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Supporting Information Text12

Fast visualization of cluster centers through a decoder13

To validate that the learned features encode essential structural information of the input subtomograms, we trained a decoder14

using the Rattus neuron cryo-ET dataset (1) as an example. The input to the decoder is the learned features from DISCA and15

the output is the reconstruction of the input 3D subtomograms. Similar to (2), we then decoded the cluster centers, arithmetic16

averages of all feature vectors in a cluster, into reconstructed 3D images. Alternatively, instead of cluster center, features closest17

to each cluster center can also be decoded, which yields similar results. As shown in Fig. S6, center decodings of identifiable18

clusters resemble the type of structures contained, which validates the essential structural information effectively learned by19

the extracted features. Center decodings of non-identifiable clusters mostly resemble a tiny globular structure, which likely to20

indicates that most subtomograms contained in these clusters are either noises or structures too small. Therefore, DISCA can21

be used to efficiently filter out false-positive particles picked by template-free particle picking methods.22

In addition, it is very useful to quickly identify interesting clusters for downstream analysis before doing the computationally23

intensive subtomogram averaging step. The training of the decoder from scratch on this dataset of 36,377 subtomograms took24

less than 10 minutes. Therefore, the decoding of cluster centers can be used for such identification purposes, especially for25

structural clusters that can be easily recognized such as the ribosome, surface patterns, and fiducial markers.26

We note here that, since the relevant features are already extracted using DISCA, we directly used a decoder to decode the27

cluster centers to provide fast guidance on the structural content of each cluster. Previously, we have designed an autoencoder28

approach (2) to extract relevant features for coarse clustering purposes. The autoencoder serves as a baseline comparison in29

Table 1. The performance of the autoencoder is much worse than DISCA. This is mainly because DISCA is a significantly more30

sophisticated method that involves iterative feature learning and modeling in order to recognize the fine structure differences31

between different types of macromolecules. Studies (3, 4) have shown that vanilla autoencoders only learn representative32

features to reconstruct the input images, and do not learn discriminative features between different semantic classes.33

Visualization of subtomogram averages from the Rattus neuron dataset34

We visualized the 19 (automatically determined K) subtomogram cluster averages by DISCA sorting and Relion 3.0 single-class35

averaging in Fig. S7.36

Visual comparison and FSC curve of subtomogram averages37

The gold-standard Fourier Shell Correlation (FSC) curve of subtomogram average of detected macromolecular structures in the38

five experimental datasets are produced by the Postprocess program in Relion 3.0 using default parameters. The black, green,39

blue, and red curves stand for “rln Fourier Shell Correlation Corrected", “rln Fourier Shell Correlation Unmasked Maps", “rln40

Fourier Shell Correlation Masked Maps", and “rln Fourier Shell Correlation Phase Randomized Masked Maps", respectively. In41

the left side of each figure, we visually compare the subtomogram average with an existing structure from the Protein DataBank42

(5). The isosurface representation of each structural template is filtered to the estimated resolution of the subtomogram average43

for better visual comparison.44

Distortion-based Davies-Bouldin Index. We mathematically formulate the proposed distortion-based DBI (DDBI) as:45

D = 1
K

K∑
i=1

max
j 6=i

ti + tj
dij + dji

j ∈ 1, 2, . . . ,K, [1]46

where ti measures the tightness of ith cluster (same for tj) and dij measures the separation between cluster i and j:47

ti = 1
|Ci|

∑
xn∈Ci

(xn − ci)T Σ−1
i (xn − ci), [2]

dij = (ci − cj)T Σ−1
i (ci − cj), [3]

where Ci denotes the subtomograms xn in the ith cluster and ci denotes its centroid.48

Automatic estimation of the number of structurally homogeneous subsets. Because we operate in an unsupervised learning49

setting, the number of structurally homogeneous subsets K is unknown to us. Furthermore, the automatic estimation of the50

number of clusters in a feature space is a classic yet highly challenging and largely unsolved problem, which means that,51

practically, most studies just set an arbitrary K or test multiple candidate values of K and manually compare the results.52

