Supplementary Table 1: summary of TFIID co-translational assembly events. Colors correspond to subunits color-code used in this work (related to Figure 1).

nascent protein	co-translational interaction
1AF1♦	TAF2
TAF1 ♦	TAF4 🔶
TAF1 ♦	TAF5 🔶
TAF1 ♦	TAF6
TAF1 ♦	TAF7 🔶
TAF1 ♦	TAF8
TAF1 ♦	TAF10♦
TAF1 ♦	TAF12 ♦
TAF1 ♦	TBP ♦
TAF2 •	TAF8♦
TAF3 ♦	TAF10♦
TAF4 🔶	TAF12
TAF6 🔶	TAF9♦
TAF6 🔶	TAF5 🔶
TAF7 🔶	TAF1♦
TAF8♦	TAF2
TAF8♦	TAF10♦
TAF9 •	TAF6
TAF11 ♦	TAF13 🔶
TAF13 🔶	TAF11 ♦

Supplementary Table 2: X-linking MS combined table (related to Figure 5) Summary of TAF1-centered crosslinking-MS metanalysis performed on seven distinct datasets from three different groups: Patel et al., 2018 (TFIID), Scheer et al., 2021 (TFIID), Chen et al., 2021 (TFIID incorporated in different preinitiation complexes: cPICscp, cPICpuma, mPICscp, hPICscp, p53hPIChdm2). Only crosslinks found in more than one dataset were considered.

	TAF1 interprotein crosslinks						
Protein 1	Protein 2	Position 1	Position 2	Protein 1	Protein 2	Position 1	Position 2
TAF1	TAF11	249	95	TAF1	TAF6	378	357
TAF1	TAF11	249	97	TAF1	TAF6	424	342
TAF1	TAF11	249	105	TAF1	TAF6	427	342
TAF1	TAF11	249	197	TAF1	TAF6	427	287
TAF1	TAF11	249	197	TAF1	TAF7	622	5
TAF1	TAF13	249	101	TAF1	TAF7	622	291
TAF1	TAF13	249	101	TAF1	TAF7	674	40
TAF1	TAF2	544	383	TAF1	TAF7	674	40
TAF1	TAF2	544	788	TAF1	TAF7	817	5
TAF1	TAF2	562	788	TAF1	TAF7	819	5
TAF1	TAF2	576	384	TAF1	TAF7	832	5
TAF1	TAF2	576	565	TAF1	TAF7	889	164
TAF1	TAF2	701	513	TAF1	TAF7	906	164
TAF1	TAF2	710	595	TAF1	TAF7	906	167
TAF1	TAF2	945	513	TAF1	TAF7	1127	164
TAF1	TAF5	370	318	TAF1	TAF7	1187	164
TAF1	TAF6	330	65	TAF1	TAF7	1201	155
TAF1	TAF6	330	196	TAF1	TAF7	1201	153
TAF1	TAF6	330	158	TAF1	TAF7	1208	167
TAF1	TAF6	335	196	TAF1	TAF8	427	178
TAF1	TAF6	370	196	TAF1	TAF9	330	24
TAF1	TAF6	370	367	TAF1	TAF9	330	10
TAF1	TAF6	370	361	TAF1	ТВР	168	243
TAF1	TAF6	378	361	TAF1	ТВР	170	333
TAF1	TAF6	378	361	TAF1	TBP	1009	181
TAF1	TAF6	378	367				

TAF1 intraprotein crosslinks

Protein 1	Protein 2	Position 1	Position 2	Protein 1	Protein 2	Position 1	Position 2
TAF1	TAF1	330	370	TAF1	TAF1	1009	1046
TAF1	TAF1	335	370	TAF1	TAF1	1009	1127
TAF1	TAF1	367	370	TAF1	TAF1	1009	1111
TAF1	TAF1	527	531	TAF1	TAF1	1046	1063
TAF1	TAF1	531	536	TAF1	TAF1	1046	1201
TAF1	TAF1	531	1436	TAF1	TAF1	1111	1127
TAF1	TAF1	531	976	TAF1	TAF1	1111	1201
TAF1	TAF1	531	544	TAF1	TAF1	1111	1187
TAF1	TAF1	536	544	TAF1	TAF1	1112	1187
TAF1	TAF1	536	549	TAF1	TAF1	1112	1201
TAF1	TAF1	536	576	TAF1	TAF1	1112	1127
TAF1	TAF1	544	943	TAF1	TAF1	1112	1177

