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1. SI Notes 
 
1.1 Parameter setting and regional co-expression 

We found that when imposing a criterion of four significant (Bonferroni-corrected p-value < 0.05) 
windows, only eight modules across 13 published networks survived (Table S2). This low number matched 
the most stringent individual window between 0 and 500 kbp from GWAS-significant SNPs and obscured the 
variability evident in the enrichment of different genomic extension windows. Because such a stringent 
consensus would hinder detection sensitivity, we opted to prioritize modules significant in at least three 
windows. Only one Hartl et al (11) subnetwork (BRNCTX) was considered for the downstream analysis based 
on brain region similarity with the DLPFC we analyzed from the LIBD repository. A parameter search for the 
other 20 subnetworks (not used in the downstream analysis) is shown in Supplementary Figure S11.  

Genes differentially expressed in humans relative to apes, as well as druggable and loss of function 
sensitive genes, were generally underrepresented in grey modules (Supplementary Fig. S2). Grey genes were 
generally less expressed than non-grey genes (Supplementary Fig. S3), although there was a large overlap 
between distributions, with several modules expressed to a lower extent than grey. 

 

1.2 Dentate gyrus granule cell layer specific enrichment for schizophrenia risk genes 
 

Based on the cell specificity results in Figure 5, we hypothesized that data obtained via laser capture 
microdissection (LCM) - overrepresenting neurons relative to bulk tissue data - would show greater 
schizophrenia (SCZ) enrichment compared to matched-age bulk tissue hippocampus networks. A subset of 73 
adult neurotypical controls (NC) of the hippocampus tissue homogenate dataset (see Table S1) also had 
RNAseq data from a study on the dentate gyrus granule cell layer (DG)(23). We found that the DG-based SCZ 
risk module was significant (Bonferroni-corrected p-value < 0.05) in more bins than the hippocampus SCZ risk 
module and included more SCZ risk genes in absolute terms, although enrichment strength was similar 
(Supplementary Fig. S5). Using two preprocessing procedures for bulk hippocampus data (with/without 
quantitative Surrogate Variable Analysis [qSVA]) (66), we probed the role of preprocessing in these results – 
we found that qSVA is a superior approach to generating biologically faithful networks which closely resemble 
networks derived from more cell-specific tissue collection.  

When not using qSVA, we found one SCZ risk module in the DG and none in the bulk hippocampus. 
Interestingly, when we preprocessed bulk hippocampus data using qSVA, we found the two SCZ risk module 
turquoise and darkorange. Module turquoise in hippocampus with qSVA preprocessing allowed to neatly 
reproduce the results obtained in the same subjects by means of LCM (Supplementary Fig. S2). This result 
after qSVA supports the likelihood that co-expression, particularly without qSVA, is confounded by mRNA 
degradation. Even with qSVA, the module identified in the bulk tissue hippocampus was smaller than the one 
in DG and only clustered up to 318 SCZ risk genes in the most comprehensive list we used. In contrast, the 
DG aggregated 45% more SCZ risk genes in turquoise. Both DG and bulk hippocampus qSVA modules 
showed cell specificity for DG cells, supporting that WGCNA modules may capture cell type information (11), 
but preprocessing also plays a role. As is evident from Supplementary Figure S2, bulk hippocampus tissue 
processed without qSVA shows poor cell specificity relative to qSVA processing. These findings suggest that 
both biological and preprocessing features contribute to the observed co-expression patterns. 

When considering DG and qSVA-processed bulk hippocampus modules, we found the Jaccard Index 
(JI = intersection/union of the sets considered) between the SCZ-enriched modules to be relatively low (0.21); 
the 893 shared genes were a minority and were enriched for synaptic, plasticity, and associative learning 
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ontologies. The 1659 genes specific to DG turquoise were overrepresented with functions related to cell 
projection organization (102 genes, 1.6-fold enrichment, qFDR = .0078) and neurogenesis (131 genes, 1.46-fold 
enrichment, qFDR = .02). In summary, qSVA successfully identifies modules with risk and functional profiles 
reminiscent of those accessible via biological cell population enrichment; however, cell population enriched 
data provide a greater degree of SCZ risk gene convergence on co-expression patterns and an insight to the 
context dependent functions of these genes otherwise unavailable. 

 

1.3 MAGMA linear models  
The model derived from the entire cohort networks was significant (F[188,17807] = 7.34, p-value < 2.2e-

16, Adjusted R2: 0.062). This model was superior to a “null model” that only included genetic covariates of no 
interest (maximum likelihood estimation obtained via anova, p-value = 3.03e-14), suggesting an association 
of co-expression variables with MAGMA-derived gene importance for SCZ. Module assignments were 
significant in all networks with higher significance for dorsolateral prefrontal cortex (DLPFC) and Caudate 
nucleus (Caudate nucleus F[49, 17807] = 2.6, p-value = 1.03e-08; DLPFC F[42, 17807] = 2.4, p-value = 8.8e-07).  

