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A fitness trade-off explains the early fate of yeast aneuploids
with chromosome gains

Simone Pompei and Marco Cosentino Lagomarsino

Detailed derivation of the analytical results of the evolutionary
model

Onset of Aneuploidy. We focus on the waiting times for the emergence of a successful
mutant (defined as the mutant that will eventually reach fixation). The two times, denoted
as ta and tm for the aneuploid and the euploid mutant respectively, are stochastic variables,
with expected values equal to the inverse of the fixation rates (τa,m ≡ 〈ta,m〉 = 1/λa,m),
and with exponential probability distribution

P (ta,m) = λa,me
−λa,mta,m , (1)

The statistics of the fastest emerging mutant can described by the difference of the two
times

tdiff ≡ ta − tm, (2)

whose probability density reads

P (tdiff) =

{
λaλm
λa+λm

e−λatdiff tdiff > 0
λaλm
λa+λm

eλmtdiff tdiff ≤ 0.
(3)

The problem of computing the probability for aneuploidy to reach fixation is equivalent
to computing the probability for the time difference to be negative (tdiff < 0). Clonal
Interference effects are captured by the extended condition tdiff + δfix

a < 0, where δfix
a is the

effective time to fixation of an aneuploid mutant (see next paragraph). This leads to the
expression

Pa = P (ta + δafix < tm) (4)

= P (tdiff < −δafix) (5)

=

∫ −δafix
−∞

P (tdiff)dtdiff (6)

=
λa

λa + λm
e−λmδ

a
fix (7)
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The waiting time until the emergence of the fastest successful mutant can also be in-
vestigated through the statistical properties of the minimum of the two waiting times,
tmin ≡ min(ta, tb)

tmin ≡ min(tm, ta), (8)

whose expected value reads

τmin ≡ 〈tmin〉 (9)

=

∫ ∞
0

dta

∫ ∞
0

dtm ta P (ta)P (tm)θ(tm − (ta + δafix)) + (10)

+

∫ ∞
0

dta

∫ ∞
0

dtm tm P (ta)P (tm)θ((ta + δafix)− tm)

=
1

λm

(
1− (1 + λmδ

a
fix)

λa
λa + λm

e−δ
a
fixλm

)
(11)

Effective time to fixation of the aneuploid mutant. In order to compute the effec-
tive time where Clonal Interference effects can take place, we follow the same argument
presented in [1, 2]. We denote with x(t) the intra-population frequency of the wild-type
(not-mutated and euploid) strain, and with σa > 0 the selection coefficient of the ane-
uploid mutatant , evaluated w.r.t the wild type. The effective population size is N . In
the deterministic limit, i.e., neglecting genetic drift effects, the decline in frequency of the
wild-type strain is described by the logistic equation

x(t) =
x0 e

−σat

1 + x0 (e−σat − 1)
, (12)

where x0 ≡ x(t = 0). Interference effects can take place during the deterministic dynamics,
while genetic drift effects dominate the dynamics for x(t) ≥ x0 ' 1 and x(t) ≤ 1 − xf .
Following the argument presented in [2] we use the boundaries where (Las̈sig boundaries)

x0 = (1− xf ) = 1− 1

2Nσa
(13)

. Hence, the time interval during which an interfering mutation can arise is given by

tfix = − 1

σa
log

(
xf (1− x0)

x0(1− xf )
.