TAF1	TAF1	544	1063	TAF1	TAF1	1112	1208
TAF1	TAF1	544	1009	TAF1	TAF1	1117	1127
TAF1	TAF1	544	576	TAF1	TAF1	1127	1208
TAF1	TAF1	544	549	TAF1	TAF1	1127	1187
TAF1	TAF1	544	710	TAF1	TAF1	1127	1166
TAF1	TAF1	549	706	TAF1	TAF1	1127	1201
TAF1	TAF1	549	707	TAF1	TAF1	1166	1187
TAF1	TAF1	549	1063	TAF1	TAF1	1187	1208
TAF1	TAF1	549	705	TAF1	TAF1	1201	1208
TAF1	TAF1	576	701	TAF1	TAF1	1201	1222
TAF1	TAF1	576	1063	TAF1	TAF1	1240	1255
TAF1	TAF1	576	943	TAF1	TAF1	1240	1244
TAF1	TAF1	576	945	TAF1	TAF1	1249	1255
TAF1	TAF1	611	832	TAF1	TAF1	1249	1261
TAF1	TAF1	611	621	TAF1	TAF1	1261	1581
TAF1	TAF1	611	622	TAF1	TAF1	1305	1322
TAF1	TAF1	611	976	TAF1	TAF1	1305	1327
TAF1	TAF1	621	832	TAF1	TAF1	1317	1339
TAF1	TAF1	622	1111	TAF1	TAF1	1317	1327
TAF1	TAF1	641	674	TAF1	TAF1	1322	1327
TAF1	TAF1	701	710	TAF1	TAF1	1322	1344
TAF1	TAF1	701	707	TAF1	TAF1	1322	1339
TAF1	TAF1	705	1063	TAF1	TAF1	1327	1344
TAF1	TAF1	705	710	TAF1	TAF1	1327	1535
TAF1	TAF1	705	707	TAF1	TAF1	1327	1487
TAF1	TAF1	817	832	TAF1	TAF1	1327	1329
TAF1	TAF1	817	1004	TAF1	TAF1	1339	1581
TAF1	TAF1	819	832	TAF1	TAF1	1339	1347
TAF1	TAF1	819	1004	TAF1	TAF1	1344	1487
TAF1	TAF1	831	1205	TAF1	TAF1	1344	1354
TAF1	TAF1	899	1208	TAF1	TAF1	1344	1399
TAF1	TAF1	899	1187	TAF1	TAF1	1353	1399
TAF1	TAF1	899	1201	TAF1	TAF1	1372	1487
TAF1	TAF1	906	1208	TAF1	TAF1	1372	1555
TAF1	TAF1	906	1201	TAF1	TAF1	1412	1419
TAF1	TAF1	906	1187	TAF1	TAF1	1412	1535
TAF1	TAF1	922	1009	TAF1	TAF1	1412	1542
TAF1	TAF1	922	1201	TAF1	TAF1	1414	1419
TAF1	TAF1	943	971	TAF1	TAF1	1415	1535
TAF1	TAF1	943	967	TAF1	TAF1	1415	1542
TAF1	TAF1	945	976	TAF1	TAF1	1419	1534
TAF1	TAF1	967	976	TAF1	TAF1	1419	1542
TAF1	TAF1	971	979	TAF1	TAF1	1419	1535
TAF1	TAF1	971	986	TAF1	TAF1	1454	1534
TAF1	TAF1	976	979	TAF1	TAF1	1454	1535
TAF1	TAF1	976	986	TAF1	TAF1	1463	1535
TAF1	TAF1	979	987	TAF1	TAF1	1463	1534

