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SUMMARY
In the following Supplementary Materials, we provide: (i) a brief overview of Hierarchical TMLE;
(ii) step-by-step implementation of TMLE in Stage 1 to control for differential missingness on
individual-level outcomes; (iii) a discussion of causal parameters and their identification in Stage
2; (iv) step-by-step implementation of TMLE in Stage 2 to maximize efficiency when estimating
the intervention effect; (v) details on the asymptotic linearity for Two-Stage TMLE; (vi) a second
simulation study; (vii) additional results from the main simulation study; (viii) additional results

from the real data application, and (ix) computing code.
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1. BRIEF OVERVIEW OF TMLE AND OF HIERARCHICAL TMLE

The basic steps of targeted minimum loss-based estimation (TMLE) for a point-treatment prob-

lem are as follows (van der Laan and Rose, 2011):

1. Estimating the outcome regression: the conditional expectation of the outcome given the
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intervention of interest and the adjustment covariates

2. Estimating the propensity score: the conditional probability of the intervention given the

adjustment covariates

3. Targeting the estimator of outcome regression with information in the estimated propensity

score

4. Obtaining a point estimate by averaging the targeted predictions of the outcome

5. Obtaining statistical inference (i.e., Wald-Type 95% confidence intervals) with the estimated

influence curve

We refer readers Schuler and Rose (2017) and Blakely and others (2019) for an introduction. Step-
by-step implementation for statistical parameters corresponding to hypothetical interventions on
the measurement process and for evaluating the treatment effect are given in Sections 2 and 4,
respectively.

Recently, Balzer and others (2019) proposed and validated an extension of TMLE for es-
timation and inference for the effects of cluster-based exposures in observational studies and
randomized trials with complete outcome measurement (i.e., no missingness). Briefly, this work

explores the theoretical and finite sample performance of 3 different TMLEs:

1. Cluster-level TMLE: The cluster-level TMLE is implemented after the data are aggregated
to the cluster-level. Initial estimation and targeting of the outcome regression are done at

the cluster-level (i.e., with a cluster-level, propensity score estimate).

2. Hybrid-TMLE: The Hybrid-TMLE is implemented using both individual-level and cluster-
level data. Initial estimation of the outcome regression is done at the individual-level, which
naturally harnesses the pairing of individual-level outcomes and baseline covariates. Esti-

mates from this individual-level outcome regression are aggregated to the cluster-level and
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targeted with a cluster-level, propensity score.

3. Individual-level TMLE: Point estimation for the individual-level TMLE follows a fully
individual-level approach; statistical inference, however, respects the cluster as the inde-
pendent unit. Initial estimation and targeting of the outcome regression are done at the

individual-level (i.e., with an individual-level, propensity score estimate).

These approaches are collectively known as “Hierarchical TMLE” (Balzer and others, 2019).
Recently, Yang (2021) extended Adaptive Pre-specification to select between these TMLEs the
one which maximizes the empirical efficiency. Additionally, Benitez and others (2021) provide
details on how weights can be applied to these TMLEs to estimate a variety of causal effects
(e.g., effects at the individual-level and at the cluster-level; overview in Section 3).

Hierarchical TMLE has not yet been generalized to handle missingness on individual-level
outcomes in CRTs. If there is no missingness and the individual-level outcome regression is fit
within each cluster separately, then the Hybrid-TMLE can be considered to be a special case
of Two-Stage TMLE, proposed here. Theoretically and in simulations mimicking the SEARCH
Study but with complete outcome measurement, the Hybrid-TMLE dramatically increased effi-
ciency and statistical power over the unadjusted effect estimator, while maintaining Type-I error
control (Balzer and others, 2019). Therefore, in our Two-Stage approach, adjusting for individual-
level covariates in Stage 1 is expected to increase the efficiency for effect estimation in Stage 2.
When outcomes are completely measured, we can use Adaptive Pre-specification to select among
the following TMLEs the one which maximizes empirical efficiency: (1) the cluster-level TMLE,
(2) the Hybrid-TMLE where the individual-level outcome regressions are fit within each cluster
separately, (3) the Hybrid-TMLE where the individual-level outcome regression is fit pooling over
clusters, and (4) the fully individual-level TMLE. (We again note that approach # 2 would be
equivalent to Two-Stage TMLE when there is no missingness.)

Since participant outcomes are missing in over 90% of CRTs (Fiero and others, 2016), we
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focus the remainder of the Supplementary Materials on Two-Stage TMLE, which simultaneously
controls for differential outcome measurement and adjusts for covariate imbalance to reduce bias

and improve efficiency in CRTs.

