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Fig. S1. Electron microscopic images of heart tissue from LmnaWmWT and Lmna®353RWT mice

(A) LMNA Q353R mutation analysis showing its allele frequency and in silico functional prediction.

(B) Sequence of wild-type (WT) and Lmna®353RWT knock-in (Q353R) mice.

(C) Appearances of WT and Lmna®353RWT knock-in mouse embryos and their hearts at embryonic day

(E17.5).
(D) Box plots showing the solidity values of the nuclei. n = 2511 (WT), 1881 (Q353R).

(E) Histological comparison of multiple organs between LmnaVTWT and Lmna®353RWT knock-in mice on
embryonic day 17.5 (E17.5) by Hematoxylin-eosin staining. Scale bar, 50 um

(F) Box plots showing the solidity values of the nuclei of multiple organs. n > 6000 nuclei for each organ
in both WT and mutant mice.

(G) Electron microscopic specimens of the ventricular wall on E17.5.

(H) Box plots showing the sizes of nuclei. n = 235 (WT), 197 (Q353R).

() (Left) Box plots showing the ratios of the minor to major axis. n = 235 (WT), 197 (Q353R). (Right) A
representative electron micrograph of major and minor axes of a nucleus.

(J) Box plots showing the number of sarcomeres per 100 um2. n = 100 (WT, Q353R).

(K) Electron micrographs with tracing of nuclei of cardiomyocytes colored according to the orientation of
their major axis (blue, yellow, or green). Red indicates that the nucleus is round and has no orientation.
The bar graphs in the bottom panels show the proportion of colored nuclei in each layer.

(L) Box plots showing the percentages of the nuclei with blebs in all cardiac cells. n = 65 slices for each
WT and Q353R.

(M) Representative images of immunostaining of the nuclei in WT and Q353R mice on E17.5. The
Bottle panel shows the nuclei with bleb. Blue, DAPI, 4’,6-diamidino-2-phenylindole; Scale bar, 10 um.
(N) A representative electron micrograph of the nucleus with bleb in the Lmna®@353RWT knock-in mouse
on E17.5. An arrow indicates a bleb. Scale bar, 2 ym.

*, p < 0.05; significance was determined by unpaired t-test.
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Fig. S2. Single-cell RNA-seq analysis of hearts from Lmna®353RWT and LmnaWTWT mice
(A) Heatmap showing the expression levels of differentially expressed genes in each cell cluster.
(B) The UMAP plot of cardiomyocytes colored by clusters. Black line indicates a predicted trajectory.
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Fig. S3. Single-cell ATAC-seq analysis of hearts from Lmna®353RWT and LmnaWTWT mice

(A) Gene activities (summed accessibility from gene body and promoter) of the representative genes of
each cell type as visualized on the UMAP pilot.

(B) Table showing motif enrichment of CM cluster 0.

(C) Motif activities of TEAD2, TEAD3, TEAD4, and MEF2C as visualized on the UMAP plot.

(D) Immunostaining of CTGF in cardiac tissues from Lmna"V"™WT and Lmna®3%3RWT knock-in mice.
DAPI, 4',6-diamidino-2-phenylindole; WGA, wheat germ agglutinin.

(E) Violin plot showing the expression levels of Ctgfin cardiomyocyte clusters which correspond to
Fig. 2B.
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Fig. S4. Electron microscopic images of iPSCMs

(A) The iPS cells were established using peripheral blood mononuclear cells from the patients. Sendai
virus vectors encoding pluripotent factors were transfected for reprogramming. The isogenic control iPS
cell lines were generated by introducing sgRNA, Cas9 protein, and single-stranded oligopDNA (ssODN), to
cleave and repair the mutation site and edit the mutant allele to the wild-type allele. The sgRNA was
prepared to target only the mutant allele by designing the mutant base to be included in the PAM
sequence.

(B) Electron microscopic images showing the intracellular structure of isogenic control (Con) and
LMNAQG353RWT (Q353R) iPSCMs.

