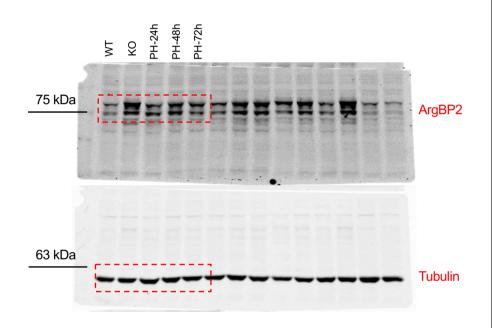

SUPPLEMENTAL DATA

Supplemental Fig. S1. Overlap between the proteome and phosphoproteome

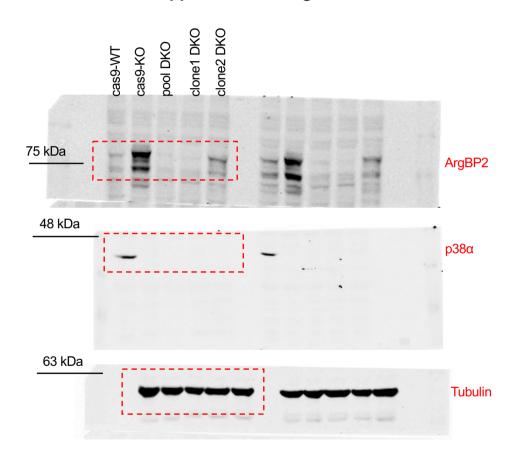
datasets. A, percentage of phosphosites either upregulated (Up) or downregulated (Down) in p38 α KO or PH-797804 treated cells, and that are located in proteins detected or not detected in the proteome analysis. B, percentage of phosphosites that change in p38 α KO or PH-797804 treated cell as indicated (Up or Down) and are located in proteins whose expression was either downregulated, upregulated or no changed. A cutoff of FC >1.2 in KO/WT or PH/WT was used to consider that the protein was downregulated or upregulated.

Supplemental Fig. S2. Regulation of *SORBS2* expression by p38 α in different human cancer cell lines. *A, SORBS2* mRNA levels were determined by qRT-PCR in the indicated cancer cell lines treated with the p38 α inhibitor PH797804 (PH) for 48 h. *p < 0.05, **p < 0.01. When no p-value is indicated the differences are not significant. Each dot indicates one biological replicate. *B,* the indicated cell lines were preincubated with either DMSO or PH, and 24 h later 30,000 cells (E0771) or 50,000 cells (HCC70) were plated and incubated for 1 or 2 h, respectively. Attached cells were counted and normalized to DMSO.

Supplemental Table S1. Quantification of the total protein raw data (Excel Table)
Supplemental Table S2. Phosphopeptides (Excel Table)


Supplemental Table S3. Quantification of the total phosphosite raw data (Excel Table)

Supplemental Table S4. Proteins that change in both KO and PH-treated cells compared with WT cells (Excel Table)


Supplemental Table S5. Phosphosites that change in both KO and PH-treated cells compared with WT cells (Excel Table)

Uncropped blots for Fig. 1A KO DMSO PH M DMSO 8 Ŧ 45 kDa 29 kDa P-p38 P-Hsp27 THE 45 kDa ρ38α 29 kDa Hsp27 45 kDa P-MK2 57 kDa Tubulin 45 kDa 45 kDa MK2

Uncropped blots for Fig. 7B

Uncropped blots for Fig. 7E

