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NON-DIMENSIONALISATION 

We can scale the system of equations (1a) to (1c) in the main text as follows: 

𝑆, 𝐼, 𝑅, 𝑁 ~
1

𝑞
 (𝑆1𝑎) 

𝑡~
1

𝑏0
 (𝑆1𝑏) 

𝑎, 𝑎𝑅 , 𝑏, 𝑏𝑅𝜁~𝑏0 (𝑆1𝑐) 

𝛽~𝑞𝑏0 (𝑆1𝑑) 

which allows us to set 𝑞 = 1 and 𝑏0 = 1 without loss of generality. 

 

DERIVATION OF 𝑹𝟎 

The dynamics of a small number of infected individuals in a population close to its disease-

free equilibrium are given by: 

 

d𝐼

d𝑡
= 𝛽𝑆∗𝐼 − 𝑏(1 + 𝛼)𝐼 (𝑆2) 

 

The disease can invade if 
d𝐼

d𝑡
> 0 and so the basic reproductive ratio is given by: 

 

𝑅0 =
𝛽𝑆∗

𝑏(1 + 𝛼)
 (𝑆3) 
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POPULATION VIABILITY 

In the absence of disease, our system becomes: 

𝑑𝑆

𝑑𝑡
= 𝑎(1 − 𝑞𝑁)𝑆 + 𝑎𝑅(1 − 𝑞𝑁)𝑅 − 𝑏𝑆 − 𝜁𝑆 (𝑆4𝑎) 

𝑑𝑅

𝑑𝑡
= −𝑏𝑅𝑅 + 𝜁𝑆 (𝑆4𝑏) 

 

which has a single (non-trivial) stable equilibrium at: 

𝑆∗ =
𝑏𝑅(𝑎𝑏𝑅 + 𝑎𝑅𝜁 − 𝑏𝑏𝑅 − 𝑏𝑅𝜁)

𝑞(𝑏𝑅 + 𝜁)(𝑎𝑏𝑅 + 𝑎𝑅𝜁)
 (𝑆5𝑎) 

𝑅∗ =
𝜁

𝑏𝑅
𝑆∗ (𝑆5𝑏) 

 

Hence, a disease-free population is viable if 𝑎𝑏𝑅 + 𝑎𝑅𝜁 > 𝑏𝑏𝑅 + 𝑏𝑅𝜁. 

 

ENDEMIC EQUILIBRIUM 

We can find the roots of the original system of equations (1a) to (1c). This tells us that: 

𝑆∗ =
𝑏(1 + 𝛼)

𝛽
 (𝑆6𝑎) 

𝑅∗ =
𝜁

𝑏𝑅
𝑆∗ (𝑆6𝑏) 

and 

𝐼∗ =
−𝐵 + √𝐵2 − 4𝐴𝐶

2𝐴
 (𝑆6𝑐) 

where 

𝐴 = 𝑎𝑓 (𝑆6𝑑) 
𝐵 = 𝑎𝑓𝑆∗ + 𝑎𝑓𝑅∗ − 𝑎𝑓 + 𝛽𝑆∗ + 𝑎𝑆∗ + 𝑎𝑅𝑅∗ (𝑆6𝑒) 

𝐶 = 𝑏𝑆∗ + 𝜁𝑆∗ − 𝑎𝑆∗ − 𝑎𝑅𝑅∗ + 𝑎𝑆∗2 + 𝑎𝑅𝑆∗𝑅∗ + 𝑎𝑆∗𝑅∗ + 𝑎𝑅𝑅∗2 (𝑆6𝑓) 
 

Note that 𝑅0 > 1 ⇔ 𝐶 < 0 and so 𝐼∗ > 0 whenever the basic reproductive ratio is greater 

than one.  