Nevertheless, in our statistical modeling, it is beneficial to choose K properly. When the chosen K is too small, a subset53

may contain mixed structures. In contrast, when the chosen K is too large, a structurally homogeneous subset may be54

over-partitioned to multiple subsets. Over-partitioning likely results in some subsets containing too few subtomograms to55
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recover the structure. Both situations may lead to poorly recovered structures by subtomogram averaging. For this reason, it is56

helpful to automatically determine K.57

Automatic estimation of K relies on observing the extracted feature vectors. Most recent and popular methods for estimating58

K are either prediction-based or stability-based, and require running the given clustering algorithm repeatedly on bootstrapped59

samples. These methods are not suitable for our study because they are too slow to process large-scale datasets. Other60

methods for estimating K compute a summary index measuring cluster tightness. For example, the silhouette coefficient61

compares the average distance of a data point to all the other data points in its own cluster and in its nearest cluster. However,62

computing the silhouette coefficient involves comparing all pairs of data points (time complexity: O(N2)), which is still poor in63

scalability.64

To overcome these shortcomings, we take an alternative approach from a statistical model selection perspective. The number
of model parameters increases along with K, which may result in increased likelihood, but also runs the risk of overfitting.
When modeling the structurally homogeneous subsets in the feature space, a good statistical model would ideally have a higher
likelihood with relatively few parameters. To balance the likelihood and number of parameters among a set of models with
different Ks, we use the Bayesian Information Criterion (BIC) (6) to select among a set of fitted models M , where the BIC is
defined as:

BIC(Mk) = P (Mk) ln(N)− 2 ln(L̂(Mk))

= (K(P 2 + P )/2) ln(N)− 2
N∑

n=1

ln(
K∑

k=1

φkg(xn;µk,Σk)),
[4]

where Mk is the fitted model with K structurally homogeneous subsets, P (Mk) denotes the number of parameters in model65

Mk and L̂(Mk) denotes the maximized value of the likelihood function of Mk. For each candidate K, one model is fitted. The66

model with the lowest BIC is selected. We also tested Akaike information criterion (AIC) (7), CH index (8), KL index (9), and67

Jump statistic (10), our preliminary results showed that BIC achieved superior performance.68

Matching clustering solutions. From our experience, the estimated K stays the same in most iterations. In such cases, instead69

of replacing the last classification layer, we directly match the current clustering solution with the one in the previous iteration.70

When there are multiple clustering solutions from the same samples, the label of a specific cluster is not necessarily the same71

between different solutions. For example, the same group of samples may be labeled as ‘1’ by one clustering solution and ‘2’ by72

another even if they result from the same clustering algorithm with exactly the same parameters. The inconsistency will cause73

strong instability during training Fig. S5. Therefore, matching clustering solutions is necessary.74

We formulate the problem of matching two clustering solutions as a maximum weighted bipartite matching problem. First, we75

define a bipartite graph that consists of two disjoint and independent sets. In our case, the two sets are the two clustering76

solutions from consecutive iterations. Then, we define a cluster as a graph vertex and the number of overlapping samples in77

two vertices (one in each of the two clustering partitions) as the graph edge weight. Maximum weighted bipartite matching78

finds a subset of the edges where no two edges share a common vertex and maximizes the sum of edge weights. In our case, the79

two sets have the same number of vertices (K) and each vertex has precisely one edge in the optimal matching.80

Let B be a Boolean matrix to represent the matching where Bi,j = 1 if cluster i in a is matched to cluster j in b. The optimal
matching is formulated by maximizing the objective function:

max
∑

i

∑
j

Ai,jBi,j , i, j ∈ 1, 2, ...,K,

Ai,j =
∑

n

1{an = i ∩ bn = j}, n ∈ 1, 2, ..., N,
[5]

where A is the matching matrix (a.k.a. confusion matrix in supervised learning) between the two solutions a and b, and 1{} is81

the indicator function.82

In each iteration of DISCA, the estimated labels are assigned on model fitting solutions to the Gaussian mixture models. Due83

to the reasons mentioned above, in DISCA, the clustering solution from one iteration needs to be matched with the previous84

clustering solution to stabilize the training. We apply the Hungarian algorithm (11) to optimize the objective function (Eq. 5),85

which is guaranteed to find a global optimum in polynomial time. Then, the current labels are permuted according to the86

matching to achieve the highest consistency with the labels in the previous iteration.87