2. STEP-BY-STEP IMPLEMENTATION OF TMLE IN STAGE 1

For demonstration, we focus on implementation of TMLE for the cluster-specific endpoint
Y=E[E(Y|A=1,W,M)] (2.1)

where Y is the individual-level outcome, A is an indicator of measurement, W are baseline
individual-level covariates, and M are post-intervention individual-level covariates (i.e., media-
tors). We note that in settings with complex dependence, the adjustment set (W, M) can be
expanded to include the baseline and post-intervention covariates each participant’s “friends”.
To estimate Eq. 2.1 with TMLE, we take the following steps within each cluster i =
{1,..., N}, separately. Throughout, j = {1,...,5;} indexes the participants of cluster i. For
ease of notation, we drop the superscript ¢ when denoting the cluster-size S in the Supplementary

Materials.

1. Among those with measured outcomes (i.e., A = 1), use Super Learner to flexibly model

the relationship between the outcome Y and adjustment variables (W, M).

2. Use the output from #1 to predict the outcome for all participants, regardless of their

measurement status: I@(Y | A=1W;, M) for j={1,...,5:}.

3. Target these machine learning-based predictions with information in the estimated mea-

surement mechanism P(A = 1| W, M), also fit with Super Learner.

(a) Calculate the “clever covariate” H; = ﬁ% for j ={1,...,5;}

(b) Run logistic regression of outcome Y on only the intercept, using the logit of the initial
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estimator B(Y | A = 1, W, M) as offset (i.e., fixing its coefficient to 1) and the clever

covariate H as weight.

(c) Denote the resulting intercept as €.

4. Obtain targeted predictions of the outcome for all participants, regardless of their measure-

ment status: E*(Y | A = 1, W, M;) for j = {1,...,5;}.

(a) Add the estimated intercept to the logit of the initial estimates and transform back
to the original scale (i.c., take the inverse-logit): E*(Y | A = 1, W}, M;) = logit ™" [e+

logit{E(Y | A = 1,W;, M;)}]

5. Average the targeted predictions to obtain an estimate of the cluster-specific endpoint
adjusted for missingness on individual-level outcomes:

- 1
Y¢=—
S

s
S EN(Y|A =1,W;, M)
j=1
Because we are implementing TMLE in each cluster separately, we do not include the cluster-level
covariates E° or treatment A€ in the above estimation procedure. Updating on the logit-scale
is recommended for binary and continuous individual-level outcomes; for details see Gruber and
van der Laan (2010).

This Stage 1 approach of identifying and then using TMLE to estimate a cluster-specific end-
point Y¢, which adjusts for differential outcome ascertainment, also applies to more complicated
settings, including time-to-event outcomes with differential censoring and when we have missing-
ness on both the characteristic defining the population of interest and on the outcome of interest
(Petersen and others, 2014; Benkeser and others, 2019; Balzer and others, 2020). We refer the

reader to Section 3.1.1-3.1.2 of the main text for an overview.
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3. STAGE 2 CAUSAL PARAMETERS & THEIR IDENTIFICATION

Recall our objective is to estimate the effect of the cluster-level intervention with optimal pre-
cision, after adjusting for differential missingness on individual-level outcomes. Let Y (a¢ 1) be
the individual-level counterfactual outcome, generated by hypothetical interventions to set the
cluster-level treatment A¢ = a° and to ensure complete measurement of the individual-level
outcomes (i.e., “setting” A = 1). As detailed in Benitez and others (2021), we can use these
individual-level counterfactuals to define a variety of cluster-level and individual-level effects in
CRTs. For example, we can define the cluster-level counterfactual outcome as the expectation of

the individual-level counterfactual outcomes:
Y¢a®) = E[Y(a% 6 =1)] (3.2)

The Stage 2 causal parameter is then a summary measure of the distribution of the cluster-level

counterfactuals Y¢(a®). A common target is the population average treatment effect (PATE):
E[Y*(1)] = E[Y*(0)] (3.3)

Alternatively, we could be interested in the sample average treatment effect (SATE), which is
the effect for the N study clusters (Neyman, 1923; Rubin, 1990), or in summary measures on the
relative scale. In the SEARCH Study, for example, the primary analysis was for the sample risk

ratio for the NV = 32 trial communities:

£33N Ve
T DS 24(1)

where Y(a®) was the counterfactual cumulative incidence of HIV in community i.

(3.4)

We can consider a wider range of causal parameters by combining each summary measure

with weights. Specifically, let S; be the size of cluster 7, and consider a weighted-version of the

treatment-specific sample mean: 1/N >, a;Y,?(a®). Then setting o; = %Xé\’ gives equal weight

to participants, while setting a; = 1 gives equal weight to clusters (Benitez and others, 2021).
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When there is an interaction between cluster size and the treatment, cluster size is said to be
“informative” (Seaman and others, 2014), and the resulting causal parameters will generally not
be equivalent. In all settings, the target effect should be pre-specified and be driven by research
question. We refer the reader to Benitez and others (2021) for a detailed discussion on target
causal parameters in CRTs.