We can linearise our model about this equilibrium to give the system: 

d

d𝑡
(

𝑆
𝐼
𝑅

) = 𝐽 (
𝑆
𝐼
𝑅

) (𝑆7𝑎) 
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where the Jacobian matrix is given by: 

𝐽 = (

𝑎(1 − 𝑞𝑁∗) − 𝑎𝑞(𝑆∗ + 𝑓𝐼∗) − 𝑎𝑅𝑞𝑅∗ − 𝛽𝐼∗ − 𝑏 − 𝜁 𝑎𝑓(1 − 𝑞𝑁∗) − 𝑎𝑞(𝑆∗ + 𝑓𝐼∗) − 𝑎𝑅𝑞𝑅∗ − 𝛽𝑆∗ 𝑎𝑅(1 − 𝑞𝑁∗) − 𝑎𝑞(𝑆∗ + 𝑓𝐼∗) − 𝑎𝑅𝑞𝑅∗

𝛽𝐼∗ 𝛽𝑆∗ − 𝑏(1 + 𝛼) 0
𝜁 0 −𝑏𝑅

) (𝑆7𝑏) 

 

The endemic equilibrium is linearly stable if the real part of each of the eigenvalues of 𝐽 is 

negative. We cannot calculate the eigenvalues of this matrix analytically and so we do this 

numerically for different sets of parameter values (see Matlab file “ecological_stability.m” in 

the source code). We find that the endemic equilibrium is unique and linearly stable 

whenever it exists, across a wide range of parameter values.  

 

INVASION FITNESS 

The invasion dynamics of a rare host mutant with rate of onset of resistance 𝜁𝑚 in an 

established resident population (at the endemic equilibrium, denoted by asterisks) are given 

by: 

d𝑆𝑚

d𝑡
= 𝑎(1 − 𝑞𝑁∗)(𝑆𝑚 + 𝑓𝐼𝑚) + 𝑎𝑅(1 − 𝑞𝑁∗)𝑅𝑚 − 𝛽𝑆𝑚𝐼∗ − 𝑏𝑆𝑚 − 𝜁𝑚𝑆𝑚 (𝑆8𝑎) 

d𝐼𝑚

d𝑡
= 𝛽𝑆𝑚𝐼∗ − 𝑏(1 + 𝛼)𝐼𝑚 (𝑆8𝑏) 

d𝑅𝑚

d𝑡
= −𝑏𝑅𝑅𝑚 + 𝜁𝑚𝑆𝑚 (𝑆8𝑐) 

 

Note that the mutant is assumed to be sufficiently rare as to make the effect of mutant-

mutant interactions negligible and so these interactions are not included in the system above. 

  

In the cases where 𝑎, 𝑎𝑅, 𝑏 or 𝑏𝑅 trade off with the rate of resistance onset, 𝜁, these terms 

are functions of 𝜁𝑚 in the equations above. 

 

The invasion fitness is derived using the next-generation method (Hurford et al., 2010), with 

the following decomposition of the Jacobian matrix, 𝐴: 

 

Denoting this decomposition as 𝐴 = 𝐹 − 𝑉, the invasion fitness is one less than the spectral radius 

of 𝐹𝑉−1: 

𝐴 = (
𝑎(1 − 𝑞𝑁∗) 𝑎(1 − 𝑞𝑁∗)𝑓 𝑎𝑅(1 − 𝑞𝑁∗)

0 0 0
0 0 0

) − (

𝛽𝐼∗ + 𝑏 + 𝜁𝑚 0 0

−𝛽𝐼∗ 𝑏(1 + 𝛼) 0
−𝜁𝑚 0 𝑏𝑅

) (𝑆9) 
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Note that 𝐼∗ and 𝑁∗ will typically be functions of 𝜁 and, depending on which trade-offs are 

being considered, 𝑎, 𝑎𝑅, 𝑏 or 𝑏𝑅 may be functions of 𝜁𝑚.  

 

ECOLOGICAL SYSTEM FOR ARBITRARY NUMBER OF PHENOTYPES 

In our evolutionary simulations, we relax the assumption of rare mutations so that multiple 

mutant phenotypes may exist alongside the resident at any given time. Also, the resident 

may not be at its ecological equilibrium by the time new mutants appear. To do this, we 

need to consider the ecological system for an arbitrary number of host strains. Let 𝑆𝑖, 𝐼𝑖 and 

𝑅𝑖 denote the density of susceptible, infected and resistant individuals of strain 𝑖 for 1 ≤