Missing wedge effect. A major cryo-ET limitation, the missing wedge effect, must be considered when designing analysis88

methods (12). In cryo-ET imaging, cell samples are imaged through a series of tilt projections. The tilt projections are89

subsequently fed into a reconstruction algorithm to produce a 3D tomographic reconstruction. Because of the increasing90

effective sample thickness during tilting, to prevent excessive electron beam damage to the cell sample, the tilt angle range is91

limited typically to ±60◦ with a 1◦ step size. This results in a double V-shaped missing value region of Fourier coefficients of92
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the reconstructed tomogram in Fourier space. The missing wedge effect also produces image distortion in the spatial domain;93

for instance, it may elongate features along the direction of the missing wedge axis.94

DISCA tackles the missing wedge effect from two aspects. First, in our previous work (2), we have empirically demonstrated95

the robustness of CNN feature extraction to image distortions caused by the missing wedge effect. Moreover, the robustness of96

YOPO feature extraction to image noise and distortion is further improved by the Gaussian dropout layer. Second and most97

importantly, during the self-supervision step, when a subtomogram is rotated, the direction of the image distortion caused98

by the missing wedge effect rotates correspondingly. By enforcing the rotated copy to have the same label and thus similar99

extracted feature vectors during YOPO training, we explicitly increase the robustness of YOPO feature extraction to the100

missing wedge effect from various angles. In the results section, we showed that DISCA can still perform well on simulated101

datasets of large missing wedge (tilt-angle range ±40◦) and various SNR, thus demonstrating the robustness of DISCA to the102

missing wedge effect.103

Since the missing wedge effect is also affecting other data processing steps, we note that it can also be treated in those104

steps despite that it is out of the scope of DISCA. Before feeding into DISCA, the tomograms can be reconstructed by105

algorithms compensating for the missing wedge effect such as Weighted BackProjection for better particle picking. In the106

postprocessing step, subtomogram averaging using Relion (13) involves missing wedge compensation from model estimation,107

whereas structural pattern re-embedding by Gum-Net (14) uses a spectral data imputation technique to reduce the missing108

wedge effect on subtomogram alignment. Other subtomogram alignment methods that consider the missing wedge effect can109

also be applied.110

We conducted an experiment to show the effectiveness of missing wedge compensation techniques for pre-processing the111

tomograms. As observed in Fig. 5B, the membrane structure parallel to the x-axis is affected by the missing wedge effect and is112

presented with weaker signals. It is likely that the DoG picker did not select the membrane feature of that region which resulted113

in the missing detection by DISCA. We used the most recent missing wedge compensation method IsoNet (15) to pre-process114

the reconstructed tomograms in the Synechosystis dataset and performed DISCA again. The resulting detection of membrane115

features was re-embedded, Gaussian smoothed, and visualized in Fig. S8. The missing wedge compensation pre-processing116

step reduced the missing wedge effect and improved the detection of membrane features in affected regions.117

Preferred orientations. Some of the ribosome subtomogram averages, especially from the Cercopithecus aethiops kidney cell118

dataset, are of lower quality than others. We then investigate whether the detected ribosomes exhibit preferred orientations.119

In Fig. S17A, we visualize the orientation of ribosomes from Relion subtomogram averaging output. The orientation of120

ribosome in each subtomogram is transformed as a 3D unit vector. If there is no preferred orientation, the vectors should121

distribute randomly on the unit sphere. Preferred orientation is not obvious on any datasets except clearly on the Cercopithecus122

aethiops kidney cell dataset. The preferred orientation on the Cercopithecus aethiops kidney cell dataset is likely to cause123

its low averaging quality. Preferred orientation can be caused either in the DISCA detection step or in the post-processing124

subtomogram averaging step. We use the pose normalization technique described in (2) to estimate the orientations directly125

using PCA and plotted the results in Fig. S17B, which suggests that the preferred orientation on the Cercopithecus aethiops126

kidney cell dataset is likely to be caused by the post-processing step due to the low quantity of ribosomes and low SNR of the127

dataset. From a methodology perspective, DISCA detection should be robust to different orientations as the self supervision128

step enforce the same features to be extracted from the same structure of different orientations.129

Time cost and complexity analysis. Currently, there are more than 100 TB of cryo-ET data in public repositories such as EMDB130