Since we have already controlled for missing outcomes in Stage 1, identification of the Stage
2 causal parameter is trivial. Specifically, the randomization assumption (Y ¢(a®) AL A¢) and the
positivity assumption (0 < P(A¢ = 1) < 1) hold by design in CRTs. Therefore, we can identify

PATE as

E[Y°(1)] — E[Y°(0)] = E(Y°|A° = 1) — E(Y°|A° = 0) (3.5)

where Y ¢ denotes the Stage 1 estimand, which appropriately adjusts for missingness on individual-
level outcomes (e.g., Eq. 2.1 of the Supplementary Materials). This framework for specifying
and identifying causal effects in Stage 2 also applies for more complicated Stage 1 endpoints,
corresponding to different Ys. (See Sections 3.1.1-3.1.2 of the main text.)

As repeatedly demonstrated (e.g., Gail and others (1996); Moore and van der Laan (2009);
Rosenblum and van der Laan (2010); Colantuoni and Rosenblum (2015); Turner and others
(2017); Murray and others (2020); Benkeser and others (2020)), adjustment for baseline covariates
can improve precision in randomized trials. Therefore, our statistical estimand corresponding to

the treatment-specific, population mean E[Y¢(a€)] is given by

Y(a®) = E[E(Y|AC = a°|E°,W°)] (3.6)

Likewise, our statistical estimand for the PATE is ¢ (1) — 1(0). Of course, we can also take the
ratio of (1) and (0) to obtain a relative effect. Identification of causal parameters for the

corresponding sample and conditional effects is discussed in Balzer and others (2016a).
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4. STEP-BY-STEP IMPLEMENTATION OF THE TMLE IN STAGE 2
Given estimates of the cluster-specific endpoints Yf for i = {1,..., N} from Stage 1, we then

implement a cluster-level TMLE to more efficiently estimate the intervention effect in Stage 2.

For demonstration, we focus on TMLE for relative effect: 1(1)/1(0).

1. Obtain an initial estimate of the conditional expectation of the cluster-level outcome, given

the cluster-level treatment and covariates: E(Y¢|A¢, E¢,W¢). We could, for example, fit a
“working” regression of the estimated outcome Y¢ on an intercept with main terms for
the cluster-level treatment A¢ and selected cluster-level covariates (E°, W) (Moore and

van der Laan, 2009; Rosenblum and van der Laan, 2010).

. Use the output from #1 to predict the outcome for all clusters under both the intervention

and control conditions: E(Y¢|A¢ = 1, B¢, W¢) and B(Y¢|A¢ = 0, B¢, W¢) fori = {1,...,N}.

. Target the initial predictions using information in the estimated propensity score I@’(AC =

11ES, WFE) fori={1,...,N}.

3

(a) To estimate the cluster-level propensity score, we could again fit a “working” logistic
regression of the cluster-level treatment indicator A° on an intercept and selected

cluster-level covariates (E°, W°).

(b) Calculate the two-dimensional “clever” covariate: H1§ = % and HOS =

_ LAT=0)
P(A°=0|Eg,Wy) fori={1,..., N}.

(¢) Run logistic regression of cluster-level outcome Y on the clever covariates H1¢ and

HO0°, suppressing the intercept, and using the logit of the initial estimator IAE()A/C |Ac, B¢, W€)

as offset (i.e., fixing its coefficient to 1).

(d) Denote the resulting coefficient estimates corresponding to H1¢ and HO® as €1¢ and

€0°, respectively.
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4. Obtain targeted predictions of the outcome for all clusters under both the intervention and

control conditions:
E*(Y¢|A® = 1, E°, W) = logit " [logit {E(Y°|A° = 1, E°, W¢)} + é1°/P(A° = 1|E°, W*)]

E*(Y¢|A® = 0, E°, W) = logit " [logit {E(Y°|A® = 0, E°, W¢)} + é0°/P(A° = 0| E°, W*)]

5. Obtain a point estimate by dividing the average of the targeted predictions under the

intervention condition by the average of the targeted predictions under the control condition:

. DN e
- LN EH (Ve | AC = 1, B, WE
TMLE:Q?(D:NZTA (e | B W)
*(0)  § s Ef(Ye| Ac =0, B W)

If the known propensity score is not estimated (e.g., P(A° = 1) = 0.5 in two-armed CRTs
with balanced allocation), then the targeting step can be skipped. As detailed in Moore and
van der Laan (2009), using a two-dimensional clever covariate during updating (step 3) allows
for simultaneous targeting of the treatment-specific means and effects on the additive, relative,
and odds ratio scales. As detailed in Balzer and others (2016a), implementation to obtain a point
estimate is identical for the population, conditional, and sample effects.