𝑖 ≤ 𝑛 and let 𝜁𝑖 be the rate of onset of resistance for strain 𝑖. Then the ecological dynamics 

are given by: 

𝑑𝑆𝑖

𝑑𝑡
= 𝑎(1 − 𝑞𝑁)(𝑆𝑖 + 𝑓𝐼𝑖) + 𝑎𝑅(1 − 𝑞𝑁)𝑅𝑖 − 𝛽𝑆𝑖𝐼 − 𝑏𝑆𝑖 − 𝜁𝑖𝑆𝑖  (𝑆11𝑎) 

𝑑𝐼𝑖

𝑑𝑡
= 𝛽𝑆𝑖𝐼 − 𝑏(1 + 𝛼)𝐼𝑖 (𝑆11𝑏) 

𝑑𝑅𝑖

𝑑𝑡
= −𝑏𝑅𝑅𝑖 + 𝜁𝑖𝑆𝑖 (𝑆11𝑐) 

where 𝑁 ∶= ∑ (𝑆𝑖 + 𝐼𝑖 + 𝑅𝑖)𝑛
𝑖=1  is the total population density and 𝐼 ∶= ∑ 𝐼𝑖

𝑛
𝑖=1  is the total 

infected density. Note that when 𝑎, 𝑎𝑅, 𝑏 or 𝑏𝑅 are functions of the evolving trait, they are 

functions of 𝜁𝑖 in the strain 𝑖 equations.  

 

CONSTANT COSTS 

SINGULAR STRATEGIES 

Singular strategies are turning points of the invasion fitness function, calculated by 

differentiating the invasion fitness (𝑤) with respect to the mutant trait, 𝜁𝑚, and then finding 

the roots of this fitness gradient in the case where the resident and mutant traits are equal 

(𝜁𝑚 = 𝜁).  

In scenarios (3) to (6), where 𝑎, 𝑎𝑅, 𝑏 or 𝑏𝑅 are functions of 𝜁, it is not possible to write 

down a closed-form expression for the singular strategy. However, this is possible in 

scenarios (1) and (2), where 𝑎𝑅 = 𝑎ℎ, 𝑏𝑅 = 𝑏(1 + 𝛿) and 𝑎 and 𝑏 are constants (note that 

𝛿 = 0 in scenario (1) and ℎ = 1 in scenario (2)).  

In this case, the fitness gradient may be written as: 

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 =

𝑎𝑅(1 − 𝑞𝑁∗) − 𝑏𝑅

(𝛽𝐼∗ + 𝑏 + 𝜁)𝑏𝑅
 (𝑆12) 

𝑤(𝜁𝑚 , 𝜁) =
𝑎(1 − 𝑞𝑁∗)𝑏(1 + 𝛼)𝑏𝑅 + 𝑎(1 − 𝑞𝑁∗)𝑓𝛽𝐼∗𝑏𝑅 + 𝑎𝑅(1 − 𝑞𝑁∗)𝑏(1 + 𝛼)𝜁𝑚

(𝛽𝐼∗ + 𝑏 + 𝜁𝑚)𝑏(1 + 𝛼)𝑏𝑅
− 1 (𝑆10) 
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where 𝐼∗ and 𝑁∗ are functions of 𝜁.  

We can combine this equation with the original system of equations (1a) to (1c) in the main 

text. Finding the roots of these four equations simultaneously allows us to calculate the 

singular strategy (𝜁∗) and the endemic equilibrium at the singular strategy, as follows: 

𝜁∗ = 𝑏(1 + 𝛿) ( 
𝑝 −  1

𝑓𝑝 −  (1 + 𝛼)
 +  

𝛽(𝑎 −  𝑏𝑝)

𝑎𝑞  𝑏(1 + 𝛼)
 −  1 ) (𝑆13𝑎) 

 

𝑆∗|𝜁=𝜁∗ =
𝑏(1 + 𝛼)

𝛽
  (𝑆13𝑏) 

𝑅∗|𝜁=𝜁∗ =
𝜁∗

𝑏𝑅
𝑆∗ (𝑆13𝑐) 

𝐼∗|𝜁=𝜁∗ =
𝑝 − 1

(1 + 𝛼) − 𝑓𝑝
𝑆∗ (𝑆13𝑑) 

where 𝑝 =
1+𝛿

ℎ
 for notational convenience. 