The age-parsed model included the outcome of 11 networks (three for the Caudate nucleus and four 
each for hippocampus and DLPFC). The association of network features with MAGMA scores was significant 
(F[451, 17544] = 4.03, p-value < 2.2e-16, Adjusted R2: 0.07). This model was significantly superior to the “null 
model” that only included genetic covariates of no interest (p-value < 2.2e-16). Significant module assignments 
included all four DLPFC networks (perinatal: F[17, 17544] = 2.9, p-value = 5.4e-05; juvenile: F[33, 17544] = 3.4, p-
value = 1.4e-10; adult: F[38, 17544] = 1.6, p-value = .013; older adult: F[40, 17544] = 1.5, p-value = .017), the 
perinatal and juvenile hippocampus network (perinatal: F[27, 17544]= 2.1, p-value = .0005; juvenile: F[41, 17544]= 
1.6, p-value = .009), and the all three Caudate nucleus networks (juvenile: F[29, 17544] = 2.2, p-value = .0002; 
adult: F[51, 17544] = 1.8, p-value = .0024; older adult: F[41, 17544] = 1.7, p-value = .0014). Additionally, we found 
that perinatal hippocampus total gene connectivity was negatively associated with MAGMA (F[1, 17544] = 17.4, 
t17544 = -3.9, p-value = 2.9e-05). In summary, these analyses revealed that module membership and connectivity 
in networks were related to MAGMA scores for SCZ. The largest differences between modules across age 
period parsed networks were observed in the perinatal and juvenile DLPFC; compounding this result, SCZ 
genes scoring high in terms of MAGMA tended to be peripheral in the perinatal hippocampal network, which 
was not the case in DLPFC networks. 

 

1.4 Convergence of schizophrenia risk genes – additional results  
 

Like gene sets enriched for SCZ risk genes, also other gene sets associated with SCZ by virtue of 
proximity to differentially methylated CpG islands, overall GWAS association (MAGMA in DLPFC), and 
differentially expressed genes (in Caudate nucleus) were underrepresented in the grey modules of the age-
parsed networks we identified. In contrast, a negative control gene set not associated with SCZ (see Methods 
‘Network characterization and association with schizophrenia risk’) was seldom depleted in the grey, and 
generally not overrepresented in SCZ risk modules. The underrepresentation in grey may relate at least in part 
to gene expression levels in brain, per se (Supplementary Fig. S3). No SCZ risk module across the age period 
parsed networks overrepresented TWAS genes, although they were depleted in the grey modules of DLPFC 
networks. MAGMA enrichments, based on gene location rather than on eQTLs, were significantly 
overrepresented in SCZ risk modules. A permutation test controlling for counting a risk locus multiple times 
returned consistent results for our SCZ risk modules in the DLPFC and few others (Supplementary Fig. S4). 
Notably, enrichments detected in hippocampal modules were not significant when controlling for multiple 
counts from the same genetic locus, whereas DLPFC networks were less affected by this factor. 
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1.5 Risk gene flow – additional results 
In DLPFC, 254 SCZ risk genes transitioned from non-grey perinatal modules into juvenile grey, 

whereas 234 perinatal grey genes clustered into other modules in the juvenile period (JI of SCZ risk genes 
between grey modules: 0.44; JI of all genes: 0.49; JIs when using prenatal samples: SCZ: 0.45; all genes: 0.51). 
Similar JIs were found in the replication perinatal to juvenile transition (JI of SCZ risk genes between grey 
modules: 0.63; JI of all genes: 0.64). The majority of juvenile grey genes remained non-clustered in the adult 
and older adult time windows; further, only a minority of genes in the adult and older adult grey modules 
were not already in the juvenile grey (JI between grey modules: juvenile to adult, 0.69 for SCZ, 0.72 for all 
genes; adult to older adult, 0.71 for SCZ, 0.75 for all genes). 

In hippocampus, we identified two relevant transitions, one from the perinatal to juvenile period, and 
a subtler one in the adult to older adult period. In the first transition, 252 SCZ risk genes expressed in various 
perinatal modules ended up into juvenile grey; in contrast, 197 perinatal grey genes clustered in other 
modules in the juvenile period (JI of SCZ risk genes between grey modules: 0.53; JI of all genes: 0.57; JIs 
when using prenatal samples: SCZ: 0.51; all genes: 0.56). There was more continuity between the juvenile 
and adult time windows, close to that observed in the DLPFC (JI SCZ: 0.66; JI of all genes: 0.70). In the 
second relevant transition, 190 of the 713 older adult grey genes were clustered in other modules in the adult 
period; in turn, 134 adult grey genes were clustered in older adulthood (JI SCZ: 0.61; JI of all genes: 0.69, 
note the larger JI drop for SCZ likely associated with the adult turquoise contribution to older adult grey. No 
SCZ enrichment was significant in the older adult hippocampus, when a large proportion of SCZ risk genes 
from the adult module turquoise ended up in the older adult grey. 

