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Summary

This document contains supplemental materials to the article “Interpretable Principal Com-

ponents Analysis for Multilevel Multivariate Functional Data.” Section 1 presents additional

methodological details, including the estimation of within-subject correlation ρij (Section 1.1),

the selection of tuning parameters (Section 1.2), the estimation of eigenvalues and principal
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component scores (Section 1.3) and the form of the Fantope projection operator (Section 1.4).

Section 2 presents additional details with regards to the application, including a description of

data processing (Section 2.1), a presentation of all estimated regression coefficients (Section 2.2),

additional visual representations of estimated quantities (Section 2.3), and a comparison of per-

formance of the proposed procedure to the naive procedure often used in the applied literature

(Section 2.4). Section 3 presents results from additional simulation studies with varying number

of subjects (Section 3.1) and varying values for the tuning parameter δ (Section 3.2).

Key words:

1. Additional Methodological Details

1.1 Estimation of ρjk

The MoM estimator discussed in Section 4.1 in the main text depends on an estimator of the

within-subject-between-electrode correlation ρjk. Here, we consider an estimator of ρjk that takes

advantage both of the separability of the within-subject electrode and temporal effects, and

of the sparsity of ρjk. This estimator can be viewed as a modified version of the estimator

considered by Staicu and others (2010) to our setting. Define the M × M matrix fjk(t, s) =

2
{
Kw(t, s) (1− ρjk) + σ2I(t = s)IM

}
, which can be consistently estimated as

f̂jk(t, s) =
1

N

N∑
i=1

{Yij(t)− Yik(t)} {Yij(s)− Yik(s)}T .

Note that, due to separability of the within-subject electrode and temporal effects, we can de-

fine a function Fjk =
∫
t,s∈T 1TMfjk(t, s)1M dt ds which, since Fjk ∝ (1− ρjk), provides a mea-

sure of the disassociation of electrodes in that Fjk is large for electrodes for which ρjk = 0.

A set of electrodes for which ρjk = 0 can be estimated by thresholding the estimator F̂jk =∑P
p=1

∑
q 6=p 1

T
M f̂jk (tp, tq)1M/P (P − 1).

For δ ∈ (0, 1), define the set of pairs of electrodes ∆ =
{

(j, k) | F̂jk > upper δ quantile of F̂jk

}
.
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Our goal is to identify a subset of electrodes that are uncorrelated adjusting for subject-level de-

viations, and not necessarily the entire set. Consequently, δ should be selected in a conservative

manner relative to the anticipated percentage of uncorrelated electrodes. The parameter δ was

set at 30% for methods 1− 4 in our simulation and was set at 20% in the real data analysis. In

practice, we suggest plotting all the value of F̂jk and select somewhere below the changing point

of F̂jk to decide δ. Results for varying levels of δ are provided in Section 3.2.

Given this set ∆, we then define f̃∆(t, s) =
∑

(j,k)∈∆ f̂jk(t, s)/ |∆| , where |∆| is the number

of pairs of electrodes in ∆, which is a consistent estimator of 2Kw(t, s) for t 6= s. Since f̃∆(t, s)−

f̂jk(t, s) is a consistent estimator of 2ρjkKW (t, s), we can construct a consistent estimator of ρjk

as

ρ̂jk =


P∑
p=1

∑
q 6=p

1TM

[
f̃∆(tp, tq)− f̂jk(tp, tq)

]
1M

/


P∑
p=1

∑
q 6=p

1TM

[
f̃∆(tp, tq)

]
1M

 .

1.2 Tuning Parameter Selection

Our optimization procedure (3) in the main text involves three tuning parameters: γ controls

smoothness, α controls the among variate sparsity, and λ controls the within time localization.

We will first select a common γ for all eigenfunctions φr, r = 1, ..., R using cross-validation (Rice

and Silverman, 1991), then fix γ and select αr and λr sequentially using either cross-validation

or fraction of variance explained, depending the goal of the analysis.

To select γ, we employ five-fold cross-validation. The parameter γ is chosen among a set

of candidates γs such that the estimated covariance K(ν) from the validation dataset, and the

estimated H
(−ν)
r=1 (γ, 0, 0) from the training dataset with α and λ being 0, have the largest cross-

validated inner product. Formally:

γ̂ = argmax
γ∈Υ1

5∑
ν=1

〈H(−ν)
r=1 (γ, 0, 0),K(ν)〉

where Υ1 is a candidate set of γ, for which we used a sequence between 0 and P times the largest

eigenvalue of K.
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Similarly, (αr, λr) as a combination can be chosen by maximizing the cross-validated inner

product of H
(−ν)
r=1 (γ̂, αr, λr) and K(ν):

(α̂r, λ̂r) = argmax
(αr,λr)∈Υ2,r

5∑
ν=1

〈H(−ν)
r (γ̂, αr, λr),K

(ν)〉

where Υ2,r is a candidate set of (αr, λr). Both the candidate sequences of αr and λr are between

0 and the 95% quantile of absolute values of off-diagonal entries in Kr = (I− Π̂r−1)K(I− Π̂r−1).

In our simulation we used coordinate descent to find the maximum cross-validated inner product.

The (α̂r, λ̂r) found by the cross-validation approach minimizes the bias of estimating the

eigenfunction φr. When φr is truly localized either within variates or among variates, cross-

validation would be a desirable approach to reveal the true level of sparsity in φr. We adopted

this method in our simulation analysis in Section 5 in the main text.

Often, rather than an accurate estimate that is closest to the true φr, we are more interested

in an interpretable estimate φ̂r that highlights variates and time points with dominant variation,

even with some sacrifice of the fraction of variance explained (FVE). The second method of choos-

ing (αr, λr) is designed to provide such interpretable φ̂r. Define FVE(φ) = φTKφ
totv(K−γD) , where

totv(K−γD) is the sum of all positive eigenvalues of K−γD, which is an approximation of the to-

tal variation removing the noise σ2. Also define relative FVE as rFVE(αr, λr) = FVE(φ̂r(γ̂,λr,αr))

FVE(φ̂r(γ̂,0,0))

where φ̂r(γ̂, λr, αr) is the rth estimated eigenfunction with γ̂, αr, and λr. Then we select the

largest localization under the condition that rFVE is larger than some proportion b ∈ (0, 1] that

one choose to guarantee:

(α̂r, λ̂r) = argmax
(αr,λr)∈Υ2,r

{αr + λr : rFVEr(αr, λr) > b}. (1.1)

If there are more than one combination providing largest αr+λr, we will choose the combination

with largest αr to provide a more parsimonious eigenfunction. We will illustrate this method in

our real data analysis in Section 6 in the main text.
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1.3 Estimation of Eigenvalues and Principal Component Scores

For each subject i, we re-write Equation 1 in the manuscript using the mixed model format

Yi = Ziui + ei

where Yi = [Y Ti1 , Y
T
i2 , ..., Y

T
iJ ]T , i = 1, ..., N is a JMP × 1 vector. The design matrix Zi is an

JMP × (R1 + JR2) matrix containing the subject-level and electrode-level eigenvectors

Zi =



φz1 ... φzR1

φz1 ... φzR1

... ...
...

φz1 ... φzR1



φw1

φw1
. . .

φw1

 ...


φwR2

φwR2

. . .

φwR2


 .