In the absence of disease (and the presence of costs of resistance), the rate of onset of 

resistance will always evolve to become zero (no onset of resistance). We can see that 

𝐼∗|
𝜁=𝜁∗ > 0 ⇔ (1 + 𝛼) > 𝑓𝑝 and so the onset of resistance can only evolve if ℎ(1 + 𝛼) >

𝑓(1 + 𝛿). This condition represents the costs of infection being sufficiently higher than the 

costs of resistance.   

INVASION FITNESS 

We would like to know the invasion fitness of a rare mutant within a resident population at 

the singular strategy, 𝑤(𝜁𝑚, 𝜁∗). 

We saw above from equation S12 that, at the singular strategy, 𝑎𝑅(1 − 𝑞𝑁∗) − 𝑏𝑅 = 0 

must be satisfied. Substituting this into the expression for the invasion fitness (equation 

S10) tells us that: 

𝑤(𝜁𝑚, 𝜁∗) =
𝛽𝐼∗ −

𝑏(1 + 𝛼)(𝑝 − 1)
(1 + 𝛼) − 𝑓𝑝

(
(𝛽𝐼∗ + 𝑏 + 𝜁𝑚)2(1 + 𝛼)

(1 + 𝛼) − 𝑓𝑝
)

 (𝑆14) 

 

where 𝐼∗ is evaluated at the singular strategy. We know from equation S13d that 𝐼∗|
𝜁=𝜁∗ =

(𝑝−1)𝑏(1+𝛼)

((1+𝛼)−𝑓𝑝)𝛽
 and so we can see that 𝑤(𝜁𝑚, 𝜁∗) ≡ 0. 

Therefore, any derivative of 𝑤(𝜁𝑚 , 𝜁) taken only with respect to 𝜁𝑚 and subsequently 

evaluated at 𝜁 = 𝜁∗ will be equal to zero (including the condition for evolutionary stability). 



 6 

CONVERGENCE STABILITY 

Since we already know that 
𝜕2𝑤

𝜕𝜁𝑚
2 |𝜁𝑚=𝜁=𝜁∗ = 0, a singular strategy will be convergence stable 

if and only if 
𝜕2𝑤

𝜕𝜁𝑚𝜕𝜁
|𝜁𝑚=𝜁=𝜁∗ < 0. Due to the complexity of the general expression for the 

endemic equilibrium (equation S6c), we cannot write down an expression for 
𝜕2𝑤

𝜕𝜁𝑚𝜕𝜁
|𝜁𝑚=𝜁=𝜁∗ 

which is simple enough for us to determine its sign.  

The Matlab file “constant_costs_convergence_stability.m” (included in the source code) 

determines the sign of this term numerically for many sets of parameter values. It reveals 

that the singular strategy is convergence stable if and only if ℎ(1 + 𝛼) > 𝑓(1 + 𝛿).  

We have already shown that there cannot be a positive singular strategy unless this 

condition holds. Therefore, whenever there is a singular value of the rate of onset of 

resistance, this singular strategy is convergence stable.  

 

FAST ONSET OF RESISTANCE 

We have found that the endemic equilibrium of our original system satisfies: 

𝑆∗ =
𝑏(1 + 𝛼)

𝛽
 (𝑆15𝑎) 

𝑅∗ =
𝜁

𝑏𝑅
𝑆∗ (𝑆15𝑏) 

and 

𝐴𝐼∗2 + 𝐵𝐼∗ + 𝐶 = 0 (𝑆15𝑐) 
where 

𝐴 = 𝑎𝑓 (𝑆15𝑑) 
𝐵 = 𝑎𝑓𝑆∗ + 𝑎𝑓𝑅∗ − 𝑎𝑓 + 𝛽𝑆∗ + 𝑎𝑆∗ + 𝑎𝑅𝑅∗ (𝑆15𝑒) 

𝐶 = 𝑏𝑆∗ + 𝜁𝑆∗ − 𝑎𝑆∗ − 𝑎𝑅𝑅∗ + 𝑎𝑆∗2 + 𝑎𝑅𝑆∗𝑅∗ + 𝑎𝑆∗𝑅∗ + 𝑎𝑅𝑅∗2 (𝑆15𝑓) 
 

As 𝜁 → ∞, 𝐶~
𝑎𝑅𝑆∗2

𝑏𝑅
2 𝜁2 + 𝑂(𝜁) and 𝐵~

(𝑎𝑓+𝑎𝑅)𝑆∗

𝑏𝑅
𝜁 + 𝑂(1) and 𝐴~𝑂(1).  

