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Materials and Methods

1. General data

All solvents and chemicals were used as purchased without further purifications.
Chemicals: 5-hydroxymethylfurfural (Sigma-Aldrich, 99 %), Sodium hydroxide
(NaOH, reagent, pellet; VWR Chemicals), Iron(l1l) chloride hexahydrate (reagent
grade, >98%, Sigma-Aldrich), Iron(lll) nitrate nonahydrate (ACS reagent, >98%,
Sigma-Aldrich), Iron(lll) sulfate hydrate (97%, Sigma-Aldrich), Iron(Il) chloride
tetrahydrate (ReagentPlus®, 98%, Sigma-Aldrich), Copper(ll) chloride dihydrate (ACS
reagent, >99.0%, Sigma-Aldrich), Manganese(ll) chloride tetrahydrate (ACS reagent,
>98%, Sigma-Aldrich), 37 wt % HCI (J. T. Baker), 65 wt % HNOs (J. T. Baker), 35
wt % H.0; (J. T. Baker), Cobalt(l1) nitrate hexahydrate (Co(NOz).:6H.0; ACS reagent,
>98%; Sigma-Aldrich), Potassium hydroxide (KOH, reagent, pellet; VWR Chemicals
>85%), 1,6-Diaminohexane (>99% (GC), Sigma-Aldrich), 1-Butanol (99%; Alfa
Aesar), Ethanol (absolute, >99.8%; Sigma-Aldrich), 1-Phenylethanol (98%; Sigma-
Aldrich), 3-Phenyl-1-propylamine (98%; Sigma-Aldrich), Cyclohexanemethylamine
(98%; Sigma-Aldrich), Benzyl alcohol (anhydrous, 99.8%; Sigma-Aldrich),
Benzylamine (ReagentPlus®, 99%; Sigma-Aldrich), Cyclohexanol (ReagentPlus®, 99%;
Sigma-Aldrich), Ethylene glycol (anhydrous, 99.8%; Sigma-Aldrich), Furfural (ACS
reagent, 99%; Sigma-Aldrich), Furfuryl alcohol(98%; Sigma-Aldrich), 1-Propanol
(anhydrous, 99.7%; Sigma-Aldrich), Formic acid (reagent grade, >95%; Sigma-
Aldrich), D-(+)-Glucose (>99.5% (GC); Sigma-Aldrich), Glycerol (ACS reagent,
>99.5%; Sigma-Aldrich), Isopropanol (anhydrous, 99.5%; Sigma-Aldrich), Methanol
(anhydrous, 99.8%; Sigma-Aldrich), Hydrazine hydrate (N2H4 64-65 %, reagent grade,
98%), Sodium borohydride (powder, >98.0%; Sigma-Aldrich), D-Sorbitol (powder,
>98.0%; Sigma-Aldrich), Urea (ACS reagent, 99.0-100.5%; Sigma-Aldrich), and Oil
Red O (Alfa Aesar). Ni foam, Fe foam, Cu foam (Recemat BV, Netherlands), Nickel
plate (99.5%, Alfa Aesar), Perfluorinated membrane made from Nafion™ 117 (Sigma-

Aldrich) and anion-exchange membrane (Fumasep FAB-PK-130, fuel cell store).
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Prior to the synthesis, all the flasks were washed with a solution of aqua regia
(HCI/HNO3z = 3:1 v/v) to remove any traces of metal residue, followed by washing with
water and acetone, and finally dried at 80 °C overnight. Milli-Q water (18.2 MQ) was

used for all the syntheses and catalysis experiments.



2. Characterizations.

--Elemental analysis was carried out at a commercial analysis laboratory
(Mikroanalytisches Laboratorium Kolbe Fraunhofer Institut UMSICHT, Gebaude G-
Osterfelder Str. 3 D-46047 Oberhausen) with an AAnalyst 200 Atomic Absorption
Spectrometer (AAS).

--Scanning electron microscopy (SEM) images were taken with a Hitachi S-5500
microscope. The EDX analyses were performed with an SDD-detector and software
from Thermo Fisher.

--Scanning transmission electron microscope (STEM) images were taken with a HD
2700 ultrahigh-resolution cold field emission scanning microscope at an acceleration
voltage of 200 kV. An EDAX Octane T Ultra W 200mm? SDD with TEAM-Software
was attached to the instrument.

--Transmission electron microscopy (TEM) images of the catalysts were recorded
with a Hitachi HF-2000 microscope at an acceleration voltage of 200 kV.

--X-ray powder diffraction: Powder X-ray diffraction (XRD) patterns were obtained
at Rigaku SmartLab SE diffractometer with 9 kW rotating Cu-Ka radiation.