(16), ETDB (17), and EMPIAR (18). With the fast accumulation of cryo-ET data, it is necessary to have high-throughput131

analysis algorithms. We now show theoretically that DISCA can achieve an overall time complexity of O(N), and therefore our132

framework scales well to large datasets. This leads to the following theorem.133

Theorem 1. When m, the number of iterations, K, the number of clusters, and P , the dimension of the feature space, are held134

constant and are relatively small compared to N , the number of entries in the dataset, the time complexity of DISCA is O(N).135

Proof. In each of m iterations, the algorithm performs feature extraction by YOPO, estimates the number of components, fits136

mixed multivariate Gaussian distributions to the extracted features, matches clustering solutions, validates clustering solutions,137

and trains the YOPO network using current estimated labels. The deep learning process to extract features takes time O(N).138

Estimating K using BIC takes time O(K). Statistical model fitting takes time O(NKP 2) using the FIGMN algorithm (19). In139

the matching stage, the Hungarian algorithm takes time O(K3) (11). Finally, when validating clustering solutions, calculating140

the distortion-based DBI takes time O(N).141

Therefore, the total time complexity is O(m(N +K +NKP 2 +K3 +N)), but because m, K, and P are constant, the overall142

computational complexity of DISCA is O(N).143

In terms of sample complexity, we leverage work by (20) that has shown that Θ̃(KP 2/ε2) samples are both necessary and144

sufficient for learning mixed multivariate Gaussian distributions with K components in a P -dimensional feature space with145

up to ε error in total variation distance. This result implies that learning reasonably accurate models that achieve a low,146
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constant error ε requires relatively few samples in practice, as K and P are assumed to be small compared to N in large-scale147

datasets.148

Practically, on our computer with 4 GPUs and 48 CPU cores, the pre-processing template-free particle picking step takes less149

than 20 minutes to pick 100,000 to 200,000 subtomograms from a dataset of more than 10 tomograms. Training DISCA from150

scratch to sort these subtomograms takes less than 10 hours. When our clustering model is properly trained, the prediction151

on new data is very fast, which takes less than an hour to process millions of subtomograms. Since data parallelism is used152

for training on multiple GPUs, with limited computational resources, such as one GPU instance, the computing time would153

approximately be 4 times longer. The memory storage for training neural networks can be effectively adjusted by changing the154

batch size.155

Before the subtomogram averaging step, the cluster centers of extracted features can optionally be decoded to select interesting156

clusters for thorough downstream analysis. The post-processing subtomogram averaging step using Relion (13) takes less than157

two days to achieve resolution better than 40 Å. Here, we use ‘subtomogram averaging’ to refer to the averaging process to158

recover a single class and ‘subtomogram classification’ to refer to averaging and classification process to recover multiple classes159

which are more time-consuming. By comparison, the template matching approach on the same computer equipment would160

take roughly one to two months to complete, which requires visual inspection by experts, computational template matching,161

and subtomogram classification.162

Implementation details163

The neural network model YOPO was implemented in platform Keras (21) with Tensorflow backend (22). No external164

pre-trained models or additional supervision were used. Orthogonal kernel initializer and zero bias initializer were used. All165

models were trained on a computer with 4 NVIDIA GeForce Titan X Pascal GPU instances and 48 CPU cores. In terms of166

memory cost, the RAM can be monitored by varying the batch size during neural network training. It is not necessary to167

have multiple GPU instances and CPU cores in order to run DISCA. The statistical model fitting used functions in Python168

package numpy and sklearn. The implementation of the Hungarian algorithm used functions in Python package scipy. The data169

augmentation used random 3D rotation functions implemented in AITom (23). During the YOPO model training, the label170

smoothing factor gradually decreases by a factor of 0.9 in each iteration as we expect the amount of mislabeled data to decrease171

over time, and therefore YOPO becomes more certain about its prediction over time. During the Gaussian mixture model172

fitting, the extracted features are dimension reduced by PCA to a length of 16 as an optional step for faster clustering. To173

measure the convergence of DISCA, a generalized EM framework, we set two stopping criteria: (1) the estimated K and the vast174

majority (99%) of the estimated labels stay the same for three consecutive iterations, or (2) the maximum number of iterations175

has been reached. The template matching baseline on experimental datasets were performed using PyTom (24).176