This means that equation S15c can only balance if 𝐼∗ → −∞ as 𝜁 → ∞. Clearly, this is not 

possible (the number of infected individuals must always be non-negative). Therefore, there 

is no endemic equilibrium when 𝜁 is sufficiently large. That is, 𝐼∗ = 0 when 𝜁 is large. 

Taking 𝐼∗ = 0 allows us to determine the ecological equilibrium for scenarios (3) and (4): 

𝑆∗ =
𝑏(𝑎 − 𝑏)

𝑎(𝑏 + 𝜁)
 (𝑆16𝑎) 

𝑅∗ =
𝜁(𝑎 − 𝑏)

𝑎(𝑏 + 𝜁)
 (𝑆16𝑏) 
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and for scenarios (5) and (6): 

𝑆∗ =
𝑏0(𝑎𝑏0 + 𝑎0𝜁 − 𝑏𝑏0 − 𝑏0𝜁)

(𝑏0 + 𝜁)(𝑎𝑏0 + 𝑎0𝜁)
 (𝑆17𝑎) 

𝑅∗ =
𝜁(𝑎𝑏0 + 𝑎0𝜁 − 𝑏𝑏0 − 𝑏0𝜁)

(𝑏0 + 𝜁)(𝑎𝑏0 + 𝑎0𝜁)
 (𝑆17𝑏) 

 

We can also simplify the invasion fitness (equation S10) in each of these scenarios and, using 

the above expressions for the ecological equilibrium, derive the fitness gradient in scenarios 

(3) and (4): 

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 =

1

𝑎

d𝑎

d𝜁
−

1

𝑏

d𝑏

d𝜁
 (𝑆18) 

 

and in scenarios (5) and (6): 

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 =

𝑎0𝑏 − 𝑎𝑏0

(𝑏 + 𝜁)(𝑎𝑏0 + 𝑎0𝜁)
+

𝑏0

𝑎𝑏0 + 𝑎0𝜁

d𝑎

d𝜁
−

1

𝑏 + 𝜁

d𝑏

d𝜁
 (𝑆19) 

 

We know that 
d𝑎

d𝜁
< 0 and 

d𝑏

d𝜁
> 0 and so we can see that 

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 < 0 for sufficiently large 

𝜁 in scenarios (3) and (4). This means that the uppermost singular strategy will always be an 

evolutionary attractor in these scenarios (it is convergence stable). 

We also know that 𝑎0 > 𝑎 and 𝑏0 < 𝑏 and that 
d𝑎

d𝜁
 and 

d𝑏

d𝜁
 decay exponentially to zero as 𝜁 

increases when 𝑐2
𝑖 > 0. However, when 𝑐2

𝑖 < 0, we know that 
d𝑎

d𝜁
→ −∞ and 

d𝑏

d𝜁
→ ∞ as 𝜁 

increases.  Therefore, 
𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 > 0 for sufficiently large 𝜁 in scenarios (5) and (6) when 𝑐2

𝑎 

and 𝑐2
𝑏 are positive whereas  

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 < 0 for sufficiently large 𝜁 in scenarios (5) and (6) 

when 𝑐2
𝑎 and 𝑐2

𝑏 are negative.  

This means that the uppermost singular strategy will always be a repeller (convergence 

unstable) when 𝑐2
𝑎 and 𝑐2

𝑏 are positive and will always be an attractor when 𝑐2
𝑎 and 𝑐2

𝑏 are 

negative, in scenarios (5) and (6).  