PUL: The X-ray powder pattern for qualitative phase analysis was collected on a Stoe
STADI P transmission diffractometer using Mo radiation (0.7093 A). The instrument
is equipped with a primary Ge (111) monochromator (MoKa1) and a position sensitive
MythenlK detector. Data was collected in the range between 3 and 70° 26 with a step
width of 0.015° 26. Measuring time per step was 40s. For the measurement, the sample
was prepared between two foils in a transmission sample holder. The measured pattern
was evaluated qualitatively by comparison with entries from the ICCD PDF-2 powder
pattern database.

STO: The X-ray powder patterns for qualitative phase analysis were collected on a Stoe
STADI P transmission diffractometer using Mo radiation (0.7093 A). The instrument

is equipped with a primary Ge (111) monochromator (MoKa1) and a position sensitive



Mythen1K detector. Data were collected in the range between 5 and 70° 26 with a step
width of 0.015° 26. Measuring time per step was 20s. For the measurements, the
samples were prepared in a transmission sample holder. The measured patterns were
evaluated qualitatively by comparison with entries from the ICCD PDF-2 powder
pattern database.

PUL and STO Data are from different goniometers with equal/same parts sharing the
same x-ray tube.

--X-ray photoelectron spectra (XPS): XPS measurements were performed with a
spectrometer from SPECS GmbH equipped with a PHOIBOS 150 1D-DLD
hemispherical energy analyser. The monochromatized Al Ko X-ray source (E=1486.6
eV) was operated at 14 kV and 100W. For the narrow scans, an analyzer pass energy
of 20 eV was applied. The medium area mode was used as lens mode. The base pressure
during the experiment in the analysis chamber was 5x1072° mbar. To account charging
effects, all spectra are referred to C 1s at 284.5 eV.

--Atomic force microscopy (AFM) measurements were carried out on a Bruker
multimode 8 scanning probe microscope.

--XAFS measurements: The X-ray absorption fine structure spectra Fe K-edge were
collected at 44A beamline of National Synchrotron Radiation Research Center
(NSRRC) Taiwan. The data were collected in fluorescence mode using a Lytle detector
while the corresponding reference samples were collected in transmission mode. The
electrode sheet was assembled on the Kapton adhesive tape.

XAFS Analysis and Results: The acquired EXAFS data were processed according to
the standard procedures using the ATHENA module of Demeter software packages.
The EXAFS spectra were obtained by subtracting the post-edge background from the
overall absorption and then normalizing with respect to the edge-jump step.
Subsequently, the y(k) data were Fourier transformed to real (R) space using a hanging
windows (dk=1.0 A™) to separate the EXAFS contributions from different coordination

shells. To obtain the quantitative structural parameters around central atoms, least-



squares fitting was performed using the ARTEMIS module of Demeter software
packages.

The following EXAFS equation was used:

N;S2F:(k —2R;
(k) = Z%}() - exp[—2k?a?%] - exp[/l(k)j] - sin[2kR; + ¢; (k)]
j

the theoretical scattering amplitudes, phase shifts and the photoelectron mean free path
for all paths were calculated. So? is the amplitude reduction factor, Fj(k) is the effective
curved-wave backscattering amplitude, N;j is the number of neighbors in the j™ atomic
shell, R; is the distance between the Xray absorbing central atom and the atoms in the
j" atomic shell (back scatterer), A is the mean free path in A, ¢ j(k) is the phase shift
(including the phase shift for each shell and the total central atom phase shift), oj is the
Debye-Waller parameter of the j™ atomic shell (variation of distances around the
average R;j). The functions Fj(k), A and ¢ j(k) were calculated with the ab initio code
FEFF9. The additional details for EXAFS simulations are given below.

All fits were performed in the R space with a k-weight of 2 while phase correction was
also applied in the first coordination shell to make R value close to the physical
interatomic distance between the absorber and shell scatterer. The coordination
numbers of model samples were fixed as the nominal values, while the So?, the internal
atomic distances R, Debye-Waller factor o2, and the edge-energy shift A were allowed

to run freely.



3. Experimental section

3.1 Electrodes preparation.

NiFe-t electrodes: The nickel foam (NF) was cut into slices (1 cm x 3 cm) and
successively ultrasonicated in hydrochloric acid (3 M), acetone, ethanol and water for
15 min, respectively. Then, the NF was put into a 50 mL beaker containing a mixture
of FeCl3*6H20 (2.5 mmol) and 5% H202 (25 mL) that had been reacted for 5 mins.
After soaking the nickel foam for a given time (t=1, 5 or 10 min), the solution was
decanted and the NF rinsed three times with ultrapure water. The NiFe-t electrode was
then removed from the beaker, put into a plastic petri dish, and dried at 60 °C in an oven
for 24 h.