)
(14)

= 2
log(2Nσa − 1)

σa
. (15)
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Euploid mutants that can emerge from wild type strains with a mutation rate µm during
this time interval have expected number

Mm = µmN

∫ tfix

0

x(t) dt (16)

= µmN
log(2Nσa − 1)

σa
. (17)

Finally, the number of mutations that can interfere with the aneuploid mutant are given
by

Nm = φ(σm, N)Mm (18)

= µmN φ(σm, N)
log(2Nσa − 1)

σa
(19)

≡ λmδ
a
fix, (20)

where λm = µmNφ(σm, N) is the fixation rate of the euploid mutant and we have defined
the effective time to fixation as

δafix ≡
Nm
λm

=
log(2Nσa − 1)

σa
' log(2Nσa)

σa
. (21)

Critical value of the beneficial selection coefficient σ∗b We find the critical value
of the beneficial selection coefficient by solving the equation

λa
λa + λm

e−λmδ
a
fix ≡ p0, (22)

where p0 = 1
2
. We solve this equation using the Haldane’s Formula [3] for the fixation

probability
φ(σ,N) = 2σ → λ(σ,N, µ) = 2Nµσ (23)

and we consider the following dynamical regimes

(i) No Clonal Interference. This regime corresponds to the mathematical condition
λmδ

a
fix ' 0→ e−λmδ

a
fix ' 1, i.e., the expected number of euploid mutants interfering

with the fixation dynamics of the aneuploid mutant are negligible. In this regime,
Eq.22 reads

µa(σ
∗
b − σc)

µa(σ∗b − σc) + µmσ∗b
= p0, (24)
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and the solution reads

σ∗b =
(1− p0)σc

(1− p0)− µm
µa
p0

, (25)

where r = µm
µa

.

(ii) In the Clonal Interference regime. In this regime we find an approximated solution
to Eq.22 by considering the first order expansion e−λmδ

a
fix ' 1 − λmδafix. With this

approximation, Eq.22 reads

(σ∗b − σc)(1− p0)µa = p0
σ∗bµm

1− 2µmNσ∗b
log(2N(σ∗

b−σc))
σ∗
b−σc

(26)

by approximating
log(2N(σ∗

b−σc))
σ∗
b−σc

' log(2N)
σ∗
b−σc

we get the expression

(σ∗b − σc)(1− p0)µa = p0
σ∗bµm

1− 2µmNσ∗b
log(2N)
σ∗
b−σc

(27)

with the explicit analytic solution

σ∗b =
(1− p0)σc

(1− p0)− µm
µa
p0

 1

1− 2µmN log(2N) (1−p0)

1−p0(1+µm
µa

)

 (28)

' (1− p0)σc
(1− p0)− µm

µa
p0

+O(µmN log(2N))

Hence, the general solution that recapitulates both dynamical regime is obtained for p0 =
1/2 and reads

σ∗b =
σc

1− r
+O(µmN log(N)) (29)

where r = µm/µa.

High Ph experiment data from ref. [4]

In ref. [4], Yona and coworkers investigated an evolved strain obtained from an experiment
presented in a previous publication [5], in which a haploid S. cerevisiae was evolved under
high PH (8.6), using a transfer protocol similar to the one used for the High T experiment.
In such experiment (one replicate only) the duplication of chromosome V (trisomy) was
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found to have reached fixation after about ∼ 150 generations; the duplication of this
chromosome shown to confer a beneficial effect in response to the applied stress.

Growth curves relative to this strains (aneuploid and euploid) were obtained from
spores produced at the end of the experiments, and were used here to infer growth rates.
It should be noted that these two strains, namely the euploid reference and aneuploid
strains, contained 4 point mutations that emerged during the experiment and were not
present in the euploid strain used at the beginning of the experiment. This set of mutations
could possibly confer additional advantage to the high PH [5].

In this context we neglected the effect of these mutations, and we showed that the
evolutionary dynamics leading to the emergence of resistance to High-PH can be explained
by the emerging dynamics of aneuploidy alone. It should be noted, in particular, that
the difference in fitness between the initial euploid strain and the aneuploid strain is
higher than the one observed (euploid vs aneuploid, both of them with the set of adaptive
mutations). Our estimate of σb− σc is therefore a conservative one, since it quantifies the
minimal fitness advantage conferred by the chromosome gain alone.