In perinatal DLPFC, module black included 27 SCZ risk genes, of which 18 (67%) were also co-
expressed in the juvenile blue module. There was a sizable and significant overlap overall between perinatal 
black and juvenile blue (94 genes; empirical p = 10-4, 10,000 permutations). By contrast, considering genes 
which were not SCZ risk genes, though a minority of 76 out of 159 (48%) black genes were still co-expressed 
in blue, this further represented a significant overlap across age periods for these two SCZ risk modules 
(empirical p = 10-4, 10,000 permutations). In prenatal DLPFC, module red included 35 SCZ risk genes, of 
which 17 (46%) were also co-expressed in the juvenile blue module; the overlap between prenatal red and 
juvenile blue was 82 genes. In prenatal DLPFC, only 65 out of 206 (32%) red genes were still co-expressed 
in juvenile blue. In the replication perinatal to juvenile transition, module perinatal red included 21 
SCZ risk genes, of which 12 (57%) were also co-expressed in the replication juvenile blue module. Instead, 
only a minority of SCZ risk genes in replication perinatal red genes were still co-expressed in blue (36%). 
The perinatal-juvenile intersection was strongly enriched for gene ontologies related to the regulation of 
neurodevelopment (23 genes, 5.5-fold enrichment, qFDR = 3.4×10-7) and also to vesicle cytoskeletal trafficking 
(6 genes, 20-fold enrichment, qFDR = .0017).  

In perinatal hippocampus, module red included 85 SCZ risk genes. Of these, 39 (46%) were also co-
expressed in the larger turquoise module of the juvenile window (the percentage was 42% considering only 
non-SCZ risk genes). In prenatal hippocampus, module green included 60 SCZ risk genes, with 32 (53%) still 
co-expressed in juvenile turquoise (the percentage was 46% considering only non-SCZ risk genes). In turn, 
juvenile turquoise shared some SCZ risk genes with the turquoise module in the adult window (JI SCZ risk 
genes: 0.41; JI of all genes: 0.43). A second stream of genes co-expressed in the perinatal red module was 
found in the adult brown module, via the juvenile green module and other non-enriched modules. A consensus 
module in the red-brown stream (160 shared genes) was strongly enriched for regulation of neurodevelopment 
(37 genes, 5.2-fold enrichment, qFDR = 2.3×10-12) and regulation of trans-synaptic signaling (21 genes, 6.7-fold 
enrichment, qFDR = 1.8×10-8). These ontologies resembled those observed for the early perinatal/juvenile 
intersection in DLPFC (44 genes shared with the DLPFC intersection, JI = 0.21). Instead, the red-turquoise-
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turquoise stream (203 genes) overrepresented autophagy (16 genes, 5.4-fold enrichment, qFDR = .0014) and 
catabolic processes (38 genes, 2.2-fold enrichment, qFDR = .016). 

 
1.6 Consensus genes across age periods 
Supplementary Table S4 reports a list of the SCZ risk genes most frequently co-expressed within the modules 
shown in Figure 5 across age periods (SKI, MKL1, GBF1, AP3D1, MGRN1, LRP1). All these genes are 
included in the perinatal SCZ risk module in the DLPFC and hippocampus. Interestingly, SCZ risk genes 
found in multiple enriched modules were typically co-expressed in the enriched module already during 
perinatal life in the DLPFC (black) and hippocampus (red), hence highlighting the neurodevelopmental 
dimension of SCZ-enriched co-expression. MKL1 gene is also among the consensus genes, based on DLPFC 
networks including other published networks. 
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2. SI Methods 
 

2.1 Cell population enrichment preprocessing 
For this analysis, we did as previously described, except that we did not covary for neuronal 

proportion, as DG-GCL samples were enriched for neurons, and we did not use RIN as confounding variable, 
because it was not available for all DG-GCL samples. Additionally, here we marginalized rather than protect 
age in the preprocessing, as these samples all came from adult individuals. To reduce variability between 
subjects, we quantile-normalized log-transformed RPKM values – something that was not possible when 
including non-adult samples without compromising the estimation of developmental changes. We also added 
an alternative pipeline in which we removed qSVA latent variables (66). In qSVA, an mRNA degradation 
experiment serves to obtain degradation components that are marginalized from gene expression data along 
with explicit confounders. The experiment was performed with adult hippocampus tissue homogenate, hence 
we applied it to hippocampal bulk tissue. In the qSVA pipeline, we took the degradation count matrix as 
reported by Jaffe et al. (23) and subset it to exactly match the samples available both in the DG-GCL and 
hippocampus bulk tissue dataset. We derived the appropriate number of surrogate variables (three) using the 
sva R package on the quantile normalized assay. We then added the surrogate variables in the statistical model 
including the explicit confounding variables to regress out both explicit and surrogate variables. 

 

2.2 Machine Learning Pipeline – MAGMA score prediction 
The Machine Learning pipeline processes two datasets: the Full dataset and the Age-parsed dataset. 

The Full dataset consists of postmortem data for DLPFC, caudate nucleus, and hippocampus, with no age 
distinction, whereas the Age-parsed dataset organizes the same information as the former in 11 cohorts, 
considering the three brain regions and four age stages described previously. Both datasets have 39 common 
features, including intrinsic gene attributes like 'start', 'width', 'NumTx', 'GC content', 'NumEx', 'pLI', 'strand', 
and 'gene type'. The categorical variables ‘strand’ (two levels) and ‘gene type’ (33 levels) were inserted in the 
model with one-hot encoding. The Full and Age-parsed datasets have instead different expression and co-
expression features, including median gene expression levels (three in Full, 11 in Age-parsed) and kTotal and 
KME connectivity variables for co-expression network modules (three kTotal + 146 KME in Full, 11 kTotal 
+ 409 KME in Age-parsed).  