To flexibly select among various estimators of the outcome regression and propensity score,
we recommend using Adaptive Pre-specification, as described in the main text and detailed in

Balzer and others (2016b).

5. ASYMPTOTIC LINEARITY OF TwoO-STAGE TMLE

Briefly, an estimator is asymptotically linear if the difference between the estimator and the
estimand behaves (in first order) as an empirical average of a mean-zero and finite variance
function, known as the influence curve, of the unit data (Bickel and others, 1993; van der Vaart
and Wellner, 1996; van der Laan and Rose, 2011). An asymptotically linear estimator will be
consistent and normally distributed in its limit. Therefore, the Central Limit Theorem can be

applied to construct 95% confidence intervals and test the null hypothesis.
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Recall that in Stage 1, we first define the cluster-specific outcome Y¢. If all individual-level
outcomes are completely measured, then Y ¢ could be defined as the expected individual-level out-
come within each cluster: E[Y]. If the individual-level outcomes are missing-completely-at-random
(MCAR), then Y could be defined as the expected individual-level outcome among those mea-
sured: E[Y|A = 1]. Likewise, if measurement A depends on individual-level, baseline covariates
W, then Y could be defined as the expected individual-level outcome given measurement and
those covariates, standardized with respect to the covariate distribution: E[E(Y|A =1, W)]
Extensions to scenarios with post-baseline causes of missingness and/or right-censoring follow
analogously.

Next, we estimate the cluster-specific outcome Y,° within each cluster ¢ = {1,..., N}, sep-
arately. When outcomes are completely measured (Y¢ = E[Y]) or are missing-completely-at-
random (Y¢ = E[Y|A = 1]), a simple and intuitive estimator is the empirical mean outcome
among those measured. When outcomes are missing-at-random within values of the adjustment
variables (e.g., Y¢ = E[E(Y|A = 1,W))]), we recommend using TMLE with Super Learner for
estimation of the cluster-specific outcome. The empirical mean outcome (among those measured)
can be considered a special case of TMLE where the adjustment set is empty: W = {}.

To emphasize how the Stage 1 estimator depends on the individual-level data within each
cluster, let P; denote the true distribution of the individual-level data in cluster i. Likewise, let
P; 5, denote the targeted estimator of that distribution based on S; individuals in cluster 7. Then
we can write the Stage 1 cluster-specific estimand as Y,* = ®¢(P;) and the Stage 1 cluster-specific
plug-in estimator as Y* = ®°(P, g, ).

The Stage 2 cluster-level effect estimator is, therefore, a function of ®°(P; s,), ¢ = {1,...,N}.
Consider, for example, the treatment-specific mean E[Y¢(a®)] as our Stage 2 target parameter.

Then the cluster-level TMLE of the corresponding statistical estimand (a®) = E[E(Y¢|a®, E)]
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in Stage 2 would be

. 1M 1 M
Y(a) = N ZE*(YCMC =a" E}) = N Z]E* (®°(Pys,)
i=1

i=1

A° = a®, EY)

(For ease of notation, we use E° to represent both the cluster-level covariates and aggregates of
individual-level covariates (i.e. W¢) in this sub-section.) An unadjusted effect estimator in Stage
2 can again be considered a special case of the cluster-level TMLE where the adjustment set is
empty: B¢ = {}.

Under the following conditions, Two-Stage TMLE will be asymptotically linear, meaning that
1
Y(a®) —P(a®) = N Z; D; + Ry

where D; represents the cluster-level influence curve and Ry = op(N~'/?) is remainder term,

going to zero in probability:

1. Stage 2 estimators of the cluster-level outcome regression and the cluster-level propensity
score meet the usual regularity conditions, which are quite weak in a randomized trial (e.g.,

Moore and van der Laan (2009); Rosenblum and van der Laan (2010)).

2. Deviations between the estimated cluster-level outcomes and the true cluster-level out-
comes, \/% Zf\;l ®°(P; 5,) — ®°(P;), provide a negligible contribution to the remainder

term Ry.