Relaxing the assumption for the selection coefficient of euploid
mutant

This section reviews the model assumption used throughout the paper that concerns the
selection coefficient of the euploid mutant. We show how our model maps to more complex
scenarios within the same model formalism. More specifically, we have assumed that, in
response to external stress, an euploid individual developing point mutations can gain a
fitness benefit equal to the fitness gain attained by anueuploid individuals

σm = σb. (30)

Using this assumption we have considered a conservative scenario, i.e., the one where the
emergence of aneuploidy is mostly suppressed, and where mutations induce an increase of
the expression of the target gene which is similar to that of the aneuploid individuals (i.e.,
2x for ploidy=1 background and 1.5x for the ploidy=2 background)

However, in a more general scenario, one could focus on point mutations that alter gene
expression to a different degree (highter or lower). In this case, as described in the main
text, the two mutants (anueploid vs euploid with point mutations) would have a different
selection coefficient, a situation that can be generically described by the condition

σm = ε σb, (31)
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where the condition 0 < ε < 1 describes the case where the fitness gain of the mutant is
lower than that of aneuploid, while with ε > 1 the fitness gain of the anuploid is lower
than the one of the mutant.

With this model extension, the fixation probability of the euploid mutant reads

λm = µmNφm(εσb, N) (32)

= µmod
m Nφm(σb, N), (33)

where φm(σm, N) is the fixation probability of the euploid mutant in a population with N
individuals and we have definied the modified mutation rate

µmod
m ≡ φm(εσb, N)

φm(σb, N)
µm (34)

and fullfills the condition
µmod
m < µm for ε < 1

µmod
m > µm for ε > 1

(35)

In other words, from Eq.s (33,34), one can deduce that a model with a selection co-
efficient σm = εσb is equivalent to a model with σm = σb and a modified mutation rate.
Hence, relaxing the assumption Eq.30 corresponds to considering an effective mutation
rate µmod

m which could be different than the per-base spontaneous mutation rate. Of
note, when considering the Haldane’s Formula [3] for the fixation probability, one has
µmod
m = εµm. Considering the comparison of our model with data from the evolutionary

experiment [4], we find that the model prediction is in agreement with the experimental
data also for values of mutational rates lower than the spontaneous per-nucleotide error
rate µm ≤ µspont. = 1.7 ∗ 10−10gen−1 (cfr. Fig.2, S2, S3). Hence, our model would also
support a scenario where the euploid mutant is characterized by a selection coefficient
σm ≤ σb.

Loss of aneuploidy in the clonal interference regime

This section addresses the quantitative predictions of our model that are key for the
interpretation of evolutionary experiments aimed at investigating the fate of aneuploid
individuals, i.e., testing whether or not this karyotype state is genetically stable. In exper-
imental setups akin to that used in ref. [4], the loss of aneuploidy in the long term could
be explained by two alternative scenarios: (i) loss of the aneuploidy and subsequent gain
of the point mutations or (ii) elimination of aneuploid individuals resulting from clonal
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interference effects (the euploid point mutation emerges before the complete fixation of
aneuploidy, and outcompetes it). Scenario (i) would imply that aneuploid individuals are
not stable (the extra chromosome is lost) while scenario (ii) does not exclude this possibil-
ity (in this case aneuploid individuals did not lose the extra chromosome). In the following,
we will give quantitative conditions for scenario (ii) to be observed in experimental setups
akin to ref. [4].

To illustrate this point, we consider a conservative scenario where the emergence of
aneuploidy would be very likely if no Clonal Inferference (C.I.) effects were present, and
corresponds to the mathematical condition

λa � λm →
λa

λa + λm
' 1. (36)

This model condition is fulfilled by the model parameters estimated for the experiment
of ref. [4] (for which σb = 0.17gen−1 and σb = 0.12gen−1 and using realistic values of the
mutational rates µa ' 10−6gen−1 and µm ≤ 10−8gen−1 ). Hence, this regime describes a
realistic scenario for evolutionary experiments akin to [4].