The vector ui contains R1 subject level and J ×R2 electrode level principal component scores to

be estimated, and takes the form ui = [ξzi1, ..., ξ
z
iR1

, [ξwi1,j=1, ..., ξ
w
i1,j=J ], ..., [ξwiR2,j=1, ..., ξ

w
iR2,j=J

]]T .

The covariance matrix of ui is

Gi =



θz1
. . .

θzR1 θ
w
1

. . .

θwR2

⊗
 1 ρ12 ... ρ1J

...
... ...

...
ρJ1 ρJ2 ... 1




.

The error term ei is a vector of length JMP , and the covariance matrix of ei is Ri = σ2I.

Following Robinson (1991), the best linear unbiased predictor (BLUP) of the principal com-

ponent scores has the form ûi = GiZ
T
i (ZiGiZ

T
i + Ri)

−1Yi, Zi, Gi and Ri are assumed to be

known in the BLUP, which involves the estimated ρ̂jk, σ̂2, φ̂zr , φ̂
w
r , and θ̂zr , θ̂

w
r . As previously

described, ρ̂jk is obtained from the MoM estimator, φ̂zr and φ̂wr can be obtained by interpolating

eigenvectors estimated from LVPCA. To estimate θzr , θ
w
r and σ2, we follow two steps in below:

1. Estimate σ2: Before introducing any localization, we first introduced a roughness term to

smooth the eigenvectors by maximizing the problem φT (K − γD)φ such that ‖φ‖12 = 1 for



6 J. Zhang and others

some given γ > 0. As this is just the form of singular value decomposition, the middle part

of the quadratic form can be viewed as a smoothed covariance matrices K̃z = K̂z − γzD

and K̃w = K̂w− γwD. Recall the electrode level E{K̂w(t, s)} = Kw(t, s) + 1
cσ

2I(t = s). We

estimate σ2 by

σ̂2 =
c

MP

{
trace

[
K̂w

]
−
∑

all the positive eigenvalues of K̃w

}
2. Estimate θr: Recall θr =

∫
t∈T

∫
s∈T φ

T
r (t)K(t, s)φr(s)dtds, we estimate the subject-level θzr

by θ̂zr = φ̂zTr K̂zφ̂
z
r/MP, and estimate the electrode-level θwr by θ̂wr = φ̂wTr K̂wφ̂

w
r /MP .

1.4 Frobenius projection operator PDΠ(B)

Lemma (Chen and Lei, 2015): Let Π = V V T , where the p × d matrix V contains d orthogonal

basis. Let the p× (p− d) matrix U be the orthogonal complement basis of V .

Suppose UTBU =
∑p−d
i=1 γiηiη

T
i is a spectral decomposition of UTBU , then UTPDΠ(B)U =∑p−d

i=1 γ
+
i (θ)ηiη

T
i , where γ+

i (θ) = min [max(γi − θ, 0), 1] and
∑p−d
i=1 γ

+
i (θ) = 1. So the Frobenius

projection operator of symmetric matrix B is

PDΠ(B) = U

[
p−d∑
i=1

γ+
i (θ)ηiη

T
i

]
UT .

2. Additional Details for the Analysis of Data from the BADA Study

2.1 Data Processing

The primary task, preprocessing, and conventional analysis of data from the task on a different

sample are fully described in Kerr and others (2019). Briefly, temporal artifacts likely to be caused

by blinks were rescaled, electrodes with outlying time domain characteristics (mean or standard

deviation outside the Turkey hinges) were interpolated, within participants, from other electrodes,

movement derived from raw and smoothed (4s kernel), and accelerometer data were regressed

out of each channel independently. Following transformation to the frequency domain, frequency
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data were linearly rescaled by dividing by the base frequency to make power at each frequency

roughly consistent, and were log transformed. Temporal outliers in the frequency domain time

series were Windsorized within electrodes. Frequency domain data were temporally smoothed (10

second kernel) and normalized to have initial values of zero at each electrode by subtracting the

time series at each electrode from a baseline calculated from the first 100 millisecond of the trial.

Participants did the 10 second rumination task twice, separated by a 10 second rest period. The

processed 10 second frequency domain time series was averaged for the two runs.

2.2 False Discovery Rate Control

To adjust for multiple testing, all reported p-values are adjusted to control the false discovery

rate (FDR) at 0.05. We utilize the adaptive group Benjamin and Hochberg (GBH) procedure

(Hu and others, 2010) for the 14 hypothesis tests grouped within anatomical regions for each

electrode-level principal components, controlling the FDR for each component at .00625 = .05/8.

Specifically, based on the correlation structure the 14 electrodes are grouped into 5 functionally

distinct regions across the scalp: the right frontal (AF4, F4, F8, FC6), the right temporoparietal

(T8, P8), the left frontal (AF3, F3, F7, FC5), the left temporoparietal (T7, P7), and the occipital

(O1, O2) region. The proportions of true null hypothesis, which are estimated through the two-

stage (TST) method (Benjamini and others, 2006), are assumed to be dissimilar between the five

groups and the signals are more likely to appear together in these groups.

2.3 Complete Regression Results

Table 1 presents estimates, standard errors and adjusted p-values from the univariate regression

models for all 60 principal component scores.
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2.4 Additional Visual Representations

2.4.1 Scatter plots of principal component scores vs. transformed DES Figure 1 shows scatter

plots of principal component scores vs. transformed DES along with fitted values for the models

presented in Table 4 of the manuscript.

2.4.2 Topologies of ηj Figure 2 shows the mean topologies across 14 of the electrode-specific

shifts from the overall mean function (maps for η̂j from Equation 1 in the manuscript) across all

frequency bands.

2.5 Regression between Average Activity over Time and Transformed DES Scores

One of the traditional approaches for EEG analysis is to consider temporally averaged activity

during a task. In this subsection, we show that the associations identified with average activity

are mostly consistent with that identified from the multilevel LVPCA. However, the LVPCA

reveals more information, with regards to both dynamics of brain activity and connections across

frequency bands.

Instead of using principal component scores ξzir and ξwijr as predictors, consider a simpler way

of defining subject-level and electrode-level scores. Let ζzm,i = 1
p

∑p
t=1 Ȳ

(m)
i. (tp) be the average

activity across all the time points and all the electrodes for subject i, m = 1, ..., 4 for theta,

alpha, beta and gamma frequency band. Let ζwm,ij = 1
p

∑p
t=1[Y

(m)
ij (tp)− Ȳ (m)

i. (tp)] be the average

activity across all the time points for subject i at electrode j with subject mean removed. Here

ζzm,i and ζwm,ij are new subject-level and electrode-level scores and will be used to fit individual

regression models with the square-root transformed DES scores same as in Section 6.2 in the

main text.

Table 2 displays estimates from five models with significant effects or main score effects. The

significant interaction effects between a history of trauma and ζztheta, ζwbeta at O1 and ζwgamma at
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O1 indicates that, among participants with a history of trauma, higher whole-brain theta power,

and higher beta and gamma power within the occipital cortex are associated with lower level of

dissociation. The significant main effect of ζwbeta at O1 and O2 indicates that, among participants

without a history of trauma, higher beta power within the occipital cortext is associated with

higher levels of dissociation. These findings are consistent with those from the multilevel LVPCA

analysis. However, the LVPCA provides more detail. For example, from the LVPCA we know

that higher whole-brain theta power with an emphasis on power in the middle of the trial is

associated with dissociation, and that higher beta and gamma power with an early increasing

trend, usually occurs together and jointly associate with dissociation. In addition, coefficients

of the interactions in this analysis are shrunk towards zero relative to those from the LVPCA,

which may due to loss of information incurred by averaging over time. It should be noted that

the only significant association that is found with this simple approach but not with LVPCA is

the interaction effect between ζwalpha at O1.