(C) Electron microscopic images showing the nuclear membrane of isogenic control (Con) and
LMNAQG3SRWT (Q353R) iPSCMs.

(D) The extent of distortion of the nuclear membrane obtained by comparing the trace length of the
nuclear membrane on the image (yellow line) with the perimeter of the ellipse estimated from its major
and minor axes (red line). n =70 (Con), 87 (Q353R), *, p < 0.05.

(E) The standard deviation of densities around the nuclear membranes (surface layer, red rectangle) and
inside the nuclei (deep layer, yellow). n = 350 (Con), 435 (Q353R), *, p < 0.05.
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Fig. S5. Induction of muscle structure genes via TEAD1 is impaired in LMNAQ353RWT ipSCMs

(A) Motif analysis of TEAD1 binding regions in control iPSCMs.

(B) Pie chart of global enrichment profile of TEAD1 binding regions in control iPSCMs (Con) and LMNA
Q353R iPSCMs (Q353R).

(C) Violin plots showing TEAD1 target gene expressions according to scRNA-seq analysis of E17.5 mice.
(D) Heatmap of differentially expressed genes in RNA-seq analysis of Con and Q353R iPSCMs (n =4
samples, each). Blue: genes upregulated in Con (n = 1,624 genes), yellow: genes upregulated in Q353R
(n =754 genes).

(E) Volcano plot showing the genes whose expression were upregulated (red) and downregulated (blue)
in Q@353R iPSCMs. FDR, false discovery rate.

(F) GSEA analysis showing that TEAD1 target genes were significantly enriched in genes which were
highly expressed in Con compared with Q353R.

(G) Gene ontology enrichment analysis of genes downregulated in Q353R in (D).



Fig. S6
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Fig. S6. TT-10 corrects aberrant gene expression in Q353R iPSCMs.

(A) gPCR analysis of Q353R iPSCMs treated with DMSO or TT-10. n = 5 each, Student’s t-test, *, p <
0.05.

(B) Heatmap showing gene expressions of representative genes of principle component 1 and 2. Scaled
data for Log,(RPKM + 1) were utilized. Yellow indicates high expressions and purple indicates low
expressions. Bar plots on the right shows each result of gene ontology analysis of top 500 genes sorted
by principal component scores. Samples were obtained from Control (n = 4), Q353R (n = 4), DMSO-
treated Q353R (n = 3), and TT-10-treated Q353R iPSCMs (n = 3).

(C) Heatmap showing gene expressions of representative YAP/TAZ target genes and VGLL target genes.
Scaled data for Log,(RPKM + 1) were utilized. Yellow indicates high expressions and purple indicates low
expressions. Samples were obtained from Control (n = 4), Q353R (n = 4), DMSO-treated Q353R (n = 3),
and TT-10-treated Q353R iPSCMs (n = 3).

(D) (Left) Representative staining images for TNNT2 in Q353R iPSCMs, with or without TT-10 treatment.
Scale bar = 100 um. (Right) Evaluation of TNNT2 intensity per cell. (n = 11 per group)

(E) Representative images of microtissues made of iPSCMs and the analyzed contractile parameters
obtained by live cell imager. Con, isogenic control line.



Fig. S7
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Fig. S7. A schematic pathological model of LMNA mutation-induced DCM.



Table S1. Clinical informaion of patients with LMNA Q353R.

Table S2. Top 100 genes of positively differentially expressed genes (DEGs) of each
cardiomyocytes cluster ranked by avg log2FC in single-cell RNA-seq.

Table S3. The sequencing and alignment metrics of single cell ATAC-seq produced by Cell
Ranger ATAC

Table S4. The genes with higher peaks in control iPSCM than in Q353R iPSCM from H3K4me3
CUT&RUN analysis.

Table S5. Control iPSCM specific TEADI target genes by CUT&RUN analysis.
Table S6. Downregulated genes in Q353R iPSCMs in RNA-seq
Table S7. Results of protein array screening

Table S8. The Result of principal component analysis of bulk RNA-seq after treatment with TT-
10.

Table S9. The primers used for quantitative real-time PCR.