The Full dataset has dimensions of 21751 genes × 191 features, while the Age-parsed dataset has 
dimensions of 21751 genes × 470 features. Both datasets were randomly split into five groups using a five-
fold Stratified Cross Validation algorithm, with the stratification based on the chromosome ('chr') to which 
each gene belongs. This process was repeated 200 times using a reproducible random seed. For each of these 
divisions, a five-fold Cross Validation pipeline was implemented, with one group used as the test set in each 
iteration. In each iteration, the training set (80% of genes) underwent feature selection using the Boruta 
algorithm (100), which compares the influence of a feature to its "shadow" counterpart obtained by shuffling 
its values, using a Random Forest prediction algorithm. The selected features are then used to train an XGBoost 
regressor and evaluate its performance using R2. XGBoost is an ensemble of decision trees that are trained 
using an iterative gradient boosting method, with the number of parallel trees set to 100, the maximum depth 
of each tree set to 2, and the number of runs set to 100, using the squared error as the default objective function.  

The described pipeline was repeated 200 times to provide a distribution of 1000 values of R2 and the features 
selected by Boruta in the majority of runs for both datasets. The only variable of the kTotal type selected in 
over 50% of the iterations pertained to the DLPFC network of the Full dataset. It is worth pointing out that the 
Boruta algorithm, despite being applied to two datasets with very different dimensions, selected on average 
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comparable amounts of features. The distributions of selected feature numbers in overall 1000 runs are 
characterized as follows: 

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  28 (13.21% selection rate) and 𝐼𝐼𝐼𝐼𝐼𝐼 = 2.25 for the Full dataset, 
• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 27 (5.50% selection rate) and 𝐼𝐼𝐼𝐼𝐼𝐼 =  6 for the Age-parsed dataset. 
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3. SI Figures 
 

 

 
Supplementary Fig. S1. Association between MAGMA and gene network connectivity in the 
dorsolateral prefrontal cortex. The scatterplot shows a very weak relationship between the two 
variables. Plots obtained from kTotal of other networks do not fundamentally differ from the one 
above in this respect. 
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Supplementary Fig. S2. Schizophrenia risk depletion in grey modules. The grey module was tested 
for depletion (underrepresentation instead of overrepresentation) of SCZ and other gene sets using 
the hypergeometric test. Columns with blue color scale report the number of extension windows in 
which the grey module was significantly depleted (Bonferroni-corrected p-value <0.05). Only 
networks with grey modules significantly depleted in at least 3 windows are shown. Abbreviations: 
CN: caudate nucleus; DLPFC: dorsolateral prefrontal cortex bulk tissue data; HP: hippocampus 
bulk tissue data; AB: all biotypes; PC: protein coding 
SCZ>AB: SCZ gene sets considering all biotypes.  
SCZ>PC: SCZ gene sets considering only protein coding genes. 
SCZ.negative>AB: negative gene lists not associated with SCZ considering all biotypes. 
SCZ.negative>PC: negative gene lists not associated with SCZ considering only protein coding 
genes. 
SCZ.perm>AB: enrichment results for all biotypes assessed via permutation testing (10,000 
iterations). 
SCZ.loci.window: genes from the same locus within each extension window (all biotypes) were 
collapsed into a unique hit per module.  
DEGS>AB: differentially expressed genes, considering all biotypes 
DMGS>AB: differentially methylated genes, considering all biotypes  
Druggable_genes>AB: SCZ drug target genes, considering all biotypes.  
LOF>AB: loss of function genes, considering all biotypes 
TWAS>AB: transcription wide association study, considering all biotypes 
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Supplementary Fig. S3. Gene expression of grey and non-grey genes in the schizophrenia and 
negative lists. Median gene expression adjusted for confounders for A) Grey and non-grey network 
genes intersected with SCZ top loci genes (at 200kbp extension). A three-way ANOVA (for tissue, 
grey/non-grey, diagnosis) indicates that grey genes are more weakly expressed, accounting for most 
of the variance explained (grey/non-grey effect, eta2 = 0.0435), gene expression varies moderately 
between tissues (tissue effect, eta2 = 0.0094), while SCZ genes tend to be more highly expressed but 
the effect is relatively weak (diagnosis effect, eta2 = 0.0012).   B) Grey and non-grey network genes 
intersected with SCZ-negative list (at 200kbp extension). Abbreviations: CN: caudate nucleus; DG: 
dentate gyrus granule cell layer data; DLPFC: dorsolateral prefrontal cortex; HP: hippocampus 
bulk tissue data; QSVA, quantitative surrogate variable analysis. 
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Supplementary Fig. S4. Pathology specificity of the enrichment findings. Figure shows enrichments 
for the SCZ risk modules (identified in Figure 2, Figure 5, and Supplementary Figure S5). Columns 
with blue color scale report the number of extension windows in which the hypergeometric test was 
significant. Alzheimer’s was enriched at all age periods considered in the hippocampal SCZ risk 
modules, potentially suggesting co-expression pathways of shared risk. Abbreviations: CN: caudate 
nucleus; DLPFC: dorsolateral prefrontal cortex bulk tissue data; HP: hippocampus bulk tissue data; 
QSVA, quantitative surrogate variable analysis; AB: all biotypes; PC: protein coding; ad: Alzheimer 
disease; adhd: attention deficit hyperactivity disorder; als: amyotrophic lateral sclerosis; asd: autism 
spectrum disorder; bip: Bipolar disorder; cd: Crohn’s disease; mdd: Major depressive disorder; ms: 
Multiple Sclerosis; ocd: Obsessive-compulsive disorder; pd: Parkinson’s disease; ptsd: Post-
traumatic stress disorder; ra: Rheumatoid arthritis; uc: Ulcerative colitis.                                          
SCZ>AB: SCZ gene sets considering all biotypes.  
SCZ>PC: SCZ gene sets considering only protein coding genes. 
SCZ.negative>AB: negative gene lists not associated with SCZ considering all biotypes. 
SCZ.negative>PC: negative gene lists not associated with SCZ considering only protein coding 
genes. 
SCZ.perm>AB: enrichment results for all biotypes assessed via permutation testing (10,000 
iterations). 
SCZ.loci.window: genes from the same locus within each extension window (all biotypes) were 
collapsed into a unique hit per module.  