3. Additional Simulation Results

3.1 Simulation Results with Varying Numbers of Subjects

In this section, we present additional simulation results with varying numbers of subjects, N = 50

and 200, and with P = 100, σ = 1 and other parameters same as the setting shown in the main

text, to evaluate the effect of sample size on empirical performance.

Figures 3 and 4 display estimated eigenfunctions φzr and φwr , r = 1, 2, 3, from one simulated

data set with N = 50 and N = 200 subjects, respectfully. They display similar characteristics as

in Figure 2 in the manuscript with N = 100 subjects in that within-variate localization, between-

variate sparseness penalties and accounting for within-subject correlation between electrode-

specific deviations leads to favorable recovery of eigenfunctions. The medians of the errors ‖φ−φ̂‖2

over 200 simulations with N = 50 and N = 200 subjects are reported in Tables 3 and 4,
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respectfully. Together with Table 2 in the manuscript with N = 100, it can be seen that the

errors in estimating eigenfunctions decrease with increasing sample size for each of the eight

estimation methods. As seen for N = 100 in the manuscript, for both N = 50 and N = 200 the

proposed LVPCA outperforms the other methods when estimating subject-level eigenfunctions,

and performs favorably when estimating electrode-level eigenfunctions.

In terms of identifying areas of signal, Tables 5 and 6 list the median specificity and the

median sensitivity for estimating nonzero eigenvector elements with N = 50 and N = 200

subjects, respectively. As seen in the manuscript with N = 100, here we see that the proposed

LVPCA has the highest specificity and a reasonable level of sensitivity for N = 50 and N = 200.

Median specificity and sensitivity increased slightly with increasing sample size for all methods,

with two exceptions. The median sensitivity in estimating zero elements of φ̂z3 for the two methods

(α̂, λ̂, 0) and (0, λ̂, 0), which have wider quantile ranges, decrease as sample size increases.

Figure 5 displays boxplots of estimated subject-level and electrode-level eigenvalues with

N = 50, 100 and 200. The four methods that adjust for within-subject correlation between

electrode-specific deviations can recover eigenvalues with relative little bias compared to the four

methods without adjusting for within-subject correlation. Variance decreases for all components

and for all methods with increasing sample size.

We also present empirical performance in estimating principal component scores, noise level

and within-subject correlation between electrode specific deviations. Table 9 lists the average root

mean square errors (RMSE) for estimating the principal component scores with N = 50, 100 and

200 subjects. The proposed LVPCA has minimum RMSEs among the methods, and all RMSEs

reduce with increased sample size. With the setting σ2 = 1, the average σ̂2 is 0.932 (SD =

0.007) when N = 50, 0.945 (SD=0.005) when N = 100, and 0.950 (SD=0.003) when N = 200.

The empirical performance in estimating the within-subject correlation between electrode specific

deviations is quantified through the average of errors ‖Σ̂−Σ‖2 where Σ is the J × J correlation
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matrix. The average of ‖Σ̂ − Σ‖2 is 0.496 (SD=0.181) when N = 50, 0.347 (SD=0.145) when

N = 100, and 0.253 (SD=0.181) when N = 200, compared to ‖I−Σ‖2 = 1.60 without accounting

for within-subject correlation between electrode specific deviations and restricting all ρ̂jk = 0.

3.2 Simulation Results with Varying Values of δ

In this section, we present results with varying values of δ. In Section 4.4 of the main text we

discussed the estimation of ρjk, which requires to first identify a set ∆ of pairs of electrodes

for which ρjk = 0. We proposed to estimate the set ∆ by thresholding the estimator F̂jk, i.e.

∆ = {(j, k)|F̂jk > upper δ quantile of F̂jk}. In the previous simulations we assumed we know

that 30% pairs of electrodes are uncorrelated adjusting for the subject-level deviation, i.e. δ = 30%

. Here, we consider simulations with δ set to be 20% and 50% in order to explore robustness to

selection of δ.

Table 8 shows the median of errors ‖φ − φ̂‖2 for φzr , φ
w
r , r = 1, 2, 3, (with median absolute

deviations in parenthesis) with δ = 20%, 30% and 50% over 200 simulation runs, N = 100, P =

100, σ = 1. The middle part of the table with δ = 30% is the same as the table 2 of the manuscript,

but is displayed for comparison. Here we see that when δ = 20%, the median error for φ̂zr and φ̂wr

are similar as when δ = 30%. When δ = 50%, some median error for φ̂zr becomes a little larger,

especially for φ̂z3, while the median error for φ̂wr still remains the same. This trend is consistent

with what we observed in the table 2 of the manuscript, where methods 5 to 8 with ρ̂ = 0 (can be

seen as δ = 100%) lead to higher median error for φ̂wr especially φ̂w3 in a larger scale. Table 9 lists

the median specificity and the median sensitivity for estimating nonzero eigenvector elements.

the values are almost the same for δ = 20%, 30% and 50%.

Figure 6 displays boxplots of estimated subject-level and electrode-level eigenvalues. When δ

is under-specified as 20%, θw1 , θw2 and θw3 are over-estimated with median bias ranging from 0.012

to 0.036. When δ is over-specified as 50%, θz3 is over-estimated, with median bias ranging from
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0.018 to 0.022, and θw1 , θw2 and θw3 are under-estimated with median bias ranging from -0.108 to

-0.025. This trend is consistent with what we have observed in Figure 5 where methods 5 to 8

with δ = 100% lead to over-estimated θz3 and under-estimated θwr in a larger scale.

In practice we suggest plotting all the value of F̂jk. Since F̂jk should be large for electrodes

pairs with ρjk = 0 compared to electrode pairs with correlation, we may select δ somewhere

below the change in the velocity of F̂jk. For example, Figure 7 shows F̂jk as a function of δ from

one of the simulation datasets. The “elbow” of the line suggests picking δ = 30%.

3.3 Simulation Results with larger number of variates

In this section, we present results with larger number of variates M = 15. Specifically, we ex-

panded the original eigenfunctions of M = 3 in Table 1 in the manuscript to M = 15 by

replicating the three original eigenfunctions by 5 times. Other parameters same as the setting

shown in the main text. We also considered varying number of subjects N = 50, 100, 200. The

bias or error level for estimating the eigenvalues θ, PC scores ξ, and the correlation ρ remains

the same compared to that of M = 3 in the manuscript, while the bias of eigenfunctions φ are

slightly larger than that of M = 3.

Table 10 reports the medians of the errors ‖φ − φ̂‖2 over 200 simulations with N = 50, 100

and 200 subjects. Overall the bias are slightly larger than the M = 3 case in the manuscript,

while the overall trends are similar that the proposed LVPCA has the smallest bias. Table 11

reports the median specificity and sensitivity. Similar as in the M = 3 case, LVPCA has the

highest specificity among all the methods.

