(0.17) 0.566(0.32) 0.948(0.09)

2 1.000(0.00) 0.914(0.20) 0.934(0.19) 1.000(0.00) 0.840(0.20) 0.434(0.32)
FPR 1 0.001(0.00) 0.037(0.04) 0.001(0.00) 0.769(0.07) 0.000(0.00) 0.010(0.01) 0.001(0.00) 0.726(0.05)

2 0.000(0.00) 0.009(0.01) 0.002(0.00) 0.000(0.00) 0.004(0.01) 0.001(0.00)
I-E Interactions
TPR 1 0.976(0.12) 0.744(0.19) 0.444(0.18) 0.956(0.06) 1.000(0.00) 0.911(0.15) 0.683(0.26) 0.948(0.09)

2 1.000(0.00) 0.988(0.04) 0.954(0.14) 1.000(0.00) 0.912(0.15) 0.661(0.25)
FPR 1 0.027(0.01) 0.033(0.02) 0.014(0.00) 0.776(0.07) 0.013(0.00) 0.021(0.01) 0.010(0.00) 0.729(0.05)

2 0.018(0.01) 0.081(0.02) 0.020(0.01) 0.013(0.00) 0.034(0.01) 0.011(0.00)
Continuous E variables, a banded covariance matrix for I features

K̂ 2.000(0.00) 2.001(0.10)
ARI 0.850(0.05) 0.713(0.08) 0.798(0.10) 0.814(0.06) 0.673(0.13) 0.624(0.16)
Main I Effects
TPR 1 0.988(0.06) 0.446(0.34) 0.080(0.13) 0.940(0.08) 1.000(0.00) 0.860(0.22) 0.374(0.30) 0.946(0.11)

2 1.000(0.00) 0.830(0.27) 0.972(0.12) 1.000(0.00) 0.802(0.22) 0.298(0.28)
FPR 1 0.001(0.00) 0.023(0.03) 0.000(0.00) 0.738(0.08) 0.001(0.00) 0.011(0.01) 0.000(0.00) 0.734(0.05)

2 0.001(0.00) 0.007(0.02) 0.001(0.00) 0.001(0.00) 0.005(0.01) 0.001(0.00)
I-E Interactions
TPR 1 0.971(0.09) 0.618(0.22) 0.408(0.15) 0.948(0.07) 0.998(0.01) 0.886(0.18) 0.606(0.21) 0.946(0.11)

2 1.000(0.00) 0.972(0.06) 0.976(0.10) 0.997(0.02) 0.867(0.19) 0.556(0.22)
FPR 1 0.008(0.01) 0.035(0.02) 0.016(0.00) 0.746(0.07) 0.003(0.00) 0.030(0.01) 0.013(0.00) 0.738(0.05)

2 0.005(0.01) 0.088(0.02) 0.018(0.01) 0.003(0.00) 0.042(0.01) 0.012(0.00)
Discrete E variables, a banded covariance matrix for I features

K̂ 2.000(0.00) 2.010(0.10)
ARI 0.847(0.05) 0.752(0.08) 0.772(0.18) 0.819(0.06) 0.701(0.08) 0.660(0.16)
Main I Effects
TPR 1 0.982(0.09) 0.616(0.32) 0.144(0.19) 0.945(0.08) 1.000(0.00) 0.904(0.17) 0.520(0.32) 0.938(0.10)

2 1.000(0.00) 0.928(0.17) 0.906(0.24) 1.000(0.00) 0.852(0.18) 0.430(0.31)
FPR 1 0.001(0.00) 0.036(0.03) 0.001(0.00) 0.757(0.06) 0.000(0.00) 0.011(0.01) 0.001(0.00) 0.748(0.05)

2 0.001(0.00) 0.007(0.02) 0.002(0.01) 0.001(0.00) 0.005(0.01) 0.001(0.00)
I-E Interactions
TPR 1 0.974(0.10) 0.708(0.19) 0.444(0.17) 0.952(0.07) 1.000(0.00) 0.932(0.11) 0.661(0.22) 0.938(0.10)

2 1.000(0.00) 0.978(0.11) 0.923(0.20) 1.000(0.00) 0.915(0.10) 0.659(0.26)
FPR 1 0.027(0.01) 0.033(0.01) 0.015(0.00) 0.770(0.08) 0.013(0.00) 0.022(0.01) 0.011(0.00) 0.751(0.05)

2 0.020(0.01) 0.076(0.02) 0.020(0.01) 0.013(0.00) 0.035(0.01) 0.011(0.00)
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Fig. S.1: Simulation setup 1 and Scenario 1, heatmaps of β∗1 and β∗2 : true (upper) and estimated
with one simulation replicate (lower).

Fig. S.2: Simulation setup 1 and Scenario 3, heatmaps of β∗1 and β∗2 : true (upper) and estimated
with one simulation replicate (lower).
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Fig. S.3: Simulation setup 1 and Scenario 3, inclusion probabilities of β∗1 and β∗2 : the estimated
with one simulation replicate (upper) and the locations of the true non-zero coefficients in yellow
and zero coefficients in black (lower).
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Fig. S.4: Simulation Scenario 1, trace plots for the label-invariant variables, thinned at every 20th
iterations of two MCMC chains.



10

Fig. S.5: Simulation Scenario 1, comparison of four independent MCMC runs. Plots in the upper
and lower triangles compare the posterior inclusion probabilities and estimates of β∗1 and β∗2 for
run i and j, respectively.
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Fig. S.6: Data analysis, histogram of FEV1.

Fig. S.7: Data analysis, posterior distribution of the number of subgroups (left) and its trace plot
(right; two of the four MCMC runs are plotted to improve visualization).
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Fig. S.8: Data analysis, comparison of the four independent MCMC runs. Upper triangle: com-
parison of the posterior inclusion probabilities for the two subgroups. Lower triangle: comparison
of the estimates for the top ten β∗1jl and β∗2jl with the highest inclusion probabilities for the two
subgroups.
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Fig. S.9: Data analysis, density estimation of the posterior distribution of β∗djl for the selected
top imaging features for subgroup 1 (upper) and 2 (lower).
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