12 
 

MAGMA enrichments (kb_35.10.PC): these tests consider all genetic variants and not just GWAS 
significant loci, mapping at 35kbp upstream and 10kbp downstream of “protein coding” module 
genes.  
Adult_brain.PC: this test integrates MAGMA enrichment with chromatin accessibility data extracted 
from adult individuals to derive H-MAGMA competitive enrichment (protein coding).  
Fetal_brain.PC: this test integrates MAGMA enrichment with chromatin accessibility data extracted 
from fetal individuals to derive H-MAGMA competitive enrichment (protein coding).  
 

 

Supplementary Fig. S5. Schizophrenia risk convergence and module characterization in dentate 
gyrus laser capture microdissection versus bulk hippocampus-derived networks. A) Schizophrenia 
risk genes enrichment in hippocampus homogenate and dentate granule cell layer. B) Risk modules 
functional characterization. See Figure 2 captions in the main text for the abbreviations used here. 
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Supplementary Fig. S6. Dorsolateral prefrontal cortex perinatal module preservation in prenatal 
network. A) Median preservation rank for the perinatal modules. Perinatal black risk module is 
ranked among top 5 in the prenatal network. B) Z-summary statistics for the preservation of perinatal 
modules in the prenatal network. Almost all modules are highly preserved (z-scores > 10). Dashed 
lines represent Z-score (blue: 10, red: 7, orange: 2). 
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Supplementary Fig. S7. Expression levels of consensus genes in single nuclei cell type data. The 
size of a dot encodes the percentage of nuclei expressing the consensus gene within a cluster, while 
the color encodes the average expression level across all cells within a cluster. 
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Supplementary Fig. S8. Schizophrenia risk gene enrichment in consensus gene module partners: 
For each network the union of all module partners of consensus genes was taken (even if that module 
was not SCZ enriched). SCZ risk was assessed in the resulting gene set of consensus partners in 
twelve previously published networks. See Figure 2 captions in the main text for details.  
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Supplementary Fig. S9. Gene ontology enrichment in consensus gene module partners: For 
each network the union of all module partners of consensus genes was taken (even if that module 
was not SCZ enriched). Gene ontology enrichment was assessed using hypergeometric testing 
with A) GO and B) KEGG. 

 

 

 

 

Supplementary Fig. S10. Network comparability. Between-network variation of (A) median 
connectivity and (B) percentage of non-clustered genes across different criteria for network 
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matching. Plots on the left (Minimum Scale Invariant Beta) used the minimum β to meet the scale 
invariance criterion for each network, as per the standard use of WGCNA. Middle plots used the 
minimum β across the networks of a single brain regions that met the scale invariance for all age 
periods. Plots on the right derive from a downward connectivity match between all networks in 
which β was selected to obtain comparable connectivity across all networks. Abbreviations: All, 
all age samples; CN, caudate nucleus; conn, median connectivity (sum of all edges) of network 
genes; DLPFC, dorsolateral prefrontal cortex; HP, hippocampus; pct.grey, percentage of genes 
assigned to the grey module. 

 

 
Supplementary Fig. S11. Schizophrenia risk convergence in sub-networks in Hartl2021. 
See Figure 2 caption for details on the tests computed and abbreviations. 
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4. SI Tables 
Table S1. Demographics. Abbreviations: AA: African American; EUR: European; CN: Caudate 
Nucleus bulk tissue data; DLPFC: dorsolateral prefrontal cortex bulk tissue data; HP: hippocampus 
bulk tissue data; DG: dentate gyrus granule cell layer data; NC: Neurotypical controls; SCZ: 
Patients with Schizophrenia. 
 