Figure 8 displays boxplots of estimated subject-level and electrode-level eigenvalues with

N = 50, 100 and 200. The trends are similar that the four methods that adjust for within-subject

correlation between electrode-specific deviations can recover eigenvalues with relative little bias

(ranged from -0.01 to 0.03 for N = 100, from -0.02 to 0.02 for N = 50 and from -0.01 to 0.02 for
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N = 200) compared to the four methods without adjusting for within-subject correlation. The

overall level of bias of M = 15 is comparable to that of M = 3.

Table 12 lists the average root mean square errors (RMSE) for estimating the principal com-

ponent scores with M = 15. The proposed LVPCA has minimum RMSEs among the methods,

and the overall error level is comparable to that of M = 3. For the estimated noise, the average σ̂2

is 0.946 (SD=0.004) when N = 50, 0.96 (SD = 0.003) when N = 100, and 0.966 (SD=0.002) when

N = 200. The empirical performance in estimating the within-subject correlation between elec-

trode specific deviations is quantified through the average of errors ‖Σ̂−Σ‖2 where Σ is the J×J

correlation matrix. The average of ‖Σ̂−Σ‖2 is 0.532 (SD=0.182) when N = 50, 0.383 (SD=0.119)

when N = 100, and 0.267 (SD=0.1) when N = 200, compared to ‖I − Σ‖2 = 1.60 without ac-

counting for within-subject correlation between electrode specific deviations and restricting all

ρ̂jk = 0. The overall level of error is comparable to that of M = 3, which is 0.496 (SD=0.181)

when N = 50, 0.347 (SD=0.145) when N = 100, and 0.253 (SD=0.181) when N = 200.
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Fig. 1: Scatter plots and fitted regression lines of square root transformed DES score on ξz2 , ξw1, O1,
ξw3, FC6 and ξw1, F8. Red represents participants with a history of trauma and black those without.
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Fig. 2: η̂j(t) for four frequency bands.
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Fig. 3: True (black solid) and estimated (green and red dot) eigenfunctions from one simulated
data set with N = 50, P = 100 and σ = 1, by the described eight estimation procedures. Solid
black lines are the true eigenfunctions, green lines indicate estimated zero elements and red lines
indicate estimated nonzero elements.
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Fig. 4: True (black solid) and estimated (green and red dot) eigenfunctions from one simulated
data set with N = 200, P = 100 and σ = 1, by the described eight estimation procedures. Solid
black lines are the true eigenfunctions, green lines indicate estimated zero elements and red lines
indicate estimated nonzero elements.
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Fig. 5: Boxplots of eigenvalues estimated by the eight described estimation methods with N =
50, 100, and 200, P = 100 and σ = 1, over 200 simulation runs. Red solid lines indicate true
eigenvalues.
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Fig. 6: Boxplots of eigenvalues estimated by the top four estimation methods, with δ = 20%, 30%
and 50% over 200 simulation runs. Other parameters N = 100, P = 100 and σ = 1.
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Fig. 7: Choosing δ by looking for the changing point of F̂jk from one simulation dataset
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Table 1: BADA Study - Univariate regression models for all 60 PC scores.

Score Trauma Score × Trauma
β1 (SE) p-value β2 (SE) p-value β3 (SE) p-value

ξz1 0.57 (0.35) 0.823 1.65 (0.26) < 0.001 -1.11 (0.71) 0.967
ξz2 0.65 (0.56) 0.999 1.66 (0.25) < 0.001 -2.67 (0.89) 0.027
ξz3 -0.44 (0.53) 0.999 1.62 (0.26) < 0.001 1.78 (0.96) 0.526
ξz4 0.52 (1.2) 0.999 1.64 (0.26) < 0.001 -2.70 (1.71) 0.939