 

DIMORPHIC POPULATIONS 

We consider a dimorphic population where one sub-population has no onset of resistance 

(𝜁 = 0). This system is represented by the equations: 

d𝑆1

d𝑡
= 𝑎0(1 − 𝑞𝑁)(𝑆1 + 𝑓𝐼1) − 𝛽𝑆1𝐼 − 𝑏0𝑆1 (𝑆20𝑎) 
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d𝐼1

d𝑡
= 𝛽𝑆1𝐼 − 𝑏0(1 + 𝛼)𝐼1 (𝑆20𝑏) 

d𝑆2

d𝑡
= 𝑎(1 − 𝑞𝑁)(𝑆2 + 𝑓𝐼2) + 𝑎𝑅(1 − 𝑞𝑁)𝑅2 − 𝛽𝑆2𝐼 − 𝑏𝑆2 − 𝜁𝑆2 (𝑆20𝑐) 

d𝐼2

d𝑡
= 𝛽𝑆2𝐼 − 𝑏(1 + 𝛼)𝐼2 (𝑆20𝑑) 

d𝑅2

d𝑡
= −𝑏𝑅𝑅2 + 𝜁𝑆2 (𝑆20𝑒) 

 

where 𝐼 ∶= 𝐼1 + 𝐼2 and 𝑁 ∶= 𝑆1 + 𝐼1 + 𝑆2 + 𝐼2 + 𝑅2. 

We seek to determine the evolutionary dynamics of the rate of onset of resistance of the 

second sub-population. As we have only observed dimorphism in the case of trade-offs with 

𝑐2
𝑖 > 0, we only consider the system in this case.  

We have observed from simulations that the rate of onset of resistance, 𝜁, of the second 

sub-population increases significantly over evolutionary time. We wish to determine 

whether 𝜁 will evolve to increase indefinitely. To do this, we consider the dynamics of the 

above system as 𝜁 → ∞. 

By setting each of the above equations equal to zero, we can determine the ecological 

equilibrium of the system. In scenarios (5) and (6), where 𝑎𝑅 = 𝑎0, 𝑏𝑅 = 𝑏0 and one of 𝑎 or 

𝑏 varies with 𝜁, we let 𝑞 = 1 and 𝑏0 = 1 (by non-dimensionalising) and find that 

𝑁∗~1 −
1

𝑎0
−

𝑐1
𝑎

𝑎0(1 − 𝑒−𝑐2
𝑎

)𝜁
+ 𝑂 (

1

𝜁2
)           as 𝜁 → ∞ (𝑆21𝑎) 

in the case of scenario (5) and 

𝑁∗~1 −
1

𝑎0
−

𝑐1
𝑏

𝑎0(1 − 𝑒−𝑐2
𝑏

)𝜁
+ 𝑂 (

1

𝜁2
)           as 𝜁 → ∞ (𝑆21𝑏) 

in the case of scenario (6). 

The fitness gradient in either case is given by: 

 

This expression satisfies: 

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁~

𝑐1
𝑖

(1 − 𝑒−𝑐2
𝑖
)𝜁2

+ 𝑂 (
1

𝜁3
)           as 𝜁 → ∞ (𝑆23) 

where 𝑖 = 𝑎 in scenario (5) and 𝑖 = 𝑏 in scenario (6).  

𝜕𝑤

𝜕𝜁𝑚
|𝜁𝑚=𝜁 =

𝑎0(1 − 𝑁∗) − 1

(𝛽𝐼∗ + 𝑏 + 𝜁)
+

d𝑎

d𝜁

(𝛽𝐼∗ + 𝑏 + 𝜁) − 𝑎0(1 − 𝑁∗)𝜁

(𝛽𝐼∗ + 𝑏 + 𝜁)𝑎
+

d𝑏

d𝜁

𝑎(1 − 𝑁∗) + 𝑎0(1 − 𝑁∗)𝜁 − 𝑏 − (𝛽𝐼∗ + 𝑏 + 𝜁)

(𝛽𝐼∗ + 𝑏 + 𝜁)𝑏
 (𝑆22) 
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This means that the fitness gradient is positive for sufficiently large values of 𝜁 when 𝑐2
𝑖 > 0. 