Preprocessing. For template-free particle picking, we applied the 3D Difference of Gaussians (DoG) (25) volume transform177

algorithm implemented in AITom. 3D DoG first computes a map IDoG by subtracting two Gaussian blurred versions of the178

input tomogram v using the Gaussian function I with different standard deviations σ1 and σ2, where, without loss of generality,179

σ1 > σ2. The 3D DoG map is computed on tomogram v as IDoG = Iv(σ1)− Iv(σ2).180

Local maxima are detected to extract a set of subtomograms S from v as:181

S =
{
s ∈ v

∣∣∣∣ dIDoG(s)
ds

= 0, d
2IDoG(s)
ds2 < 0, IDoG(s) > C

}
, [6]182

where s is a 3D location in IDoG and C is a threshold applied for selecting local peaks. In our implementation, we ensured a183

minimum distance of 15 voxels between two peaks by filtering out peaks with low values. We note that the minimum distance184

should be adjusted for tomograms with larger voxel spacing or crowded structures. The input to the DoG particle picking step185

is a set of reconstructed 3D tomograms. Optionally, denoising or missing wedge compensation algorithms (26? –28) can be186

applied to the tomograms before performing particle picking and DISCA sorting. The Mycoplasma pneumoniae (29) dataset187

was denoised using Warp (30) whereas other simulated and experimental datasets were not denoised, which showed that DISCA188

is relatively invariant to the denoising preprocessing step.189

Postprocessing. For subtomograms in each structurally homogeneous subset obtained from DISCA, iterative 3D averaging was190

performed using Relion 3.0 (31). As a template-and-label-free framework, we did not use any external structural templates in the191

averaging process. The initial averages were obtained by our unsupervised deep learning based subtomogram alignment method192

Gum-Net (implemented in AITom) (14, 23). After the 3D averaging process, the subtomogram averages were re-embedded into193

the original tomogram by Gum-Net for visualization purposes. The resolution of the subtomogram averages was estimated194

using Relion 3.0 function.195
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Fig. S1. The DISCA workflow for cryo-ET structural pattern mining. Key steps are numbered. The preprocessing and postprocessing steps are included here for an overview of
the processing pipeline. They are not part of the proposed method DISCA.
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Conv 64-3×3×3-1 ‘valid’

Conv 80-3×3×3-1 ‘valid’

Conv 96-3×3×3-1 ‘valid’

Conv 112-3×3×3-1 ‘valid’

Conv 128-3×3×3-1 ‘valid’

Conv 144-3×3×3-1 ‘valid’

Conv 160-3×3×3-1 ‘valid’

GlobalMaxPooling

Dense 1024

Dense K (Softmax)

YOPO architecture

Conv Block
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Fig. S2. The architecture of YOPO (You Only Pool Once) model. Each colored box denotes one layer in the neural network. ‘GaussianDropout (0.5)’ denotes a dropout layer
with a dropout rate of 0.5 and multiplicative 1-centered Gaussian noise. ‘Conv 64-3x3x3-1 ‘valid” denotes a convolutional layer with 64 channels, kernel size 3 × 3 × 3, strides
of size 1, and valid padding (no padding). Each convolutional layer is equipped with an exponential linear unit activation function and batch normalization. ‘Concatenate’
denotes concatenated feature outputs. ‘Dense K (Softmax)’ denotes a fully connected layer with K neurons. As a feature extraction network, the last classification layer of
YOPO is only used during model training. The extracted features are the output from the ‘Dense 1024’ layer.
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PDB ID

1I6V 3DY41QO1 4V4A 5LQW

Template

SNR
0.1

0.03

0.01

0.003

0.001

Fig. S3. 2D slice visualization of the template and example subtomograms in the simulated datasets in Table 1 with 30◦ missing wedge: 1I6V (RNA polymerase, 0.3 MDa),
1QO1 (rotary motor in ATP synthase, 0.4 MDa), 3DY4 (proteasome, 0.7 MDa), 4V4A (ribosome 2.1 MDa), 5LQW (spliceosome, 2.3 MDa).
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PDB ID