ξw1,AF3 -0.47 (0.41) 0.999 1.62 (0.27) < 0.001 0.48 (0.60) 0.999

ξw1, F7 -0.06 (0.39) 0.999 1.66 (0.27) < 0.001 0.35 (0.57) 0.999

ξw1, F3 0.06 (0.38) 0.999 1.65 (0.27) < 0.001 0.23 (0.68) 0.999

ξw1,FC5 0.31 (0.42) 0.999 1.64 (0.26) < 0.001 0.02 (0.62) 0.999

ξw1, T7 0.05 (0.35) 0.999 1.66 (0.26) < 0.001 -0.55 (0.52) 0.999

ξw1, P7 -0.11 (0.32) 0.999 1.63 (0.27) < 0.001 0.10 (0.68) 0.999

ξw1, O1 1.01 (0.40) 0.098 1.62 (0.25) < 0.001 -1.73 (0.59) 0.036

ξw1, O2 0.68 (0.38) 0.313 1.67 (0.26) < 0.001 -0.69 (0.59) 0.999

ξw1, P8 0.20 (0.34) 0.999 1.64 (0.26) < 0.001 -0.25 (0.59) 0.999

ξw1, T8 0.30 (0.37) 0.999 1.64 (0.27) < 0.001 -0.38 (0.61) 0.999

ξw1,FC6 0.20 (0.32) 0.999 1.65 (0.27) < 0.001 0.06 (0.55) 0.999

ξw1, F4 -0.43 (0.42) 0.999 1.62 (0.26) < 0.001 0.46 (0.60) 0.999

ξw1, F8 0.02 (0.35) 0.999 1.65 (0.26) < 0.001 0.72 (0.51) 0.999

ξw1,AF4 -0.06 (0.34) 0.999 1.64 (0.27) < 0.001 0.09 (0.45) 0.999

ξw2,AF3 -0.72 (0.53) 0.999 1.64 (0.26) < 0.001 0.82 (0.95) 0.999

ξw2, F7 -0.35 (0.47) 0.999 1.63 (0.26) < 0.001 -0.64 (0.77) 0.999

ξw2, F3 -0.07 (0.50) 0.999 1.64 (0.27) < 0.001 -0.13 (0.85) 0.999

ξw2,FC5 -0.60 (0.50) 0.999 1.66 (0.27) < 0.001 0.43 (0.80) 0.999

ξw2, T7 -0.22 (0.47) 0.999 1.67 (0.27) < 0.001 -0.40 (0.78) 0.999

ξw2, P7 -0.15 (0.41) 0.999 1.67 (0.26) < 0.001 -1.02 (0.82) 0.999

ξw2, O1 -0.25 (0.42) 0.999 1.64 (0.27) < 0.001 0.48 (0.73) 0.999

ξw2, O2 -0.07 (0.48) 0.999 1.64 (0.27) < 0.001 -0.08 (0.86) 0.999

ξw2, P8 0.11 (0.45) 0.999 1.63 (0.27) < 0.001 -0.17 (0.85) 0.999

ξw2, T8 -0.08 (0.49) 0.999 1.63 (0.26) < 0.001 0.76 (0.86) 0.999

ξw2,FC6 0.24 (0.42) 0.999 1.68 (0.25) < 0.001 1.76 (0.83) 0.999

ξw2, F4 -0.44 (0.49) 0.999 1.63 (0.26) < 0.001 0.70 (0.80) 0.999

ξw2, F8 0.11 (0.44) 0.999 1.69 (0.26) < 0.001 1.27 (0.84) 0.999

ξw2,AF4 -0.23 (0.48) 0.999 1.64 (0.27) < 0.001 0.17 (0.77) 0.999



REFERENCES 23

Table 1 Continued

Score Trauma Score × Trauma
β1 (SE) p-value β2 (SE) p-value β3 (SE) p-value

ξw3,AF3 -0.48 (0.42) 0.999 1.65 (0.26) < 0.001 1.40 (0.84) 0.999

ξw3, F7 -0.36 (0.41) 0.999 1.62 (0.26) < 0.001 -0.35 (0.77) 0.999

ξw3, F3 -0.67 (0.48) 0.999 1.57 (0.26) < 0.001 -0.70 (1.12) 0.999

ξw3,FC5 -1.01 (0.45) 0.999 1.66 (0.26) < 0.001 0.65 (0.76) 0.999

ξw3, T7 -0.73 (0.44) 0.999 1.65 (0.26) < 0.001 0.25 (0.88) 0.999

ξw3, P7 -0.69 (0.38) 0.999 1.57 (0.26) < 0.001 -0.48 (0.82) 0.999

ξw3, O1 -0.03 (0.37) 0.999 1.62 (0.26) < 0.001 -0.66 (0.59) 0.999

ξw3, O2 -0.23 (0.37) 0.999 1.64 (0.26) < 0.001 0.07 (0.71) 0.999

ξw3, P8 -0.24 (0.40) 0.999 1.64 (0.27) < 0.001 0.75 (1.01) 0.999

ξw3, T8 -0.56 (0.40) 0.999 1.64 (0.27) < 0.001 0.96 (0.89) 0.999

ξw3,FC6 -0.43 (0.39) 0.999 1.68 (0.26) < 0.001 2.10 (0.80) 0.082

ξw3, F4 -0.72 (0.41) 0.999 1.66 (0.27) < 0.001 1.60 (0.86) 0.359

ξw3, F8 -0.31 (0.40) 0.999 1.74 (0.26) < 0.001 2.21 (0.84) 0.082

ξw3,AF4 -0.48 (0.43) 0.999 1.63 (0.26) < 0.001 0.64 (0.80) 0.999

ξw4,AF3 -0.41 (0.64) 0.999 1.52 (0.26) < 0.001 -1.95 (1.05) 0.999

ξw4, F7 0.36 (0.66) 0.999 1.57 (0.27) < 0.001 -1.58 (0.97) 0.999

ξw4, F3 0.27 (0.67) 0.999 1.54 (0.27) < 0.001 -1.28 (0.97) 0.999

ξw4,FC5 1.03 (0.72) 0.999 1.68 (0.26) < 0.001 -0.32 (1.08) 0.999

ξw4, T7 0.62 (0.79) 0.999 1.66 (0.26) < 0.001 0.25 (1.17) 0.999

ξw4, P7 -0.07 (0.66) 0.999 1.64 (0.27) < 0.001 -0.41 (1.13) 0.999

ξw4, O1 0.39 (0.67) 0.999 1.53 (0.27) < 0.001 -1.63 (1.00) 0.999

ξw4, O2 -0.01 (0.61) 0.999 1.65 (0.26) < 0.001 -1.48 (1.02) 0.999

ξw4, P8 -0.01 (0.54) 0.999 1.64 (0.26) < 0.001 -0.63 (0.89) 0.999

ξw4, T8 0.10 (0.56) 0.999 1.61 (0.26) < 0.001 -1.38 (1.00) 0.999

ξw4,FC6 0.10 (0.59) 0.999 1.66 (0.26) < 0.001 -1.26 (1.01) 0.999

ξw4, F4 0.09 (0.67) 0.999 1.60 (0.26) < 0.001 -1.61 (0.96) 0.999

ξw4, F8 0.03 (0.64) 0.999 1.63 (0.26) < 0.001 -1.31 (1.02) 0.999

ξw4,AF4 0.54 (0.65) 0.999 1.59 (0.26) < 0.001 -1.62 (0.92) 0.999

Table 2: Coefficients, standard errors and adjusted p-values from univariate models on ζzm,i and
ζwm,ij with significant interaction effects or main score effects.

Score Trauma Score × Trauma
β1 (SE) p-value β2 (SE) p-value β3 (SE) p-value

ζztheta 0.32 (0.31) 0.999 1.68 (0.25) < 0.001 -1.56 (0.49) 0.015
ζwbeta at O1 0.78 (0.33) < 0.001 1.65 (0.26) < 0.001 -1.38 (0.48) 0.036
ζwbeta at O2 0.69 (0.34) < 0.001 1.68 (0.26) < 0.001 -0.41 (0.59) 0.999
ζwgamma at O1 0.62 (0.29) 0.999 1.57 (0.25) < 0.001 -1.50 (0.49) 0.021
ζwalpha at O1 0.57 (0.32) 0.999 1.65 (0.26) < 0.001 -1.252 (0.445) 0.048
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Table 3: Median of errors ‖φ − φ̂‖2 for φzr , φ
w
r , r = 1, 2, 3, (with median absolute deviations in

parenthesis) with N = 50, P = 100 and σ = 1, over 200 simulation runs.

φz1 φz2 φz3 φw1 φw2 φw3
(α̂, λ̂, ρ̂) 0.72 (0.26) 1.23 (0.64) 2.99 (1.49) 0.35 (0.05) 0.44 (0.06) 0.84 (0.13)
(α̂, 0, ρ̂) 0.92 (0.36) 3.12 (1.32) 4.00 (2.03) 0.75 (0.10) 1.24 (0.20) 1.22 (0.12)

(0, λ̂, ρ̂) 1.47 (0.41) 1.35 (0.74) 4.96 (1.81) 0.63 (0.22) 0.45 (0.08) 0.82 (0.14)
(0, 0, ρ̂) 3.78 (1.17) 5.79 (1.63) 6.28 (1.51) 1.92 (0.68) 2.90 (0.78) 2.23 (0.64)

(α̂, λ̂, 0) 0.71 (0.25) 1.94 (1.44) 24.49 (0.00) 0.35 (0.05) 0.44 (0.06) 0.84 (0.13)
(α̂, 0, 0) 0.93 (0.36) 6.00 (2.78) 14.29 (7.77) 0.75 (0.10) 1.24 (0.19) 1.22 (0.12)

(0, λ̂, 0) 1.50 (0.40) 1.99 (1.47) 24.41 (1.08) 0.63 (0.22) 0.45 (0.08) 0.82 (0.14)
(0, 0, 0) 4.39 (1.35) 7.99 (2.63) 14.52 (4.15) 1.92 (0.68) 2.90 (0.78) 2.23 (0.64)

Table 4: Median of errors ‖φ − φ̂‖2 for φzr , φ
w
r , r = 1, 2, 3, (with median absolute deviations in

parenthesis) with N = 200, P = 100 and σ = 1, over 200 simulation runs.