In this case, the probability to develop aneuploidy reads

Pa ' e−λm(σm,µm,N)δafix(σa,N), (37)

and predicts C.I. effects to dominate the dynamics and substantially reduce the probability
to develop aneuploidy for experiments carried with an effective population sizes larger than
a critical value

N∗ =
log[2]

2µm

σa
σm

1

W( log[2]σ2
a

µmσm
)
, (38)

where W(x) is the Lambert-W function (note that Eq.(38) is the solution to the equation
e−λm(σm,N,µm)δafix(σa,N) = 0.5).

The dynamics predicted by our model in this regime for a typical evolutionary exper-
iment (akin to ref. [4]) is shown in Fig. S9 A. When the effective population size used
during the experiment is close to the critical value (N ' N∗) we find that aneuploids
can reach a high intra-population frequency before being replaced by the euploid point
mutation (Fig. S9 B.). Hence, in this regime, the prediction of our model is that the
loss of aneuploid individuals from the population could be mistaken as a sign of genomic
instability while, instead, it is an indirect effect caused by C.I.
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Figure S1: Growth rates describing of the aneuploid and euploid strain from
ref. [6] are inferred from growth curves. Shown here are growth curves (Optical
Density vs time) of the aneuploid strain (diploid strain with the trisomy of chromosome
III) and of the diploid strain with the same genetic background evaluated both in normal
conditions (30◦C, A) and in stress conditions (39 ◦C, B). Similarly, in C and D we show
the growth curves of the aneuploid strain aneuploid strain (diploid strain with the trisomy
of chromosome IV) and of the diploid strain with the same genetic background evaluated
both in normal conditions (C) and in stress conditions (high ph, D) The experimental
data (squares + bars, showing mean and standard deviation evaluated over a set of ∼ 35
replicates) is shown together with an exponential fit (solid lines), evaluated neglecting the
lag phase (∼ 4 hours in A, ∼ 5.5 hours in B ,∼ 4 hours in C and ∼ 7.5 hours in D). Values
of the inferred growth rates are reported in Table S1.
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Figure S2: Model predictions agree with laboratory-evolution data from ref. [6]
(High ph experimental setup). (A) Expected cumulative probability for the emer-
gence of aneuploidy with extra chromosomes vs the time to reach fixation (see Material
and Methods), computed according to the model prediction (Eqs 1, 3, Main text) shown
for three combinations of the values of the model parameters (µa, µm) (color coded, numer-
ical values reported in the legend of the plot). In the experiment, where a yeast population
was exposed to stress by increasing the temperature to 39◦C, 1 out of 1 yeast population
developed chromosomal duplications (CI66% = [0.6, 1] for the probability to develop aneu-
ploidy), and the fixation wes reached before 150 generations. Hence, the experimental data
fall in region of the plot corresponding to Pa ∈ [0.6, 1] and t = 150gen, marked in green,
delineate. Trajectories predicted by the model that cross this region are in agreement with
the experimental data. Similarly, in (B) we show the combinations of the numerical values
of the model parameters (µa, µm) that are in agreement with the experimental data, while
coloured dots marks the values corresponding to the trajectories shown in A. Numerical
values of the beneficial selection coefficient (σb = 0.29 gen−1) and for the fitness cost of
aneuploidy (σc = 0.12 gen−1) were obtained from exponential fits of the growth curves of
the corresponding yeast strains [6], (see Material and Methods and Fig. S1). The effective
population size was set to N = 106 individuals (Fig. S3 shows results for N = 107).