Study Region/age 
period 

NC 
sample 

size 

SCZ 
sample 

size 

Ancestry 
AA/EUR 

Female 
(male) 
[ratio] 

Age mean 
±  sd 

(years) 

Age 
range 
(years) 

Number of 
genes 

Overall 
sample size  

Entire 
cohort 

CN 259 0 128/131 77 (182) 
[0.42] 43.9 ± 20.2 0-90 20,888 

374 DLPFC 263 0 150/113 85 (178) 
[0.48] 34.5 ± 22.3 -1-84 21,129 

HP 278 0 152/126 87 (191) 
[0.46] 35.8 ± 21.3 -1-84 20,421 

Cell 
population 
enrichment 

HP/DG 73 0 38/35 19 (54) 
[0.35] 47.9 ± 15.3 17-84 17,659 73 

Age stage 
parsed 

CN 
Juvenile 49 0 26/23 

17 (32)  
[0.5] 12.1 ± 9.7 0-25 

20,888 

374 

CN    
Adult 103 0 54/49 30 (73) 

[0.41] 40.5 ± 7.3 25-50 

CN     
Older Adult 107 0 48/59 30 (77) 

[0.39] 61.8 ± 10.1 50-90 

DLPFC 
Prenatal 26 0 22/4 15 (11) 

[1.36] -0.41 ± 0.0  

20,421 

HP 
Perinatal 42 0 29/13 22 (20)  

[1.1] 0.20 ± 1.2 -1-6 

HP   
Juvenile 49 0 26/23 11 (38) 

[0.29] 18.2 ± 4.0 8-25 

HP     
Adult 104 0 57/47 32 (72) 

[0.44] 40.0 ± 7.4 25-50 

HP       
Older Adult 83 0 40/43 22 (61) 

[0.36] 58.9 ± 8.2 50-84 

Replication 
DLPFC 

Perinatal 
50 0 

24/22 (Asian n 
= 1, Hispanic n 

= 3) 

19 (31) 
[0.61] 0.17 ± 1.2 -0.6-4 14,553 

85 
Replication 

DLPFC 
Juvenile 

35 0 
7/12 (no 

ethnicity data 
for UCLA) 

6 (29)  
[0.20] 16.7 ± 4.0 8-24 14,553 

 
 
 

Sliding 
windows 

CN 259 149 128/131 NC 
81/68 SCZ 

77 (182) 
[0.42] 

48 (101) 
[0.48] 

44.0 ± 20.3 
51.7 ± 15.1 

0-90 
17-97 

20,888 
21,067 

 
376 NC 
186 SCZ 

 
 

DLPFC 263 134 150/113 NC 
69/65 SCZ 

85 (178) 
[0.48] 

41 (93) 
[0.44] 

34.6 ± 22.3 
49.9 ± 16.0 

-1-84 
17-97 

21,129 
21,264 

HP 278 112 152/126 NC 
60/52 SCZ 

87 (191) 
[0.46] 

37 (75) 
[0.49] 

35.8 ± 21.3 
50.5 ± 15.2 

-1-84 
17-97 

20,421 
20,265 

DG 85 70 43/42 NC 
30/40 SCZ 

43 (42) 
[0.39] 

22 (48) 
[0.46] 

48.1 ± 14.8 
52.8 ± 15.7 

17-84 
17-84 

18,963 
19,111 
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Table S2. Parameter setting. Counts of significant (Bonferroni-corrected p-values < 0.05) modules 
for each network assessed for enrichment for protein-coding genes in the proximity of schizophrenia-
significant SNPs in each of the nine reference lists considered individually [PGC: 500 kbp]. Three-
lists column instead considers significance in at least 3 out of 9 lists for the counts. Four-lists column 
instead considers significance in at least 4 out of 9 lists for the counts. 
 

 PGC 0 20 50 100 150 200 250 500 3-lists 4-lists 
Fromer2016_case 1 1 1 1 - - - - 1 1 1 

Fromer2016_control - 1 1 1 - - 2 2 3 3 - 
Gandal2018a 1 1 1 2 2 2 1 2 1 2 2 
Gandal2018b - 1 1 - - - - - - - - 

Gandal2018b_cs - - 1 - 1 1 - - - - - 
Hartl2021_BRNCTX 1 1 1 1 1 2 1 - 2 2 1 

Li2018 1 - - - - - - - - - - 
Pergola2017 - 1 - - 1 1 - - 1 1 - 
Pergola2019 1 1 1 2 1 1 1 1 1 2 1 
Pergola2020 1 1 1 - - - - - 1 1 - 

Radulescu2020 1 1 1 2 2 2 2 2 2 2 2 
Walker2019 - 1 1 - - - - 1 1 - - 

Werling2020 - 2 - - 1 1 1 2 3 1 1 
Total 7 12 10 9 9 10 8 10 16 15 8 
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Table S3. WGCNA parameters. All networks were individually assessed to find the minimum 
exponent used to convert a correlation to an adjacency matrix (beta) that also achieved a scale-free 
topology network. The criterion to determine that the network was scale free was an R2 > 0.8 in the 
correlation between the values in the matrix and their logarithmic transform. We noted the median 
connectivity for that beta [Connectivity at R2 criterion]. Across all non-parsed and age-parsed 
networks, CN had the lowest median connectivity to give a scale free topology. Beta for other 
networks was set at a value causing their connectivity to match that of CN [Sft beta]. Abbreviations: 
CN: Caudate nucleus; DLPFC, dorsolateral prefrontal cortex; HP, hippocampus; Pct.grey, 
percentage of non-clustered grey genes. 
 