φz1 φz2 φz3 φw1 φw2 φw3
(α̂, λ̂, ρ̂) 0.36 (0.04) 0.57 (0.18) 1.40 (0.77) 0.35 (0.04) 0.39 (0.02) 0.47 (0.06)
(α̂, 0, ρ̂) 0.45 (0.05) 1.42 (0.40) 1.62 (0.91) 0.59 (0.04) 1.02 (0.08) 0.65 (0.06)

(0, λ̂, ρ̂) 0.93 (0.25) 0.65 (0.25) 2.41 (0.72) 0.33 (0.03) 0.39 (0.03) 0.43 (0.06)
(0, 0, ρ̂) 2.08 (0.60) 2.89 (0.71) 3.01 (0.84) 1.09 (0.31) 1.71 (0.38) 1.12 (0.32)

(α̂, λ̂, 0) 0.35 (0.04) 0.66 (0.26) 24.49 (0.00) 0.31 (0.02) 0.39 (0.02) 0.48 (0.06)
(α̂, 0, 0) 0.45 (0.05) 2.81 (1.35) 10.42 (5.20) 0.59 (0.04) 1.02 (0.09) 0.65 (0.06)

(0, λ̂, 0) 0.97 (0.27) 0.82 (0.41) 23.75 (0.75) 0.33 (0.03) 0.39 (0.03) 0.43 (0.06)
(0, 0, 0) 2.26 (0.62) 4.07 (1.11) 11.52 (4.40) 1.09 (0.31) 1.71 (0.38) 1.12 (0.32)

Table 5: Median of specificity (proportion of zero elements correctly estimated as zero) and
sensitivity (proportion of nonzero elements estimated as nonzero) for φzr , φ

w
r , r = 1, 2, 3, with

N = 50, P = 100 and σ = 1, over 200 simulation runs.

Specificity Sensitivity
φz1 φz2 φz3 φw1 φw2 φw3 φz1 φz2 φz3 φw1 φw2 φw3

(α̂, λ̂, ρ̂) 0.99 0.99 1.00 0.99 1.00 0.70 0.87 0.85 1.00 0.88 0.88 0.84
(α̂, 0, ρ̂) 0.75 0.72 1.00 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, ρ̂) 0.97 0.99 0.78 1.00 1.00 0.70 0.71 0.83 0.99 0.76 0.80 0.85
(0, 0, ρ̂) 0.01 0.01 0.01 0.01 0.01 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(α̂, λ̂, 0) 0.99 0.97 0.86 0.99 1.00 0.70 0.87 0.88 0.13 0.88 0.92 0.85
(α̂, 0, 0) 0.75 0.72 0.50 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, 0) 0.97 0.97 0.80 1.00 1.00 0.70 0.71 0.83 0.21 0.76 0.80 0.85
(0, 0, 0) 0.01 0.01 0.01 0.01 0.01 0.01 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6: Median of specificity (proportion of zero elements correctly estimated as zero) and
sensitivity (proportion of nonzero elements estimated as nonzero) for φzr , φ

w
r , r = 1, 2, 3, with

N = 200, P = 100 and σ = 1, over 200 simulation runs.

Specificity Sensitivity
φz1 φz2 φz3 φw1 φw2 φw3 φz1 φz2 φz3 φw1 φw2 φw3

(α̂, λ̂, ρ̂) 1.00 1.00 1.00 1.00 1.00 0.79 0.87 0.88 1.00 0.92 0.88 0.84
(α̂, 0, ρ̂) 0.75 0.73 1.00 0.73 0.73 0.02 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, ρ̂) 0.97 1.00 0.04 1.00 1.00 0.80 0.74 0.83 1.00 0.76 0.80 0.84
(0, 0, ρ̂) 0.03 0.02 0.02 0.03 0.02 0.02 1.00 1.00 1.00 1.00 1.00 1.00

(α̂, λ̂, 0) 0.99 0.98 0.88 1.00 1.00 0.79 0.87 0.88 0.00 0.88 0.92 0.84
(α̂, 0, 0) 0.75 0.73 0.51 0.73 0.73 0.02 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, 0) 0.97 1.00 0.81 1.00 1.00 0.80 0.74 0.83 0.18 0.76 0.80 0.84
(0, 0, 0) 0.03 0.02 0.02 0.03 0.02 0.02 1.00 1.00 1.00 1.00 1.00 1.00

Table 7: Average RMSEs (root mean square error) for estimating the principal component scores
by the eight described estimation methods with N = 50, 100, 200, P = 100 and σ = 1, over 200
simulation runs. The values are augmented 100 times for better presentation

ξz1 ξz2 ξz3 ξw1 ξw2 ξw3

N=50

(α̂, λ̂, ρ̂) 15.1 16.4 56.7 19.7 16.0 10.3
(α̂, 0, ρ̂) 15.2 18.8 57.0 21.3 16.1 11.5

(0, λ̂, ρ̂) 16.0 17.9 57.6 22.4 17.3 11.3
(0, 0, ρ̂) 20.5 26.0 63.7 25.8 21.4 15.7

(α̂, λ̂, 0) 15.4 27.9 87.8 44.0 28.5 11.7
(α̂, 0, 0) 16.3 36.9 92.3 54.2 26.5 13.3

(0, λ̂, 0) 17.0 30.8 91.6 54.0 29.3 12.5
(0, 0, 0) 24.6 45.3 103.2 71.0 31.5 19.2

N=100

(α̂, λ̂, ρ̂) 10.2 9.3 63.8 14.2 12.1 8.7
(α̂, 0, ρ̂) 10.5 10.4 61.3 14.9 12.2 9.4

(0, λ̂, ρ̂) 10.9 10.4 64.2 15.2 12.7 9.2
(0, 0, ρ̂) 14.0 17.0 60.6 17.6 15.4 12.3

(α̂, λ̂, 0) 10.1 16.5 93.3 43.0 25.2 10.2
(α̂, 0, 0) 10.8 20.9 107.1 53.4 25.1 11.1

(0, λ̂, 0) 11.2 18.4 97.1 48.5 26.8 10.8
(0, 0, 0) 16.9 31.4 116.9 70.4 28.3 15.3

N=200

(α̂, λ̂, ρ̂) 7.1 6.5 59.0 10.3 9.3 7.1
(α̂, 0, ρ̂) 7.0 7.0 59.0 11.1 9.6 7.5

(0, λ̂, ρ̂) 7.6 7.6 59.3 11.2 9.9 7.5
(0, 0, ρ̂) 10.1 12.3 58.2 13.1 11.9 9.4

(α̂, λ̂, 0) 7.1 8.7 89.1 38.5 23.3 8.8
(α̂, 0, 0) 7.1 13.1 99.3 42.5 22.7 8.8

(0, λ̂, 0) 7.9 11.8 91.1 47.6 23.9 9.2
(0, 0, 0) 11.5 20.2 111.6 60.5 23.8 11.2
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Table 8: Median of errors ‖φ − φ̂‖2 for φzr , φ
w
r , r = 1, 2, 3, (with median absolute deviations

in parenthesis) with δ = 20%, 30% and 50% over 200 simulation runs. Other parameters N =
100, P = 100 and σ = 1.