11



Missegregation rate, μa(gen-1)
10-9 10-7 10-6 10-5

To
ta

l m
ut

at
io

n 
ra

te
, 
μ
m

(g
en

-1
)

10-10

10-9

10-8

10-11

BA

Agreement with 
experimental data

Missegregation rate, μa(gen-1)
10-8 10-7 10-6 10-5

To
ta

l m
ut

at
io

n 
ra

te
, 
μ
m

(g
en

-1
)

10-10

10-9

10-8

10-11

Experiment 1: High T Experiment 2: High  ph

10-9 10-8

10-7

Figure S3: Quantitative model predictions agree with the laboratory evolution-
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logistic fit of growth curves. Shown here are growth curves (Optical Density vs time)
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form Torres at al. The experimental data (circles) are shown together with a logistic fit
(solid red lines). Model parameters were inferred with a Bayesian framework (see Material
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ization test, where, in each conditions, growth rates and number of exceeding genes were
randomly shuffled and the Pearson correlation coefficient was evaluated for the shuffled
data. Dashed lines mark the mean value of each histogram. The difference between the
null model distribution and the corresponding distributions of Pl=1 and Pl=2 background
are statistically significant (pval = 0.00003, 0.005 respectively, Mann Whitney U test). B:
Scatter plot for the fitness cost per gene (c0) evaluated for Pl=1 and Pl=2 strains (each
data-point correspond to the same condition). The values of the fitness cost display a sta-
tistically significant linear correlation (Pearson Correaltion coefficient 0.68, pval < 0.002).
The red line show the best linear fit of the data-points.
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Figure S6: The fitness cost model predicts a linear relationship between the
average fitness defect of aneuploids and standard deviation of growth rates,
and explains about 80% of the observed dispersion. A and B: Model predictions
capture large-scale phenotype data from ref. [9]. The scatter plots of the average growth
rate defect (µ) of an aneuploid strain across several conditions (environments and stresses)
versus its standard deviation across the same set of conditions (s). Each square represents
a strain of the aneuploid collection of ref. [8] (see Materials and Methods for description of
the data-set). Panel A refers to a haploid background, whereas panel B refers to a diploid
background. Our form of the fitness cost predicts a linear relation between µ and s, with a
slope equal to the coefficient of variation (CV) of the distribution of the number of excess
genes (ng) contained in the aneuploid chromosomes across the set of strains (see Materials
and Methods). The red lines show that the this model components alone can describe the
observed linear trend and explain the data only partially, with values of the R2 statistics:
0.84, 0.80 for panel A and B respectively.
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Figure S7: Chromosome fitness components of aneuploid strains can be inferred
from measured growth rates. The inferred fitness component of A, a disomic chromo-
some in a ploidy=1 background, and B, a trisomic chromosome in a ploidy=2 background,
is shwon here as a function of the stress condition in which growth rates were evaluated
(shown in the x axis). In both the two panels, the chromosome-specific component is
shown with a bar plot color coded according to the legend shown on the right. Chro-
mosome fitness components were inferred from growth rates obtained from [8]. Details
about the inference are given in Materials and Methods.B. Statistics of the inferred values
of the selection coefficients of aneuploidy chromosomes, inferred from [8],and evaluated
across several stress conditions. The central panel shows the scatter plot for the values
of the chromosomal selection coefficient evaluated in strains with ploidy=1 background vs
ploidy=2 background (each square correspond to the same condition and the same chro-
mosome). The data does not show statstically significant correlation (Pearson’s r=0.11).
Left and top panels show the probability distribution density of the chromosomal selec-
tion coefficients across all conditions and for all chromosomes together for (Top) ploidy=1
and (Left) ploidy=2 background, respectively (gray boxes). The two distributions are in
very good agreement with a Laplace distribution (red lines, mean values −0.01, 0.02 and
variance 1, 0.7 respectively). Note that in the central panel we report only components
that are present in both data-sets.
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Figure S8: The statistical properties of the distributions of chromosomal fitness
components classify environments by harshness. Panels A and B show Box-Whisker
plots for the distributions of the inferred values of the chromosome-specific fitness com-
ponents for each environment. Panel A shows the distributions for ploidy=1 background
and panel B shows the distributions for ploidy=2 background. In the boxes, the black
line marks the mean value of the distribution, the boxes make the lower (Q1) and upper
(Q3) quartile. Whiskers mark the minumum-maximum values and circles mark outliers
(points beyond the inter-quartile range from the edge of the box). C: Scatter plot of
the inter-quartile ranges of the distributions shown in A vs fitness cost per gene in the
ploidy=1 background, supporting the idea that the environment-specific inter-chromosome
variability of fitness effects is a proxy of environmental harshness. D: Scatter plot for the
inter-quartile ranges of the distributions shown in B vs fitness cost per gene in the pl=2
background. E: Scatter plot between the inter-quartile ranges of the distributions for
ploidy=1 and polidy=2 backgrounds, showing that the width of the distributions are cor-
related. In panels C-D-E we observe a statistically significant linear correlation coefficient,
with Pearson’s r values= (0.8, 0.7, 0.6) and p-val= (0.00004, 0.0003, 0.003) respectively.
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Figure S9: Clonal Interference (C.I.) effects can be mistaken for a loss of aneu-
ploidy resulting from karyotype instability. We show here the results of numerical
simulations of our evolutionary model (cfr. Material and Methods for details about the
simulations)to illustrate the model predictions in the CI regime. In (A) we show one sim-
ulation instance, to illustrate the typical dynamics of the intra-population frequencies of
euploid individuals (cyan), aneuploid individuals (green) and of euploid mutants (gray).
The dynamics displays two distinct phases: (i) a rise in frequency of aneuploid individ-
uals up to a maximum value xmax