The conditions on Stage 2 estimation are satisfied when estimating the known, cluster-level
propensity score with a “working” logistic regression and when estimating the cluster-level out-

4

come regression with another “working” parametric regression (e.g., Moore and van der Laan
(2009); Rosenblum and van der Laan (2010)). However, to the best of our knowledge, all pre-
viously existing Two-Stage estimators (e.g., a t-test on the cluster-level means) have simply

ignored the contribution from estimating the cluster-level outcome to Ry . Suppose, for example,

our Stage 1 estimator is the average outcome within each cluster: ®°(P; g,) = IAEpi’Si (YA =1).
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(Such an estimator would only be appropriate when the individual-level outcomes are completely
measured or are missing-completely-at-random.) Since the individual-level outcomes are not i.i.d.
within each cluster, we need the following to hold for this estimator’s contribution to Ry to be
essentially zero: (1) the within cluster dependence is weak enough that the Central Limit Theo-
rem applies in S;, and (2) the smallest cluster is much larger than the total number of clusters
(i.e., N/min;(S;) — 0).

When the Stage 1 estimator ®¢(P; g,) is a TMLE of the Stage 1 estimand ®¢(P;), the relevant

component of the remainder term Ry can be written as

1 & i
Wi ; [(Pi,si — P)Dip, ,, + Ri(Pis,, Fi) (5.7)
where D P.s, and R;(P; s,, P;) are the cluster i-specific efficient influence curve and remainder
terms, respectively. As before, we need that the within cluster dependence is weak enough such
that (P; g, — Pi)D;:Pi,Si = OP(Si_l/Z) and that the ratio of total number of clusters to the cluster-
size goes to zero (i.e., N/min;(S;) — 0). We note that when the cluster-size S; is substantially
larger than N, we can weaken this independence assumption to allow for a slower rate of con-
vergence. Additionally, we need that estimators of the individual-level outcome regression and
the individual-level missingness mechanism converge to their targets at fast enough rates such
that R;(P;s,, P;) = OP(S;l/Q) (van der Laan and Rose, 2011). Implementing Super Learner with
highly adaptive LASSO (HAL) (Benkeser and van der Laan, 2016) or internal sample-splitting

can help ensure these conditions hold in practice (Zheng and van der Laan, 2011; Diaz, 2019).

5.1 Inference for Pair-matched Trials

This approach to statistical inference also applies in CRTs where the treatment is randomized
within matched pairs of clusters. Briefly, let Of; and Oj, denote the observed data for the first and
second cluster within matched pair k, respectively. To obtain statistical inference for the effect in

a pair-matched setting, we replace D(O°) with the following paired version: Dpgirea(Of;, 05,) =
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i [b(Ofd) + D(05,)| (Balzer and others, 2016a). Our variance estimator is then given by the
sample variance of the paired influence curve divided by the number of pairs (N/2), and we use
the Student’s t-distribution with N/2 — 1 degrees of freedom (Hayes and Moulton, 2009). This

could naturally be extended to matched triplets in a three-armed trial.

6. ADDITIONAL SIMULATION STUDY WITH BASELINE (ONLY) CAUSES OF MISSINGNESS

Here, we consider a simplified scenario where only baseline (but not post-baseline) covariates
impact the measurement of individual-level outcomes. As before, we focus on a setting with
N = 30 clusters and where within each cluster, the number of individual participants is sampled
with equal probability from {100, 150, 200}.

For each cluster i = {1,..., N}, we independently generate the cluster-specific data as follows.
First, one latent variable U1¢ is drawn uniformly from (1.75, 2.25) and two additional variables
(U2¢,U3°) are drawn independently from a standard normal distribution. Then, two individual-
level covariates (W1, W2) are generated by drawing from a normal distribution with means
depending on the cluster-level latent factors: W1 ~ Norm(U1¢,1) and W2 ~ Norm(U2¢,1). We
set the observed cluster-level covariates (F1¢, E2€) as the empirical mean of their individual-level
counterparts. The intervention A€ is randomly allocated within pairs of clusters matched on U3¢,
therefore, N/2 clusters receive the intervention and N/2 the control.

The underlying, individual-level outcome Y is generated as an indicator that Uy, drawn from
a Uniform(0,1), is less than logit'{—4 + 0.154¢ + 0.15A°W1 + 0.4W1 + 0.2W2 + 0.5E1°W1 +
0.3(F1¢ + E2¢ 4+ U3°)}. Finally, we incorporate individual-level missingness by generating A as
an indicator that Ua, drawn from a Uniform(0,1), is less than logit=1(4 — 0.25A¢ — 0.75A°W1 —
0.75W1 —0.1W2 — 0.5FE1¢ — 0.1E2¢). Thus, participants in the intervention arm (A¢ = 1), and
especially those with higher values of W1, are more likely to have the outcome and also be

missing. The observed outcomes Y are set to be missing for individuals with A = 0.
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We also generate the counterfactual, individual-level outcomes Y'(1,1) and Y (0, 1) by setting
the cluster-level treatment to A = 1 and A° = 0, respectively, and preventing missingness by
setting A = 1. As before, the cluster-level counterfactual outcome is the empirical mean of the
individual-level counterfactual outcomes within each cluster Y¢(a¢) = 1/5; Zil Yi(a®,1). The
true values of the treatment-specific, population means E[Y¢(a®)] for a® = {1, 0}, their difference,
and their ratio are calculated for a population of 5000 clusters. We compare the same estimators

as the main simulation study.