TAF1	TAF1	979	986	TAF1	TAF1	1480	1493
TAF1	TAF1	986	1009	TAF1	TAF1	1480	1487
TAF1	TAF1	986	1046	TAF1	TAF1	1482	1487
TAF1	TAF1	986	1127	TAF1	TAF1	1482	1493
TAF1	TAF1	986	1001	TAF1	TAF1	1487	1493
TAF1	TAF1	1001	1009	TAF1	TAF1	1493	1559
TAF1	TAF1	1001	1018	TAF1	TAF1	1534	1542
TAF1	TAF1	1004	1018	TAF1	TAF1	1542	1581
TAF1	TAF1	1009	1063	TAF1	TAF1	1561	1622
TAF1	TAF1	1009	1006				

Supplementary Table 3: oligonucleotide sequences and antibodies

RT-qPCR primers					
GAPDH Fwd	TCGACAGTCAGCCGCATCTTCTTT				
GAPDH Rev	ACCAAATCCGTTGACTCCGACCTT				
PPIB Fwd	CCGAACGCAACATGAAGGTG				
PPIB Rev	ACCAAAGATCACCCGGCCTA				
TAF1 Fwd	TTCCAACCCTGTTGCCATGA				
TAF1 Rev	TTTCTGCGAACCTCATCCGC				
TAF2 Fwd	CATGTGTACCGCCAAAGT				
TAF2 Rev	GCAGTTGCTTCTGTGTAAATC				
TAF3 Fwd	GACGACTGCGATGACTGGTA				
TAF3 Rev	CTTCTTGTTCGCACACTTGG				
TAF4 Fwd	GCCGCGCAAACTTTGAATG				
TAF4 Rev	TTGTTGACCAGGCTGACAGC				
TAF5 Fwd	AGTTGGAAGTGTTGCTGTGG				
TAF5 Rev	TCCTTGTTGGTTGTAGGCTGAC				
TAF6 Fwd	CCAGGAGTTCATTCCTTTCC				
TAF6 Rev	TGATGTCGCTCAGATCAACC				
TAF7 Fwd	TCTACTGTGAGAAGGGCAGTAC				
TAF7 Rev	ATTCCATGACGCCCATCAGG				
TAF8 Fwd	ACAGAGGCAGGGTTTGAGAGT				
TAF8 Rev	AGACTTGGCACTTCTCCCAAT				
TAF9 Fwd	GGAGTTTGCCTTCCGATATG				
TAF9 Rev	CGCACATCATCTGCATCAAC				
TAF9/9B Fwd	ATCAAACCCCTTTGCCA				
TAF9/9B Rev	TTCAGCCTATAGTTTGGAGC				
TAF10 Fwd	TGCCAATGATGCCCTACAGC				
TAF10 Rev	AGGGCAGGGGTCAAGTCCTC				
TAF11 Fwd	AAAGGCTGATCCAGTCCATCAC				
TAF11 Rev	TTTCTCCCCACTTCTCACACAC				
TAF12 Fwd	TATGAGGACCCGCACTCCTAC				
TAF12 Rev	GCCGAGCTTTGGACTTCAGC				
TAF13 Fwd	AATTGGAGGAGGTGCAGAAGG				
TAF13 Rev	TGGTCATCCCCAAAGCCATAC				
TBP Fwd	TCATACCGTGCTGCTATCT				
TBP Rev	CTCCCTCAAACCAACTTGTC				
Rplp0-mouse Fwd	TTCTGAGTGATGTGCAGCTG				
Rplp0-mouse Rev	GGAGATGTTCAGCATGTTCAGC				
Taf1-mouse Fwd	TGGAGATGGTGATCTTGCAG				
Taf1-mouse Rev	TCCTCATCATCTTCGCCTTC				
Taf8-mouse Fwd	ATATCAGCACGGACGATTCC				
Taf8-mouse Rev	GGTTATCGATGACGCTCTCC				
Taf10-mouse Fwd	CCACGCATAATTCGGCTCAT				
Taf10-mouse Rev	CCTCCATGGTTAGGTGTACT				
	smiFISH primary probes (including FLAP extension)				
CTNNB1_01	CTCATGTTCCATCGGGGTCCATACCTTACACTCGGACCTCGTCGACATGCATT				
CTNNB1_02	GCATCCTGGCCATATCCACCAGAGTGTTACACTCGGACCTCGTCGACATGCATT				
CTNNB1_03	TGTTCTGAAGAGAGAGCTGGTCAGCTCAACTTTACACTCGGACCTCGTCGACATGCATT				
CTNNB1_04	GCCGTTTCTTGTAATCTTGTGGCTTGTCCTTTACACTCGGACCTCGTCGACATGCATT				
CTNNB1_05	AGCTGTGGCTCCCTCAGCTTCAATAGTTACACTCGGACCTCGTCGACATGCATT				