a , followed by (ii) a decline and subsequent elimination
of aneuploidy from the population, because of the emergence of an euploid mutant. B.
Probability distribution of the maximal frequency reached by aneyploidy before being
eliminated from the population because of CI vs the value of the population size used in
the simulation. Probabillity distributions are shown with box-whisker plots (black line:
mean value, box: inter-quartile range, fences: max and min values). Here, the population
size is expressed in terms of the critical population size N∗ (Eq.31 in SI Appendix); evo-
lutionary experiments performed with an effective population size N ' N∗ are governed
by effects C.I. and have a high probability (= 1

2
for N = N∗) to display two distinct

phases. Taken together, these results show that, when CI is very likely to take place
(i.e., for N ' N∗, cfr SI Appendix) since the anueploids can reach a substantial maxi-
mum frequency (xMax

a > 0.5), this dynamics could be wrongly interpreted as a fixation
of aneuploids followed by loss of the extra chromosome. Model parameters used in the
simulations: (i) selection coefficients σb = 0.17 gen−1, σc = 0.05 gen−1),(ii) mutation rates
µa = 4 ∗ 10−4gen−1 andµm = 2 ∗ 10−5gen−1, (iii) population size N = 2000 (Panel A),
1500,2000,2500 (Panel B). With this set of model parameters, the critical population size
(Eq.31 in SI Appendix) takes the value N∗ = 1983 ' 2000.
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Figure S10: Detailed procedure of the inference of chromosomal fitness compo-
nents from scaled growth rate. We show here a detailed example of the algorithmic
and mathematical steps involved in the inference of the fitness components from scaled
growth rates from ref. [8]. In this example, we show growth data evaluated at 20◦C, for
strains with for pl=1 background. Panel A shows the values of the scaled growth rate
differences ∆s (computed according to Eq. 19, Material and Methods) vs the number of
duplicated genes contained in the corresponding strain (nsg). The red line shows the linear
decreasing trend for this data, which, in our model, is related to the average fitness cost of
a gene contained in a duplicated chromosome. The first step of our inference removes this
(genome-wide) linear trend, by detrending the data (according to Eq. 23, Material and
Methods). The result of this detrending procedure is shown in panel B, the red line now
showing the absence of a residual trend. The set of detrendend data of all the considered

strains can be mathematically represented as a vector ~∆detrendend, as shown in panel C,
where numerical values are now color coded (legend at the bottom of the panel). To infer

the chromosome-specific fitness components we decompose this set of values (~∆detrendend)
into the product of the duplicated chromosomes χ and the vector of the chromosomal
fitness components (~f). The matrix χ, shown in panel D, specifies the set of duplicated
chromosomes in a given strain; here duplicated chromosomes are shown in black (corre-
sponding to a numerical value =1) while non-duplicated chromosomes are shown in white
(corresponding to a numerical value =0). The vector of the fitness components specifies
the contribution of each chromosome to the observed values of the detrended growth rates