6.1 Results from the Second Simulation Study

In this simulation study, the average coefficient of variation was 0.27 in the intervention arm and
0.33 in the control, reflecting higher than expected levels of dependence within clusters (Hayes
and Moulton, 2009). The true values of the treatment-specific means were E[Y¢(1)]=47.4% and
E[Y¢(0)]=39.6%. The corresponding risk difference and risk ratio were 7.7% and 1.20, respectively.
For both effects, Table 1 illustrates estimator performance in this simplified setting.

Focusing first on estimating the risk difference (true value=7.7%), we see that ¢-test, which
fails to adjust for any covariates, is highly biased, as expected given the differential measurement
process. On average, it grossly underestimates the intervention effect by 12.4% and attains a
confidence interval coverage of <20%, much lower than the nominal rate of 95%. By adjusting for
covariates that influence measurement and underlying outcomes, CARE is less biased, but still
underestimates the intervention effect by 2.8% when breaking the matches and by 5.1% when
preserving the matches. The corresponding confidence interval coverages for CARE are less than
the nominal rate: 90.2% and 41.2%, respectively. In contrast, the bias of Two-Stage TMLE for
the risk difference is negligible, and the confidence interval coverage is good (>95%). As predicted
by theory (Balzer and others, 2015), higher power is achieved when preserving, as compared to

breaking, the matches: 57.2% versus 46.8%, respectively.
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Now focusing on estimating the risk ratio (true value=1.2), we see that both mixed models
and GEE overestimate the intervention effect. This bias is substantial enough to prevent accurate
inference. The confidence interval coverage is 39.6%-40.6% for mixed models and 22.4%-36.4%
for GEE. Lower coverage for GEE is likely due to underestimation of the standard errors (6 < o).
While both mixed models and GEE are adjusting for the appropriate variables, both are relying
on a misspecified regressions.

Theoretically, DR-GEE should reduce bias from GEE by incorporating estimates of the miss-
ingness mechanism. Indeed, DR-GEE exhibits lower bias, but still does not obtain valid inference
(confidence interval coverage of 54%). This again highlights the need for flexible (i.e., data-
adaptive) estimators of the individual-level outcome regression and measurement mechanism. In
contrast, Two-Stage TMLE for the risk ratio is essentially unbiased and confidence interval cov-
erage is good (>95%). Again, more power is achieved when preserving (59%) versus breaking the

matched (46.8%).

Table 1. Owver 500 simulated trials each with N = 30 clusters, the performance of CRT estimators

when missingness is only impacted by baseline variables (i.c., the supplemental simulation

study). Results are shown when the target of inference is the risk difference (top 8 rows), when

the target is the risk ratio (bottom 4 rows), when breaking the matches during analysis (left), and
when preserving the matches during analysis (right).

BREAKING THE MATCHES KEEPING THE MATCHES
pt bias o G CI power ‘ pt bias o & CI  power
FOR THE RISK DIFFERENCE (true value RD=7.7%)
t-test -4.6 -124 0.040 0.043 194 15.8 | -4.6 -124 0.040 0.039 182 22.6
CARE 4.9 -2.8 0.019 0.028 90.2 320 | 2.6 -5.1 0.013 0.023 41.2 1.8
TMLE 7.2 -0.6 0.023 0.036 994 46.8 | 7.2 -0.5 0.023 0.031 98.8 57.2
FOR THE RISK RATIO (true value RR=1.20)

Mixed 1.7 0.5 0.148 0.144 40.6 904 | 1.7 0.5 0.142 0.144 39.6 92.0
GEE 1.6 0.5 0.148 0.135 364 90.8 | 1.7 0.5 0.171 0.097 224 95.6
DR-GEE | 14 0.2 0.099 0.085 54.0 92.8
TMLE 1.2 -0.0 0.053 0.084 99.6 46.8 | 1.2 -0.0 0.053 0.072 99.0 59.0

pt: average point estimate (in % for the RD)

bias: average deviation in the point estimates vs. true effect (in % for the RD)
o: standard deviation of the point estimates (on log-scale for RR)

&: average standard error estimate (on log-scale for RR)

CI: proportion of 95% confidence intervals containing the true effect (in %)
power: proportion of trials correctly rejecting the false null hypothesis (in %)
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7. MAIN SIMULATION STUDY - ADDITIONAL RESULTS

In the following Tables, we provide additional results from the main simulation study, where both
baseline and post-baseline variables (W, M) impact individual-level measurement and outcomes.