1I6V 3DY41QO1 4V4A 5LQW

Template
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Fig. S4. 2D slice visualization of the template and example subtomograms in the simulated datasets in Table 1 with 50◦ missing wedge: : 1I6V (RNA polymerase, 0.3 MDa),
1QO1 (rotary motor in ATP synthase, 0.4 MDa), 3DY4 (proteasome, 0.7 MDa), 4V4A (ribosome 2.1 MDa), 5LQW (spliceosome, 2.3 MDa).
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Fig. S5. We assume the last fully connected layer for classification has two input feature nodes and two output label nodes. And we assume the clustering solution has two
clusters 1 and 2 with labels flipped from iteration m to iteration m+1. Without matching clustering solutions, the backpropagation training needs to re-learn (large changes in
weights) the already optimized weights to correctly output the flipped labels. This will cause strong instability during training. However, with matching clustering solutions, the
already optimized weights no longer need to be re-learned (no change in weights).
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Center decoding of non-identifiable clusters

Center decoding of identifiable clusters

Ribosome Proteasome TRiC Membrane Calcium Phosphate

Fig. S6. Example decodings of cluster centers from the Rattus neuron dataset.
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A

B

100 nm 100 nm

Fig. S7. A. Isosurface representation of subtomogram averages by DISCA sorting and Relion 3.0 single-class averaging on the Rattus neuron dataset. In addition, DISCA may
have detected a microtubule-resembling structure as pointed out by the red arrow. B. We have re-embedded, Gaussian smoothed, and visualized the cluster corresponding to
the microtubule-like structures for more information. The detected structures in the middle are likely to be true-positive microtubules whereas the structures in the top left are
likely to be false positives.
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Fig. S8. Detection of membrane features in the Synechocystis dataset after IsoNet (15) pre-processing. The missing membrane features in Fig. 5B parallel to the x-axis are
now detected and highlighted by the red circles.
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Ribosome 
(Mycoplasma pneumoniae)

PDB 4V4A 
(Filtered to 14 Å)

A B C

Fig. S9. Ribosome subtomogram average from the Mycoplasma pneumoniae dataset. The Pearson’s correlation coefficient between the existing structure from PDB and the
subtomogram average is 0.91.
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Ribosome 
(Rattus)

PDB 5T2C 
(Filtered to 27 Å)

A B C

Fig. S10. Ribosome subtomogram average from the Rattus neuron dataset. The Pearson’s correlation coefficient between the existing structure from PDB and the subtomogram
average is 0.83.
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Proteasome 
(Rattus)

PDB 5MPC 
(Filtered to 29 Å)

A B C

Fig. S11. 26S proteasome subtomogram average from the Rattus neuron dataset. The Pearson’s correlation coefficient between the existing structure from PDB and the
subtomogram average is 0.90.
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TRiC 
(Rattus)

PDB 4V94 
(Filtered to 38 Å)

A B C

Fig. S12. TRiC subtomogram average from the Rattus neuron dataset. The Pearson’s correlation coefficient between the existing structure from PDB and the subtomogram
average is 0.93.
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Ribosome 
(Synechocystis)

PDB 4V4A 
(Filtered to 27 Å)

A B C

Fig. S13. Ribosome subtomogram average from the Synechosystis dataset. The Pearson’s correlation coefficient between the existing structure from PDB and the subtomogram
average is 0.78.
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Phycobilisome 
(Synechocystis)

PDB 7EXT 
(Filtered to 27 Å)

A B C

Fig. S14. Phycobilisome array (membrane-bounded) subtomogram average from the Synechosystis dataset. The Pearson’s correlation coefficient between the existing
structure from PDB and the subtomogram average is 0.75 (excluding bounded membrane).

Xiangrui Zeng, Anson Kahng, Liang Xue, Julia Mahamid, Yi-Wei Chang, and Min Xu 19 of 23



Ribosome 
(Murinae)

PDB 5T2C 
(Filtered to 34 Å)

A B C

Fig. S15. Ribosome subtomogram average from the Murinae embryonic fibroblast dataset. The Pearson’s correlation coefficient between the existing structure from PDB and
the subtomogram average is 0.96.
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Fig. S16. Ribosome subtomogram average from the Cercopithecus aethiops kidney cell dataset. The Pearson’s correlation coefficient between the existing structure from PDB
and the subtomogram average is 0.77.
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Fig. S17. A. Orientation of ribosomes in subtomogram averaging. Each dot denotes a ribosome detected by DISCA for the corresponding dataset. The orientation is visualized
as the position of the orientation vector on the unit sphere. B. Ribosome orientation estimation on the Cercopithecus aethiops kidney cell dataset using pose normalization (2).
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