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ELECTRONIC SUPPLEMENTARY MATERIAL 

A deep learning model using chest X-ray for identifying TB and NTM-LD 

patients: a cross-sectional study 

 

Appendix A. Transfer learning 

In this study, we leveraged transfer learning to get better models. To begin with, 

we used two large public CXR databases, MIMIC and CheXpert, to pretrain 

DenseNet121 [1] (Figure 2A). These two databases contain 14 commonly seen CXR 

diagnoses but do not include mycobacterial diseases. Since DenseNet121 was 

calibrated to learn radiological diagnoses, we assumed that the image 

representations outputted by DenseNet’s encoder had “radiological knowledge” to 

some extent; therefore, they were useful for learning mycobacterial predictions.  

We then froze DenseNet’s encoder, put two new dense layers on top of it, and 

used our in-house mycobacterial datasets to train the model. Conceptually, the 

frozen encoder would extract “radiological features” from mycobacterial images and 

fore-propagate it to the following dense layers. The dense layers were then trained to 

learn specific diagnoses for the three mycobacterial diseases (the “final model”). In 

Appendix C, we also tested if fine-tuning our final model on external cohort could 

improve performance. Please refer Appendix C to see more details. 
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Appendix B. Hyperparameter choices of our DNN 

DenseNet121 was used as the backbone of all our DNN models. We began our 

study by training DenseNet121 on the MIMIC and CheXpert datasets. Adam 

optimizer was selected to find convergence and the empirically best learning rate 

(0.001) was kept for the rest of this study.  

After the pretraining, two fully connected dense layers consisting of 512 neurons 

were added on top of the DenseNet121 backbone. We used 128 images for a single 

batch since this was the largest number allowed under our Google Colab setting. To 

compute the standard deviation of the performance, the above process with identical 

hyperparameter selections was kept for the 12-time repetition. We chose to produce 

12 copies of the model to pair with the 12 pulmonologists recruited in this study. 

 

Appendix C. Test performance after fine-tuning on the external cohort 

We randomly sampled 300 patients out from the external cohort and used them 

to fine-tune the model trained in the internal cohort. This led to 300 patients 

remaining for testing (Figure A1). The characteristics of patients in this fine-tuning 

and external validation sets can be found in Appendix D. After fine-tuning, our model 

achieved similar performance in the Imitator (AUC = 0.77 vs. 0.78 in internal and 
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external test sets respectively) and in the TB (AUC = 0.83 vs. 0.82 respectively) 

groups. The major difference between internal and external test performance was 

observed in the NTM (non-tuberculous mycobacteria) group AUC = 0.86 vs. 0.73 

respectively), but the difference was less than model without fine-tuning. 

Figure A1. 

 

(A) Similar to developing the model in the internal cohort, we split the external cohort 

to fine-tuning, validation, and test sets. Since the model has learned some 

mycobacterial chest x-rays (CXRs) from the internal cohort, we reduced the number 

of CXRs in the fine-tuning set compared to its first training run. 



Insights Imaging (2023) Liu CJ, Tsai CC, Kuo LC et al. 

 

(B) The model achieved similarly great performance after using fewer CXRs to fine-

tune. Along with Figure 3. (A) (B), although the model will lose some capability when 

applying to an unseen dataset, it can be calibrated using few samples and retrieve 

reasonably good performance. 

(C) Even after fine-tuning, the model still made more mistakes in differentiating non-

tuberculous mycobacteria (NTM) from Imitator. This proves the confusing nature of 

Imitator and justifies our motivation of including Imitator in our study. 
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Appendix D. Clinical characteristics of patients with presumptive mycobacterial lung diseases 

 

External cohort, fine-tuning 

(n=240) 
 

External cohort, validation 

(n=60) 
 

Internal cohort, validation 

(n=120) 

TB NTM-LD Imitator 

 

TB NTM-LD Imitator 

 

TB NTM-LD Imitator 

(N=80) (N=80) (N = 80) (N=20) (N=20) (N=20) (n=40) (n=40) (n=40) 

Age (years) 54.6±21.1 66.1±16.2 67.7±11.8  55.5±19.8 64.1±15.5 64.7±14.0  63.6±19.2 65.3±12.8 69.4±11.7 

Male, n (%) 56 (70%) 45 (56%) 31 (39%)  14 (70%) 10 (50%) 12 (60%)  29 (73%) 16 (40%) 17 (43%) 

Acid-fast smear            

High-grade positive (3, 

4) 
30 (38%) 4 (5%) 0 (0%)  8 (40%) 1 (5%) 0 (0%)  8 (20%) 6 (15%) 0 (0%) 

Low-grade positive (1, 

2) 
23 (29%) 10 (13%) 0 (0%)  5 (25%) 3 (15%) 0 (0%)  15 (38%) 8 (20%) 0 (0%) 

Negative 
27 (34%) 66 (83%) 

80 

(100%) 
 7 (35%) 16 (80%) 

20 

(100%) 
 17 (43%) 26 (65%) 40 (100%) 

Chest X-ray pattern            

Fibrocalcific change 32 (40%) 23 (29%) 19 (24%)  8 (40%) 9 (45%) 8 (40%)  15 (38%) 11 (28%) 13 (33%) 
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Abbreviation: NTM-LD, nontuberculous mycobacterial lung disease; TB, tuberculosis 

 

 

 

Nodule or mass 49 (61%) 47 (59%) 33 (41%)  16 (80%) 14 (70%) 8 (40%)  23 (58%) 17 (43%) 18 (45%) 

Cavitation 27 (34%) 8 (10%) 3 (4%)  6 (30%) 3 (15%) 1 (5%)  5 (13%) 0 (0%) 1 (3%) 

Consolidation 45 (56%) 31 (39%) 30 (38%)  8 (40%) 7 (35%) 8 (40%)  19 (48%) 15 (38%) 18 (45%) 

Bronchiectasis 6 (8%) 49 (61%) 24 (30%)  5 (25%) 9 (45%) 5 (25%)  5 (13%) 22 (55%) 15 (38%) 

Pleural effusion 11 (14%) 0 (0%) 5 (6%)  1 (5%) 0 (0%) 0 (0%)  11 (28%) 1 (3%) 2 (5%) 

Chest X-ray extent            

 Multifocal 54 (68%) 58 (73%) 33 (41%)  13 (65%) 15 (75%) 8 (40%)  24 (60%) 21 (53%) 18 (45%) 
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Appendix E. The inter-rater correlation coefficient (ICC) score for each rater 

group 

 

 ICC score (95% Confidence interval) 

All doctors 0.244 (0.188 - 0.312) 

Senior physicians 0.244 (0.154 - 0.307) 

Junior physicians 0.244 (0.172 - 0.328) 

DNN 0.799 (0.754 - 0.841) 

Abbreviation: DNN, deep neural network 
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