In Table 2, we provide the results for the main simulation study when CARE, mixed models,
GEE, and DR-GEE include the mediator M in their adjustment set. As expected, forcing adjust-
ment for a variable impacted by the intervention (but also confounds the measurement-outcome

relationship) does not serve to eliminate bias due to missing individual-level outcomes.

Table 2. Over 500 simulated trials each with N = 30 clusters, the performance of CRT estima-
tors when missingness depends on baseline and post-baseline variables (i.e., the main
stmulation study) and the mediator M 1is included in the adjustment set for CARE,
mized models, GEE, and DR-GFEE. Results are shown when the target of inference is the
risk difference (top 8 rows), when the target is the risk ratio (bottom 4 rows), when breaking the
matches during analysis (left), and when preserving the matches during analysis (right).

BREAKING THE MATCHES KEEPING THE MATCHES
pt  bias o o CI  power ‘ pt  bias o I CI power
FOR THE RISK DIFFERENCE (true value RD=-9.1%)
t-test -32.0 -22.9 0.048 0.050 0.8 100.0 | -32.0 -22.9 0.048 0.047 0.6  100.0
CARE -17.7  -86 0.031 0.028 17.0 100.0 | -154  -6.4 0.040 0.033 56.0 98.4
TMLE -9.8  -0.7 0.038 0.046 98.8 52.8 | -9.9 -0.8 0.037 0.043 96.6 57.4
FOR THE RISK RATIO (true value RR=0.88)

Mixed 0.8 -0.1 0.040 0.064 54.8 99.8 0.8 -0.1 0.040 0.064 54.2 99.8
GEE 0.8 -0.1 0.040 0.043 174 100.0 0.8 -0.1 0.047 0.033 34 99.8
DR-GEE 0.7 -0.2 0.0564 0.064 0.0 100.0
TMLE 0.9 -0.0 0.051 0.063 984 52.6 0.9 -0.0 0.051 0.058 96.8 57.8

pt: average point estimate (in % for the RD)

bias: average deviation in the point estimates vs. true effect (in % for the RD))
o: standard deviation of the point estimates (on log-scale for RR)

&: average standard error estimate (on log-scale for RR)

CI: proportion of 95% confidence intervals containing the true effect (in %)
power: proportion of trials correctly rejecting the false null hypothesis (in %)

To assess performance with fewer clusters, we repeated the main simulation study with N = 20
clusters. The results are given in Table 3 and echo the main findings. Even with limited numbers
of clusters, Two-Stage TMLE essentially eliminates bias due to differential outcome measurement
and achieves nominal confidence interval coverage (>95%). Existing estimators exhibit substantial

bias and yield misleading inferences. (Here, the mediator M is not included in the adjustment
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sets for CARE, mixed models, GEE, and DR-GEE.)

Table 3. Over 500 simulated trials, the performance of CRT estimators when missingness
depends on baseline and post-baseline variables (i.c., the main simulation study) and
there are only N = 20 clusters. Results are shown when the target of inference is the risk
difference (top 3 rows), when the target is the risk ratio (bottom 4 rows), when breaking the
matches during analysis (left), and when preserving the matches during analysis (right).

BREAKING THE MATCHES KEEPING THE MATCHES
pt bias o 1ol CI  power \ pt bias o o CI  power
FOR THE RISK DIFFERENCE (true value RD=-9.1%)
t-test -32.4  -23.4 0.059 0.061 74 100.0 | -32.4 -23.4 0.059 0.058 7.2 100.0
CARE -21.3  -12.2 0.048 0.044 26.2 994 | -17.9 -8.8 0.063 0.049 65.2 87.4
TMLE -9.9 -0.8 0.047 0.054 95.8 39.0 -9.9 -0.8 0.048 0.051 95.2 37.6
FOR THE RISK RATIO (true value RR=0.88)

Mixed 0.7 -0.2 0.067 0.086 24.4 98.8 0.7 -0.2 0.067 0.082 22.2 99.0
GEE 0.7 -0.2  0.067 0.069 17.0 98.4 0.7 -0.2  0.076  0.046 5.4 99.2
DR-GEE 0.7 -0.2  0.064 0.064 2.0 99.4
TMLE 0.9 -0.0 0.064 0.074 96.2 40.6 0.9 -0.0 0.065 0.069 95.2 38.4

pt: average point estimate (in % for the RD)

bias: average deviation in the point estimates vs. true effect (in % for the RD)
o: standard deviation of the point estimates (on log-scale for RR)