Therefore, when 𝑐2
𝑖 > 0, we would expect 𝜁 to evolve to increase indefinitely in the cases 

where simulations show that it rises significantly.  

 

DESCRIPTION OF EVOLUTIONARY SIMULATIONS 

1. Run the ecological dynamics of the system for a fixed length of time, with the rate of 

onset of resistance taking its resident value. 

2. Introduce a mutant, randomly determining whether the trait will mutate to be 

slightly higher or lower than its current value. Add a small sub-population with the 

new, mutant trait value. 

3. Run the ecological dynamics of the system for a fixed length of time, starting at its 

current composition. 

4. Remove any sub-populations which have a density below a certain threshold (they 

are extinct). 

5. Introduce a mutant by randomly determining which sub-population (rate of onset of 

resistance trait value) the mutant will come from and whether the trait will mutate 

to be slightly higher or lower than its current value. Add a small sub-population with 

the new, mutant trait value. 

6. Repeat steps 3 to 5 for many evolutionary timesteps.  

 

In these simulations, ecological and evolutionary timescales are not completely separated 

because the ecological system does not necessarily reach its equilibrium before the next 

mutant is introduced. Mutations do not have arbitrarily small phenotypic effects because 

mutations alter the rate of onset of resistance by a small, fixed interval. 
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Fig. S1 The effect of different parameters on the number and stability of singular strategies 

in the cases where costs of fast onset of resistance are paid throughout the lifetime of the 

host (case 3 for (A), (C), (E) & (H) and case 4 for (B), (D), (F), (G) & (I)). Continuously stable 

strategies are shown in green (solid), repellers are shown in orange (dotted) and branching 

points are shown in purple (dashed). Parameters used are as in Table 1 except for (A) 𝑐1
𝑎 =

0.18, 1 − 𝑓 = 0.5, 𝛼 = 0, (B) 𝑐1
𝑏 = 0.2, 1 − 𝑓 = 0.5, 𝛼 = 0, (C) 𝑐2

𝑎 = 10, 1 − 𝑓 = 0.2, 𝛼 =

0, (D) 𝑐1
𝑏 = 0.2, 𝑐2

𝑏 = 10, 1 − 𝑓 = 0.2, 𝛼 = 0, (E) 𝑐2
𝑎 = 10, 𝛼 = 0, (F) 𝑐2

𝑏 = 10, 1 − 𝑓 = 0, 

(G) 𝑐1
𝑏 = 0.2, 𝑐2

𝑏 = 10, 1 − 𝑓 = 0.5, 𝛼 = 0, (H) 𝑐2
𝑎 = 10, 1 − 𝑓 = 0.5, 𝛼 = 0 and (I) 𝑐2

𝑏 =

10, 1 − 𝑓 = 0.5, 𝛼 = 0. Changing these parameters causes quantitative shifts in these 

figures but the qualitative patterns are consistent for a wide range of parameters.  

  



 11 

Fig. S2 The effect of different parameters on the number and stability of singular strategies 

in the cases where costs of fast onset of resistance are paid only before the onset of 

resistance (case 5 for (A), (D), (E), (F) & (G) and case 6 for (B), (C) & (H)). Continuously stable 

strategies are shown in green (solid), repellers are shown in orange (dotted) and branching 

points are shown in purple (dashed). Parameters used are as in Table 1 except for (A) 1 −

𝑓 = 0, 𝛼 = 1, (B) 1 − 𝑓 = 0, 𝛼 = 1, (C) 1 − 𝑓 = 0.5, 𝛼 = 0, (D) 1 − 𝑓 = 0, 𝛼 = 1, (E) 𝑏0 =

0.2, 𝛼 = 0, (F) 𝑐1
𝑎 = 0.2, 𝑐2

𝑎 = 10, 1 − 𝑓 = 0, (G) 1 − 𝑓 = 0.5, 𝛼 = 0, (H) 1 − 𝑓 = 0, 𝛼 = 1 

and (I) 𝑐2
𝑏 = 8, 1 − 𝑓 = 0, 𝛼 = 1. Changing these parameters causes quantitative shifts in 

these figures but the qualitative patterns are consistent for a wide range of parameters.  
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