CTNNB1_06	TGCAGCTTCCTTGTCCTGAGCAAGTTCATTACACTCGGACCTCGTCGACATGCATT
CTNNB1_07	GAGCTAGGATGTGAAGGGCTCCGGTACAACTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_08	AAATTGCTGCTGTGTCCCACCCATGGTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_09	GGCCAGTGGGATGGTGGGGTGTAAGAGCTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_10	TGGGCCATCTCTGCTTCTTGGTGTCGTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_11	TGATGTCTTCCCTGTCACCAGCCCGATTACACTCGGACCTCGTCGACATGCATT
CTNNB1_12	GTCCCAAGGAGACCTTCCATCCCTTCTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_13	AGCACCTTCAGCACTCTGCTTGTGGTTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_14	ACCACTAGCCAGTATGATGAGCTTGCTTTTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_15	TTGTTTGTTGAGCAAGGCAACCATTTTCTGCTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_16	TGGGAAAGGTTATGCAAGGTCCCAGCGGTATTACACTCGGACCTCGTCGACATGCATT
CTNNB1_17	ATAGCGTGTCTGGAAGCTTCCTTTTTAGAAAGTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_18	TGGTCCTCGTCATTTAGCAGTTTTGTCAGTTCTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_19	ATTGCACGTGTGGCAAGTTCTGCATCATCTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_20	ATGGTTCAGCCAAACGCTGGACATTAGTGGTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_21	GTCCATCAATATCAGCTACTTGTTCTTGAGTGTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_22	CTTGGGAGGTATCCACATCCTCTTCCTTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_23	ATTGCCTTTACCACTCAGAGAAGGAGCTGTTTACACTCGGACCTCGTCGACATGCATT
CTNNB1_24	GTGGCACCAGAATGGATTCCAGAGTCCAGTTACACTCGGACCTCGTCGACATGCATT
TAF1_01	GCAATGGAGTGGAAATCCTCACTGTCCTTTACACTCGGACCTCGTCGACATGCATT
TAF1_02	CTCATAGCTCCCATAACTGATGTTGCTATTTACACTCGGACCTCGTCGACATGCATT
TAF1_03	TCCACTTTCACTCAGCTGGATAGCAGAGTTACACTCGGACCTCGTCGACATGCATT
TAF1_04	GGAGATGTTCTTACGTATGGTCTCTAAATCCATTACACTCGGACCTCGTCGACATGCATT
TAF1_05	AGCAAGGGGTTGATAGCTTTCTCTAAGCGAGTTACACTCGGACCTCGTCGACATGCATT
TAF1_06	AGTCCTTTACAACCTTTGCATTGACTGGAGTTTACACTCGGACCTCGTCGACATGCATT
TAF1_07	AAGGTGGCGCATTTGTTTGATAATAGAGGGGGGTTACACTCGGACCTCGTCGACATGCATT
TAF1_08	GAATTTGTTAGTCCTCATGTGTCCAATGGCATTACACTCGGACCTCGTCGACATGCATT
TAF1_09	ACATAGGCATCAATGACAGCTGGTTTTCGGTTACACTCGGACCTCGTCGACATGCATT
TAF1_10	AGACTTCAGTTGATGACAGAACCTTGTTCTGTTTACACTCGGACCTCGTCGACATGCATT
TAF1_11	GTCAAAGATGCGCTGACATTCCTCTTTGTAATTACACTCGGACCTCGTCGACATGCATT
TAF1_12	AACTTTTTAATCTCTTCCTCAGGCACACCTTACACTCGGACCTCGTCGACATGCATT
TAF1_13	AGAAGTTGCTTGGCATTTTTCAGGGAAAGGCGTTACACTCGGACCTCGTCGACATGCATT
TAF1_14	AGCAATGAAGGCCCTTGTGGTGTTCCAAGTTACACTCGGACCTCGTCGACATGCATT
TAF1_15	GCAGTGCGAACTTCATCATCAATCTTCATTTACACTCGGACCTCGTCGACATGCATT
TAF1_16	AATTCCCGAATATAGTAACCCTGTCTTGTCCTTACACTCGGACCTCGTCGACATGCATT
TAF1_17	ATGTGGGTGGGAAAGAAGGGCTGCCGTAATTTACACTCGGACCTCGTCGACATGCATT
TAF1_18	GGCATGGCCTGAGCATCCCAAATGATTTACACTCGGACCTCGTCGACATGCATT
TAF1_19	CCAGCGTCCATATACCAGATCCTCATTTACACTCGGACCTCGTCGACATGCATT
TAF1_20	GATGATATCATCCTCCCAATGCAGCTTTACACTCGGACCTCGTCGACATGCATT
TAF1_21	TCGTGATTTCATCATCAGAGAGACACTGCTTTACACTCGGACCTCGTCGACATGCATT
TAF1_22	CAAAGACTTCTGGCTGACTTCTGATTCTACTTACACTCGGACCTCGTCGACATGCATT
TAF1_23	CAATGGAAGGGTCAGCTTTCCATCTTCAGATTACACTCGGACCTCGTCGACATGCATT