Study Tissue/age 
stage 

Sft beta 
(used) 

Sft beta at 
R2 

criterion 
(not used) 

Connectivity at 
R2 criterion (not 

used) 

Matched 
connectivity 

(used) 

Grey 
genes Pct. grey 

Number 
of 

modules 

Age 
study 

Entire 
cohort 

CN 9 9 1.123 1.123148 12349 59.12 50 

DLPFC 11 6 20.354 1.123148 12096 57.25 43 

HP 10 5 30.443 1.123148 11984 58.68 53 

Age 
stage 

parsed 

CN 
Juvenile 13 6 35.429 1.123148 12442 59.57 30 

CN   
Adult 10 8 2.969 1.123148 12726 60.92 52 

CN     
Older Adult 9 4 52.438 1.123148 12550 60.08 42 

DLPFC 
Prenatal 19 15 3.867 1.123148 10957 51.86 23 

DLPFC 
Perinatal 16 3 597.623 1.123148 10505 49.72 18 

DLPFC  
Juvenile 12 5 62.116 1.123148 11651 55.14 34 

DLPFC 
Adult 10 6 13.305 1.123148 12125 57.39 39 

DLPFC  
Older Adult 9 4 61.867 1.123148 12123 57.38 41 

HP Prenatal 20 8 38.23 1.123148 12411 60.78 26 
HP 

Perinatal 14 6 51.874 1.123148 11672 57.16 28 

HP   
Juvenile 12 10 2.44 1.123148 12680 62.09 42 

HP     
Adult 11 7 10.527 1.123148 11509 56.36 41 

HP       
Older Adult 11 5 43.184 1.123148 11941 58.47 42 

Replication 
DLPFC 

Perinatal 

BS = 29 
polyA = 17  

BS = 18 
polyA = 10 

BS = 7.546 
polyA = 10.753 1.123148 11112 76.35 25 

Replication 
DLPFC 
Juvenile 

UCLA = 25 
polyA = 22  

UCLA = 18 
polyA = 12 

UCLA = 4.079 
polyA = 13.563 1.123148 10758 73.92 23 

Cell 
popula

tion 
enrich
ment 

QSVA 
HP 6 5 14.3 14.1 4308 24.4 62 

DG 5 5 14.1 14.1 5376 30.4 58 

noQSVA 
HP 5 5 28.5 25.4 2983 16.9 67 

DG 5 4 25.4 25.4 4343 24.6 42 
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Table S4. SCZ risk genes most consistently co-expressed in enriched modules across age periods. 
Across the eight age-parsed networks considered, we identified six SCZ genes co-expressed within a 
SCZ risk module in at least six networks. For comparison, the maximum overlap when considering 
the negative gene list was three out of eight networks. Abbreviations: Chr, chromosome; DLPFC, 
dorsolateral prefrontal cortex; HP, hippocampus. Modules enriched for SCZ are in bold font.  
 

EnsemblID Symbol Chr Caudate 
juvenile 

DLPFC 
perinatal 

DLPFC 
juvenile 

DLPFC 
adult 

DLPFC 
older adult 

HP 
perinatal 

HP 
juvenile HP adult 

ENSG00000157933 SKI 1 grey black blue pink greenyellow red grey turquoise 

ENSG00000196588 MKL1 22 grey black blue pink greenyellow red cyan brown 

ENSG00000107862 GBF1 10 grey black blue pink green red turquoise brown 

ENSG00000065000 AP3D1 19 grey black blue blue greenyellow red turquoise brown 

ENSG00000102858 MGRN1 16 grey black lightcyan pink greenyellow red turquoise turquoise 

ENSG00000123384 LRP1 12 grey black lightcyan pink greenyellow red turquoise turquoise 
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5. Key Resource Table 
DATASET USED SOURCE IDENTIFIER 

Post-mortem brain tissue 
samples 

Jaffe et al. (6) 

Collado-Torres et al. (61) 

Benjamin et al. (52) 

Jaffe et al.  (23) 

Dataset: Allen Institute for Brain Science 
(2010). Allen Developing Human Brain Atlas: 
Developmental Transcriptome [dataset]. 
Available from brainspan.org. 
RRID:SCR_008083 | Primary publication: 
Miller et al. (101) 

Gandal et al. (36) 

Tran et al. (41) 

DLPFC and HIPPOCAMPUS:  
http://eqtl.brainseq.org/phase2/ 

 
https://github.com/LieberInstitute/brains
eq_phase2 

 

CAUDATE: 
https://erwinpaquolalab.libd.org/caudate
_eqtl/ 

 
https://github.com/LieberInstitute/BrainS
eqPhase3Caudate 

 

DENTATE GYRUS: 
https://github.com/LieberInstitute/dg_hip
po_paper 

 
  

DLPFC Replication: 
https://www.brainspan.org/static/downlo
ad.html 

https://www.synapse.org/#!Synapse:syn4
587609 

 

 

DLPFC 10x snRNAseq: 
https://github.com/LieberInstitute/10xPil
ot_snRNAseq-human 

 

Degradation matrix Jaffe et al. (23) https://jaffe-nat-neuro-dggcl.s3.us-east-
2.amazonaws.com/DataS1_DGGCL_eQ
TLs_plusHippo.csv.gz 