φz1 φz2 φz3 φw1 φw2 φw3

δ = 20%

(α̂, λ̂, ρ̂) 0.48 (0.14) 0.87 (0.38) 2.14 (1.03) 0.35 (0.05) 0.41 (0.04) 0.66 (0.10)
(α̂, 0, ρ̂) 0.60 (0.15) 1.77 (0.58) 2.42 (1.40) 0.66 (0.08) 1.11 (0.11) 0.91 (0.10)

(0, λ̂, ρ̂) 1.25 (0.31) 0.97 (0.46) 3.26 (1.13) 0.41 (0.09) 0.41 (0.05) 0.60 (0.09)
(0, 0, ρ̂) 2.61 (0.79) 3.76 (0.91) 4.27 (1.09) 1.43 (0.43) 2.14 (0.58) 1.57 (0.44)

δ = 30%

(α̂, λ̂, ρ̂) 0.49 (0.15) 0.91 (0.41) 2.18 (1.15) 0.34 (0.04) 0.41 (0.04) 0.66 (0.10)
(α̂, 0, ρ̂) 0.60 (0.15) 1.89 (0.68) 2.54 (1.50) 0.66 (0.08) 1.11 (0.11) 0.91 (0.10)

(0, λ̂, ρ̂) 1.25 (0.31) 0.96 (0.44) 3.49 (1.13) 0.41 (0.09) 0.41 (0.05) 0.60 (0.09)
(0, 0, ρ̂) 2.67 (0.78) 3.89 (1.00) 4.46 (1.23) 1.43 (0.43) 2.14 (0.58) 1.57 (0.44)

δ = 50%

(α̂, λ̂, ρ̂) 0.48 (0.13) 0.88 (0.38) 3.39 (1.86) 0.34 (0.04) 0.41 (0.03) 0.66 (0.10)
(α̂, 0, ρ̂) 0.60 (0.15) 2.18 (0.91) 3.65 (2.09) 0.66 (0.08) 1.11 (0.11) 0.91 (0.10)

(0, λ̂, ρ̂) 1.25 (0.31) 0.97 (0.46) 4.83 (1.58) 0.41 (0.09) 0.41 (0.05) 0.60 (0.05)
(0, 0, ρ̂) 2.78 (0.81) 4.38 (1.21) 5.53 (1.60) 1.43 (0.43) 2.14 (0.58) 1.57 (0.44)

Table 9: Median of specificity (proportion of zero elements correctly estimated as zero) and
sensitivity (proportion of nonzero elements estimated as nonzero) for φzr , φ

w
r , r = 1, 2, 3, with

δ = 20%, 30% and 50% over 200 simulation runs. Other parameters N = 100, P = 100 and σ = 1.

Specificity Sensitivity
φz1 φz2 φz3 φw1 φw2 φw3 φz1 φz2 φz3 φw1 φw2 φw3

δ = 20%

(α̂, λ̂, ρ̂) 0.99 1.00 1.00 0.99 1.00 0.75 0.87 0.83 1.00 0.92 0.92 0.85
(α̂, 0, ρ̂) 0.75 0.73 1.00 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, ρ̂) 0.97 1.00 0.02 1.00 1.00 0.76 0.71 0.83 1.00 0.76 0.80 0.85
(0, 0, ρ̂) 0.02 0.01 0.02 0.02 0.02 0.01 1.00 1.00 1.00 1.00 1.00 1.00

δ = 30%

(α̂, λ̂, ρ̂) 0.99 0.99 1.00 0.99 1.00 0.75 0.87 0.83 1.00 0.92 0.92 0.85
(α̂, 0, ρ̂) 0.75 0.73 1.00 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, ρ̂) 0.97 1.00 0.03 1.00 1.00 0.75 0.71 0.83 1.00 0.76 0.80 0.85
(0, 0, ρ̂) 0.02 0.01 0.02 0.02 0.02 0.01 1.00 1.00 1.00 1.00 1.00 1.00

δ = 50%

(α̂, λ̂, ρ̂) 0.99 0.99 1.00 1.00 1.00 0.74 0.84 0.88 1.00 0.88 0.92 0.85
(α̂, 0, ρ̂) 0.75 0.73 1.00 0.73 0.73 0.01 1.00 1.00 1.00 1.00 1.00 1.00

(0, λ̂, ρ̂) 0.97 1.00 0.03 1.00 1.00 0.76 0.71 0.83 1.00 0.76 0.80 0.85
(0, 0, ρ̂) 0.02 0.01 0.02 0.02 0.02 0.01 1.00 1.00 1.00 1.00 1.00 1.00
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Table 10: Median of errors ‖φ − φ̂‖2 for φzr , φ
w
r , r = 1, 2, 3, (with median absolute deviations in

parenthesis) with M = 15 over 200 simulation runs for N = 50, 100 and 200. Other parameters
P = 100 and σ = 1.

φz1 φz2 φz3 φw1 φw2 φw3

N = 50

(α̂, λ̂, ρ̂) 1.57 (0.54) 3.59 (2.37) 6.71 (3.10) 0.78 (0.09) 1.26 (0.29) 1.48 (0.21)
(α̂, 0, ρ̂) 1.98 (0.75) 6.69 (2.69) 7.24 (3.44) 1.71 (0.31) 2.77 (0.62) 2.37 (0.32)

(0, λ̂, ρ̂) 2.96 (1.18) 5.29 (3.56) 9.53 (3.36) 0.86 (0.19) 1.63 (0.74) 1.52 (0.17)
(0, 0, ρ̂) 8.56 (2.68) 13.08 (3.56) 12.54 (3.91) 4.63 (1.46) 6.45 (1.87) 4.75 (1.43)

(α̂, λ̂, 0) 1.57 (0.55) 7.64 (6.24) 32.92 (21.85) 0.78 (0.08) 1.26 (0.29) 1.49 (0.21)
(α̂, 0, 0) 2.10 (0.80) 13.04 (6.72) 29.27 (16.99) 1.71 (0.31) 2.76 (0.61) 2.34 (0.30)

(0, λ̂, 0) 3.53 (1.70) 9.14 (7.07) 32.42 (17.46) 0.86 (0.19) 1.63 (0.74) 1.52 (0.17)
(0, 0, 0) 9.53 (3.15) 18.71 (5.36) 32.22 (10.39) 4.63 (1.46) 6.45 (1.87) 4.75 (1.43)

N = 100

(α̂, λ̂, ρ̂) 1.06 (0.30) 1.87 (0.95) 4.62 (2.01) 0.72 (0.05 ) 1.44 (0.29) 1.05 (0.14)
(α̂, 0, ρ̂) 1.37 (0.41) 4.20 (1.55) 4.93 (2.22) 1.43 (0.17) 2.50 (0.36) 1.64 (0.20)

(0, λ̂, ρ̂) 2.25 (0.80) 2.80 (1.65) 7.03 (2.19) 0.77 (0.13) 1.55 (0.43) 1.09 (0.11)
(0, 0, ρ̂) 6.33 (1.52) 8.64 (2.23) 9.02 (2.29) 3.13 (1.04) 4.74 (1.21) 3.32 (0.87)

(α̂, λ̂, 0) 1.15 (0.36) 3.61 (2.65) 25.72 (15.50) 0.72 (0.05) 1.44 (0.30) 1.07 (0.16)
(α̂, 0, 0) 1.46 (0.47) 8.32 (4.08) 21.79 (10.59) 1.41 (0.15) 2.50 (0.36) 1.64 (0.18)

(0, λ̂, 0) 2.37 (0.92) 3.43 (2.32) 28.74 (14.01) 0.77 (0.13) 1.57 (0.43) 1.09 (0.11)
(0, 0, 0) 0.68 (1.73) 12.28 (3.47) 25.93 (8.93) 3.12 (1.03) 4.74 (1.17) 3.29 (0.83)

N = 200

(α̂, λ̂, ρ̂) 0.83 (0.13) 1.43 (0.55) 3.20 (1.51) 0.76 (0.04) 1.60 (0.31) 0.78 (0.14)
(α̂, 0, ρ̂) 1.05 (0.14) 3.28 (0.96) 3.34 (1.63) 1.32 (0.11) 2.32 (0.24) 1.27 (0.22)

(0, λ̂, ρ̂) 1.42 (0.29) 1.78 (0.76) 4.89 (1.84) 0.79 (0.07) 1.54 (0.19) 0.80 (0.10)
(0, 0, ρ̂) 4.49 (1.17) 6.43 (1.49) 6.37 (1.88) 2.37 (0.64) 3.50 (0.75) 2.54 (0.81)