TAF1_24	24 TTCATCATTTACCAAGGCACCGTCAGTCCTTACACTCGGACCTCGTCGACATGCATT						
smiFISH secondary FLAP probe							
2×Cy3-FLAP AATGCATGTCGACGAGGTCCGAGTGTAA							
Antibodies							
Target	Clonality	Reference/Clone	Application				
GST	mouse mAb	15TF2 1D10 (Creative Biolabs)	IP				
TAF1	rabbit pAb	ab188427 (Abcam)	IF				
TAF1	rabbit pAb	ab264327 (Abcam)	IP, WB				
TAF2	rabbit pAb	#3038 (Trowitzsch et al., 2015)	IP				
TAF4	mouse mAb	32TA 2B9 (Mohan et al., 2003)	IP, IF, WB				
TAF5	mouse mAb	1TA 1C2 (Dantonel et al., 1997)	WB				
TAF6	mouse mAb	25TA 2G7 (Dantonel et al., 1997)	WB				
TAF6	rabbit pAb	A301-275A (Bethyl)	RIP				
TAF7	rabbit pAb	#3475 (Bardot et al., 2017)	IP, IF				
TAF7	mouse mAb	31TA 2C12 (present work)	RIP				
TAF7	mouse mAb	19TA 2C7 (Lavigne et al., 1996)	WB				
TAF8	rabbit pAb	#3478 (Bardot et al., 2017)	WB				
TAF9	goat pAb	sc-1248 (Santa Cruz Biotechnology)	WB				
TAF10	mouse mAb	23TA 1H8 (Soutoglou et al., 2005)	IP, RIP				
TAF10	mouse mAb	6TA 2B11 (Wieczorek et al., 1998)	RIP, IF, WB				
TAF11	mouse mAb	15TA 2B4 (Gupta et al., 2017)	IP				
TAF12	mouse mAb	22TA 2A1 (Brand et al., 2001)	WB				
TAF13	mouse mAb	16TA 3C12 (Mengus et al., 1995)	WB				
TBP	mouse mAb	3TF1 3G3 (Brou et al., 1993)	WB, IF				
SUPT7L	rabbit pAb	A302-803A (Bethyl)	IF				
lamin A/C	mouse mAb	sc-7292 (Santa Cruz Biotechnology)	WB				
GAPDH	rabbit mAb	14C10 (Cell Signaling Technology)	WB				
histone H3	rabbit pAb	bit pAb ab1791 (Abcam) WB					