 
 
https://research.libd.org/dg_hippo_paper/
data.html 

http://eqtl.brainseq.org/phase2/
https://github.com/LieberInstitute/brainseq_phase2
https://github.com/LieberInstitute/brainseq_phase2
https://erwinpaquolalab.libd.org/caudate_eqtl/
https://erwinpaquolalab.libd.org/caudate_eqtl/
https://github.com/LieberInstitute/BrainSeqPhase3Caudate
https://github.com/LieberInstitute/BrainSeqPhase3Caudate
https://github.com/LieberInstitute/dg_hippo_paper
https://github.com/LieberInstitute/dg_hippo_paper
https://www.brainspan.org/static/download.html
https://www.brainspan.org/static/download.html
https://www.synapse.org/#!Synapse:syn4587609
https://www.synapse.org/#!Synapse:syn4587609
https://github.com/LieberInstitute/10xPilot_snRNAseq-human
https://github.com/LieberInstitute/10xPilot_snRNAseq-human
https://jaffe-nat-neuro-dggcl.s3.us-east-2.amazonaws.com/DataS1_DGGCL_eQTLs_plusHippo.csv.gz
https://jaffe-nat-neuro-dggcl.s3.us-east-2.amazonaws.com/DataS1_DGGCL_eQTLs_plusHippo.csv.gz
https://jaffe-nat-neuro-dggcl.s3.us-east-2.amazonaws.com/DataS1_DGGCL_eQTLs_plusHippo.csv.gz
https://research.libd.org/dg_hippo_paper/data.html
https://research.libd.org/dg_hippo_paper/data.html
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European Ancestry data Collado-Torres et al. (61)  

Hartl2021 Hartl et al. (11) Supplementary Table 1 

Pergola2017 Pergola et al. (13) https://www.ncbi.nlm.nih.gov/projects/g
ap/cgi-
bin/study.cgi?study_id=phs000417.v1.p1 

 
https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE30272 

Pergola2019 Pergola et al. (14)  

Pergola2020 Pergola et al. (35) Common Mind Consortium: 
https://www.synapse.org/#!Synapse:syn2
759792/wiki/69613 

 
 
  

Radulescu2020 Radulescu et al. (12)  

Gandal2018a Gandal et al. (10)  

Gandal2018b 
Gandal2018b_cs 

Gandal et al. (36)  

Fromer2016_case 
Fromer2016_control 

Fromer et al. (5) Common Mind Consortium: 
https://www.synapse.org/#!Synapse:syn2
759792/wiki/69613 

 
 
  

Werling2020 Werling et al. (27)  

Li2018 Li et al. (31)  

Walker2019 Walker et al. (26)  

iPSC dataset Page et al. (33) https://stemcell.libd.org/schizophrenia/R
NAseq/dataset001/ 

PGC3 reference list. 
Pathology reference list. 
Other enrichment reference 
lists(Cell Specificity, TWAS, 
DEGs, DMGs, LoF) 

Papers cited in correspondence with data 
mentions. 

 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000417.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000417.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000417.v1.p1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30272
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613
https://www.synapse.org/#!Synapse:syn2759792/wiki/69613
https://stemcell.libd.org/schizophrenia/RNAseq/dataset001/
https://stemcell.libd.org/schizophrenia/RNAseq/dataset001/
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DATASET GENERATED SOURCE IDENTIFIER 

Preprocessed datasets 
generated in this manuscript 

Zenodo https://doi.org/10.5281/zenodo.5676480 

WGCNA network outputs for 
this manuscript 

Zenodo https://doi.org/10.5281/zenodo.5676480 

Code generated Github https://github.com/LieberInstitute/Brain_
WGCNA 

For future analysis and 
research expansion 

 https://nets.libd.org/age_wgcna/ 

SOFTWARE USED SOURCE IDENTIFIER 

ComplexHeatmap R package Gu et al. (102) https://bioconductor.org/packages/releas
e/bioc/html/ComplexHeatmap.html 

WGCNA Zhang et al. (34) 
 
Langfelder et al. (103) 

https://cran.r-
project.org/web/packages/WGCNA/inde
x.html 

 

clusterProfiler R package Yu et al. (68) https://bioconductor.org/packages/releas
e/bioc/html/clusterProfiler.html 

 

MAGMA de Leeuw et al. (104) https://ctg.cncr.nl/software/magma 

 

biomaRt R package Durinck et al. (105) 
 

https://bioconductor.org/packages/releas
e/bioc/html/biomaRt.html 

 

tidyverse R package  https://cran.r-
project.org/web/packages/tidyverse/inde
x.html 

 

R (v4.X.X) R Development Core (106) https://www.r-project.org/ 

 

ggplot2 R package  https://cran.r-
project.org/web/packages/ggplot2/index.
html 

https://doi.org/10.5281/zenodo.5676480
https://doi.org/10.5281/zenodo.5676480
https://github.com/LieberInstitute/Brain_WGCNA
https://github.com/LieberInstitute/Brain_WGCNA
https://nets.libd.org/age_wgcna/
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://cran.r-project.org/web/packages/WGCNA/index.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://ctg.cncr.nl/software/magma
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://bioconductor.org/packages/release/bioc/html/biomaRt.html
https://cran.r-project.org/web/packages/tidyverse/index.html
https://cran.r-project.org/web/packages/tidyverse/index.html
https://cran.r-project.org/web/packages/tidyverse/index.html
https://www.r-project.org/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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sankeyD3 R package  https://github.com/fbreitwieser/sankeyD
3 

gg4hx R package  https://teunbrand.github.io/ggh4x/ 

https://github.com/fbreitwieser/sankeyD3
https://github.com/fbreitwieser/sankeyD3
https://teunbrand.github.io/ggh4x/
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