(α̂, λ̂, 0) 0.81 (0.12) 1.45 (0.65) 30.25 (19.61) 0.76 (0.04) 1.60 (0.31) 0.78 (0.14)
(α̂, 0, 0) 1.04 (0.13) 5.57 (2.46) 18.18 (8.31) 1.32 (0.11) 2.23 (0.24) 1.27 (0.23)

(0, λ̂, 0) 1.58 (0.33) 2.32 (1.44) 35.46 (19.31) 0.79 (0.07) 1.54 (0.19) 0.80 (0.10)
(0, 0, 0) 5.05 (1.35) 9.25 (2.96) 24.43 (9.75) 2.37 (0.64) 3.50 (0.75) 2.54 (0.81)
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Table 11: Median of specificity (proportion of zero elements correctly estimated as zero) and
sensitivity (proportion of nonzero elements estimated as nonzero) for φzr , φ

w
r , r = 1, 2, 3, with

M = 15 for N = 50, 100 and 200 over 200 simulation runs. Other parameters P = 100 and σ = 1.

Specificity Sensitivity
φz1 φz2 φz3 φw1 φw2 φw3 φz1 φz2 φz3 φw1 φw2 φw3

N = 50

(α̂, λ̂, ρ̂) 1 0.98 1 0.99 1 0.71 0.84 0.93 1 0.85 0.91 0.92
(α̂, 0, ρ̂) 0.86 0.84 1 0.84 0.84 0.5 1 1 1 1 1 1

(0, λ̂, ρ̂) 0.96 0.96 0.81 0.97 0.97 0.5 0.74 0.93 1 0.81 0.89 0.91
(0, 0, ρ̂) 0.02 0.01 0.01 0.02 0.01 0.01 1 1 1 1 1 1

(α̂, λ̂, 0) 1 0.97 0.9 1 0.99 0.71 0.83 0.97 1 0.84 0.91 0.92
(α̂, 0, 0) 0.86 0.84 0.75 0.84 0.84 0.5 1 1 1 1 1 1

(0, λ̂, 0) 0.96 0.95 0.76 0.97 0.97 0.5 0.74 0.93 0.99 0.81 0.89 0.91
(0, 0, 0) 0.02 0.01 0.01 0.02 0.01 0.01 1 1 1 1 1 1

N = 100

(α̂, λ̂, ρ̂) 0.99 0.99 1 1 0.99 0.73 0.86 0.92 1 0.87 0.97 0.93
(α̂, 0, ρ̂) 0.86 0.84 1 0.84 0.65 0.5 1 1 1 1 1 1

(0, λ̂, ρ̂) 0.96 0.96 0.84 0.97 0.97 0.51 0.76 0.92 0.99 0.87 0.96 0.92
(0, 0, ρ̂) 0.03 0.02 0.02 0.03 0.02 0.02 1 1 1 1 1 1

(α̂, λ̂, 0) 0.99 0.98 0.93 1 0.99 0.73 0.85 0.92 1 0.87 0.96 0.93
(α̂, 0, 0) 0.86 0.84 0.75 0.84 0.65 0.5 1 1 1 1 1 1

(0, λ̂, 0) 0.96 0.97 0.81 0.97 0.97 0.51 0.75 0.91 0.98 0.87 0.96 0.92
(0, 0, 0) 0.03 0.02 0.02 0.03 0.02 0.02 1 1 1 1 1 1

N = 200

(α̂, λ̂, ρ̂) 1 0.99 1 1 0.98 0.74 0.87 0.93 1 0.89 0.99 0.93
(α̂, 0, ρ̂) 0.86 0.84 1 0.84 0.51 0.5 1 1 1 1 1 1

(0, λ̂, ρ̂) 0.97 0.97 0.91 0.98 0.97 0.54 0.77 0.92 0.99 0.89 0.97 0.91
(0, 0, ρ̂) 0.04 0.03 0.02 0.04 0.03 0.02 1 1 1 1 1 1

(α̂, λ̂, 0) 1 0.98 0.93 1 0.98 0.74 0.87 0.92 1 0.89 0.99 0.93
(α̂, 0, 0) 0.86 0.84 0.76 0.84 0.51 0.5 1 1 1 1 1 1

(0, λ̂, 0) 0.97 0.97 0.89 0.98 0.97 0.54 0.77 0.92 0.98 0.89 0.97 0.91
(0, 0, 0) 0.04 0.03 0.03 0.04 0.03 0.02 1 1 1 1 1 1
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Fig. 8: Boxplots of eigenvalues estimated by the top four estimation methods, with M = 15 for
N = 50, 100 and 200 over 200 simulation runs. Other parameters P = 100 and σ = 1.
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Table 12: Average RMSEs (root mean square error) for estimating the principal component scores
by the eight described estimation methods with M = 15, N = 50, 100, 200, P = 100 and σ = 1,
over 200 simulation runs. The values are augmented 100 times for better presentation

ξz1 ξz2 ξz3 ξw1 ξw2 ξw3

N=50

(α̂, λ̂, ρ̂) 15.1 14.1 46.0 18.7 15.0 9.5
(α̂, 0, ρ̂) 15.0 15.0 46.7 19.7 15 10.3

(0, λ̂, ρ̂) 16.5 17.0 45.7 20.3 16.4 10.4
(0, 0, ρ̂) 20.7 25.0 48.5 23.6 19.9 15.0

(α̂, λ̂, 0) 15.6 27.5 101.6 54.2 28.2 11.2
(α̂, 0, 0) 16.2 29.2 102.8 55.5 26.1 12.5

(0, λ̂, 0) 17.8 30.4 102.4 59.5 29.8 12.5
(0, 0, 0) 25.5 40.6 113.1 72.4 31.3 18.6

N=100

(α̂, λ̂, ρ̂) 8.9 8.6 55.0 12.6 10.8 6.8
(α̂, 0, ρ̂) 8.9 9.2 55.0 13.3 10.8 7.3

(0, λ̂, ρ̂) 9.9 10.3 56.4 14.6 11.9 7.4
(0, 0, ρ̂) 13.2 16.3 55.2 16.3 14.5 10.7

(α̂, λ̂, 0) 9.1 15.6 102.8 47.9 26.1 8.3
(α̂, 0, 0) 9.7 19.2 113.1 54.5 25.3 9.2

(0, λ̂, 0) 10.4 16.7 104.7 54.4 29.3 9.0
(0, 0, 0) 16.2 31.5 122.1 70.6 28.7 13.6

N=200

(α̂, λ̂, ρ̂) 6.5 6.2 49.3 8.9 7.9 4.9
(α̂, 0, ρ̂) 6.5 6.5 49 9.5 8.0 5.3

(0, λ̂, ρ̂) 7.0 7.0 50.0 9.5 8.5 5.4
(0, 0, ρ̂) 9.5 11.7 51.3 11.3 10.4 8.0

(α̂, λ̂, 0) 6.6 10.2 100.2 41.4 24.9 6.8
(α̂, 0, 0) 7.0 12.3 110.9 45.6 23.5 6.8

(0, λ̂, 0) 7.3 15.6 107.4 60.9 26.4 7.4
(0, 0, 0) 11.3 22.2 127.7 70.8 25.3 10.6