( ~∆detrendend) and is computed according to Eq.23, Material and Methods. Note that the

algebraic relation (~∆detrendend = χ ∗ ~f) implies that the detrended growth rate of a given
strain is the sum of the fitness components of its duplicated chromosomes only.



Table S1: Inferred Values of the growth rates of the aneuploid and euploid
strain from ref. [6]

High Temperature
Estimate (h−1) Standard Error (h−1)

f 30◦C
eu 0.439 0.004
f 30◦C

an 0.415 0.006

f 39◦C
eu 0.253 0.005
f 39◦C

an 0.284 0.003

High Ph
Estimate (h−1) Standard Error (h−1)

fnormal ph
eu 0.392 0.005
fnormal ph

an 0.345 0.005

fhigh ph
eu 0.109 0.002
fhigh ph

an 0.154 0.005
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Table S2: Posterior mean values of the model parameters for the logistic fit
y(t) = beft

1+a(eft−1)
of the growth data from ref. [7]

Strain # exceeding genes f (h−1) a b inverse variance 1/σ2
Y

Eu 0 0.5 0.022 0.22 38
Dis. I 117 0.46 0.026 0.25 48
Dis. II 456 0.46 0.025 0.24 48
Dis. IV 836 0.2 0.053 0.22 169
Dis. VI 139 0.29 0.019 0.22 35

Dis. VIII 321 0.45 0.031 0.28 43
Dis. IX 241 0.47 0.015 0.15 35
Dis. X 398 0.44 0.028 0.24 40
Dis. XI 348 0.42 0.033 0.24 51
Dis. XII 578 0.34 0.02 0.17 29
Dis. XIII 505 0.37 0.026 0.24 48
Dis. XIV 435 0.38 0.031 0.23 61
Dis. XV 597 0.33 0.0095 0.09 55
Dis. XVI 511 0.35 0.012 0.13 25.

Dis. XVI+XI 859 0.27 0.016 0.1 19
Dis. XIV+VIII 756 0.3 0.016 0.1 17

Dis. XI+XV 945 0.21 0.016 0.12 33
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Table S3: Best-fit model parameters for the aneuploid strains abundances
data [10]. Numerical values of the model parameters for the fit of Eq.9 (Main text),
to aneuploidy strains abundances data. In (i) we considered the full data-set presented
in ref. ( [10], where authors aggregated data for aneuploidy strains from 8 independent
studies. In (ii) we split the data-set into two subsets, the subset of ”natural strains” from
ref. [11] and its complement set, in order to evaluate differences between model parameters
for the two subsets. Similarly, in (iii) we compared the set of ”wild strains” from ref. [10]
and its complement set. In (iv) we focused on the subset of natural strains only, which we
further partitioned into aneuploid strains with a ploidy>2 background and strains with
ploidy=1 and ploidy=2 background.

Dataset Normalization, 1/Z Effective fitness cost per gene, κ Nstrains

(i) All strains (ref.s [11–18]) 24000. 5× 10−4 936

(ii)
Natural strains (ref.s [11]) 6300. 2.1× 10−4 295

Complement set (ref.s [12–18]) 17000. 5.7× 10−4 641

(iii)
Wild Strains(ref.s [11, 13]) 4400. 2.2× 10−5 237

Complement (ref.s [11,12,14–18]) 20000. 7.4× 10−4 699

(iv)
Natural strains, ploidy >2 (ref [11]) 1100. 2.5× 10−7 63

Natural strains, ploidy 1 and 2 (ref [11]) 5100. 3.7× 10−4 232
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