Supplementary References

- Bardot, P., Vincent, S.D., Fournier, M., Hubaud, A., Joint, M., Tora, L., Pourquié, O., 2017. The TAF10containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo. Development 144, 3808–3818. https://doi.org/10.1242/dev.146902
- Brand, M., Moggs, J.G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F.J., Stevenin, J., Almouzni, G., Tora, L., 2001. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J 20, 3187–3196. https://doi.org/10.1093/emboj/20.12.3187
- Brou, C., Chaudhary, S., Davidson, I., Lutz, Y., Wu, J., Egly, J.M., Tora, L., Chambon, P., 1993. Distinct TFIID complexes mediate the effect of different transcriptional activators. EMBO J 12, 489–499. https://doi.org/10.1002/j.1460-2075.1993.tb05681.x
- Dantonel, J.C., Murthy, K.G., Manley, J.L., Tora, L., 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature 389, 399–402. https://doi.org/10.1038/38763
- Gupta, K., Watson, A.A., Baptista, T., Scheer, E., Chambers, A.L., Koehler, C., Zou, J., Obong-Ebong, I., Kandiah, E., Temblador, A., Round, A., Forest, E., Man, P., Bieniossek, C., Laue, E.D., Lemke, E.A., Rappsilber, J., Robinson, C.V., Devys, D., Tora, L., Berger, I., 2017. Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. Elife 6, e30395. https://doi.org/10.7554/eLife.30395
- Lavigne, A.C., Mengus, G., May, M., Dubrovskaya, V., Tora, L., Chambon, P., Davidson, I., 1996. Multiple interactions between hTAFII55 and other TFIID subunits. Requirements for the formation of stable ternary complexes between hTAFII55 and the TATA-binding protein. J Biol Chem 271, 19774–19780. https://doi.org/10.1074/jbc.271.33.19774
- Mengus, G., May, M., Jacq, X., Staub, A., Tora, L., Chambon, P., Davidson, I., 1995. Cloning and characterization of hTAFII18, hTAFII20 and hTAFII28: three subunits of the human transcription factor TFIID. EMBO J 14, 1520–1531.

Mohan, W.S., Scheer, E., Wendling, O., Metzger, D., Tora, L., 2003. TAF10 (TAFII30) Is Necessary for TFIID Stability and Early Embryogenesis in Mice. Molecular and Cellular Biology 23, 4307–4318. https://doi.org/10.1128/MCB.23.12.4307-4318.2003

Soutoglou, E., Demény, M.A., Scheer, E., Fienga, G., Sassone-Corsi, P., Tora, L., 2005. The Nuclear Import of TAF10 Is Regulated by One of Its Three Histone Fold Domain-Containing Interaction Partners. Molecular and Cellular Biology 25, 4092–4104. https://doi.org/10.1128/MCB.25.10.4092-4104.2005

- Trowitzsch, S., Viola, C., Scheer, E., Conic, S., Chavant, V., Fournier, M., Papai, G., Ebong, I.-O., Schaffitzel, C., Zou, J., Haffke, M., Rappsilber, J., Robinson, C.V., Schultz, P., Tora, L., Berger, I., 2015. Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules. Nat Commun 6, 6011. https://doi.org/10.1038/ncomms7011
- Wieczorek, E., Brand, M., Jacq, X., Tora, L., 1998. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature 393, 187–191. https://doi.org/10.1038/30283