&: average standard error estimate (on log-scale for RR)

CI: proportion of 95% confidence intervals containing the true effect (in %)
power: proportion of trials correctly rejecting the false null hypothesis (in %)

To assess Type-I error control for Two-Stage TMLE, we repeated the main simulation study
when there was no treatment effect (RD=0; RR=1). The results are given in Table 4 and demon-
strate for N = {20, 30,50} clusters, Two-Stage TMLE maintains nominal Type-I error control

(<5%)

8. ADDITIONAL RESULTS FROM THE SEARCH STUDY

The full statistical analysis plan for the SEARCH Study is available at Balzer and others (2018).
In Table 5, we provide a comparison of results when using an unadjusted estimator in Stage 1
and Stage 2 versus Two-Stage TMLE when estimating population-level HIV viral suppression
(the proportion of all persons with HIV who are suppressing viral replication <500 copiess/mL)

in each arm and corresponding the intervention effect (Balzer and others, 2020).
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Table 4. Over 500 simulated trials, the performance of Two-Stage TMLE (only) when missing-

ness depends on baseline and post-baseline variables (i.e., the main simulation study) and

there is no intervention effect (i.e., under the null). Results are shown for N = {20, 30,50}

clusters when the target of inference is the risk difference (top), when the target is the risk ra-

tio (bottom), when breaking the matches during analysis (left), and when preserving the matches
during analysis (right).

BREAKING THE MATCHES KEEPING THE MATCHES
pt  bias o 1 CI « \ pt  Dbias o 4 CI «@
FOR THE RISK DIFFERENCE (true value RD=0%)
N =20 clusters | -0.3 -0.3 0.046 0.050 956 44 |-0.3 -0.3 0.046 0.045 950 5.0
N =30 clusters | -0.5 -0.5 0.035 0.043 976 24 |-0.5 -0.5 0.035 0.039 958 4.2
N =50 clusters | -0.6 -0.6 0.026 0.034 984 1.6 | -0.6 -0.6 0.026 0.031 97.6 2.4
FOR THE RISK RATIO (true value RR=1.0)
N =20 clusters | 1.0 -0.0 0.065 0.070 958 4.2 | 1.0 -0.0 0.065 0.064 950 5.0
N = 30 clusters 1.0 -0.0 0.049 0.060 97.6 2.4 1.0 -0.0 0.050 0.055 95.8 4.2
N =50 clusters | 1.0 -0.0 0.037 0.048 984 16| 1.0 -0.0 0.037 0.044 974 2.6

pt: average point estimate (in % for the RD)

bias: average deviation between pt & true effect (in % for the RD)

o: standard deviation of the point estimates (on log-scale for RR)

6: average standard error estimate (on log-scale for RR)

CI: proportion of 95% confidence intervals containing the true effect (in %)
a: proportion of trials incorrectly rejecting the true null hypothesis (in %)

Table 5. Summary of arm-specific and effect measures for population-level HIV viral suppression

in the SEARCH Study. Point estimates and 95% confidence intervals are provided when assuming

MCAR in Stage 1 and using an unadjusted effect estimator in Stage 2 (“Unadjusted”) versus when

using Two-Stage TMLE to control for missing individual-level outcomes and improve efficiency

when estimating the intervention effect (“TMLE”), both when breaking the matches used for
randomization and keeping the matches.

Breaking matches Keeping matches
Estimator | Intervention (95% CI) Control (95% CI) Effect (95% CI) Effect (95% CI)
Unadjusted | 85.2% (33.5%, 86.8%)  75.8% (73.5%, 78.2%) 1.12 (1.08, 1.16) _ 1.12 (1.09, 1.16)
TMLE 79% (77.1%, 80.8%)  67.8% (66.2%, 69.5%) 1.16 (1.13, 1.2)  1.15 (L.11, 1.2)

9. COMPUTING CODE

All simulations were conducted in R (v4.0.3) using the nbpMatching, 1me4, geepack, CRTgeeDR
ltmle, and SuperLearner packages (R Core Team, 2020; Beck and others, 2016; Bates and others,
2015; Hojsgaard and others, 2006; Prague and others, 2017; Schwab and others, 2017; Polley and
others, 2018). Computing code to reproduce the simulation study is available at https://github.
com/LauraBalzer/TwoStageTMLE. Computing code used to analyze the SEARCH Study data is

available at https://github.com/LauraBalzer/SEARCH_Analysis_Adults.
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Fig. 1. Simplified causal graph to illustrate the challenges of adjustment for measurement impacted by
the randomized treatment and post-baseline factors (here, being in care).