NiFe-1 (without H202) electrode: NF was cut into slices (1 cm x 3 cm) and
ultrasonicated in hydrochloric acid (3 M), acetone, ethanol and water for 15 min,
respectively. Then, the NF was put into a 50 mL baker containing a mixture of FeClz*
6H20 (2.5 mmol) and 25 mL H»O that had been stirred for 5 mins. After soaking the
nickel foam for 1 min, the solution was decanted, and the NF rinsed three times with
ultrapure water. The NiFe-1 (without H202) electrode was then removed from the
beaker, put into a plastic petri dish, and dried at 60 °C in an oven for 24 h.

NF-H202 electrode was synthesized in the same manner as described for the

preparation of NiFe-1 without the addition of FeClz*6H-0.

3.2 Electrochemical measurements

Taking the electrooxidation of HMF as an example.

The oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and
electrocatalytic oxidation of HMF were conducted using a Gamry Interface 1010 B
electrochemical workstation at room temperature with a three-electrode system in a H-

type cell, which was separated by a Nafion 117 membrane (or the PK-130 membrane).
8



The Fe (H202)-modified NF electrode was directly used as the working electrode (WE),
with typically an approximately 10 mm x 10 mm piece exposed to the electrolyte. This
was used as the 1 cm? standard for normalization of the current to electrode surface
area, being aware that for porous electrodes the true surface area is higher. It was
determined from the double layer capacitance, see below. A coiled Pt wire was used as
the counter electrode (CE), and a Hg/HgO electrode was used as the reference electrode
(RE). An external thermometer in the cathode chamber was used to track the
temperature changes during the reaction. The Hg/HgO electrode (RE-61AP) is
available from ALS Co., Ltd, and 1 M sodium hydroxide is used as an electrolyte
solution; Eo=118 mV vs. RHE (25 °C). All those reactions were performed in 5 mL of
1.0 M KOH electrolyte solution with and without 50 mM HMF (or 100 mM substrates).
The solution in the cathode chamber was stirred at around 250 rpm, in the anode
chamber at 625 rpm. Before the experiments, CV runs were performed at a rate of 100
mV/s from 0-0.7 V vs. Hg/HgO for 20 cycles to obtain a stable electrode. For catalyst
recyclability test, the electrode was rinsed three times with ultrapure water and directly
used for the next run. The potential range was cyclically scanned at a scan rate of 5 mV
s’1. The potentials were converted to the reversible hydrogen electrode potential (RHE)
through the Nernst equation: (Erne) = EHgmgo) + 0.059xpH + 0.118 V). The post-run
iR corrections were applied at 85%. The scan rate for LSV was kept at 5 mV s™*. The
electrochemical surface area (ECSA) was evaluated in terms of the double-layer
capacitance (Cal). The equation for ESCA measurements is: ECSA = Cql/Cs, where Cs
is the specific capacitance, which is assumed to be 0.040 mF/cm? in 1 M KOH solution,
based on values previously reported for metal oxide catalysts. Cqi was calculated as half
of the slope of the plot of capacitive current in a non-faradaic double-layer region
against scan rate. Cyclic voltammetry (CV) was performed in 1.0 M KOH with 50 mM
HMF at different scan rates of 20-100 mV s in a potential window of 1.087 to 1.187
V vs. RHE. Electrochemical impedance spectroscopy (EIS) measurements were
performed in 1.0 M KOH at 1.437 V vs. RHE from 20000 to 0.01 Hz with an amplitude

of 5 mV. The potentials for the Ni?*** oxidation wave were found to be reproducible



within £20 mV, when the reaction was carried out without HMF by altogether six
different operators in three different laboratories with different equipment and
chemicals, which is probably thus the precision of absolute potentials given throughout
the manuscript. Comparative data for differently modified electrodes, however, were

always recorded by the same operator with identical equipment and chemicals.
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3.3 Quantitative Product Analysis

Taking the electrooxidation of HMF as an example, other analyses of the products
and intermediates are shown in the corresponding HPLC or GC traces.

To analyze the products of HMF oxidation quantitatively and calculate the
corresponding Faradaic efficiencies, electrolyte solutions during chronoamperometry
testing were taken from the cell and analyzed by HPLC on a Shimadzu LC-2030
chromatograph equipped with a 100 mm organic acid resin column with 8.0 mm i.d.
and a precolumn (40 mm organic acid resin with 8.0 mm i.d.). As the mobile phase, a
2 mM aqueous solution of trifluoroacetic acid was used with a flow rate of 1 mL min
at a temperature of 40 °C. For detection, a UV detector was used and external one-point
calibration was applied to quantify HMF, HMFCA, DFF, FFCA, furoic acid and FDCA.
The HMF conversion (%) and the yields (%) of FDCA were calculated using equations
(1) and (2):

HMF conversion (%) = [mol (HMF consumed) / mol (HMF initial)] x 100 (1)

FDCA yield (%) = [mol (FDCA formed) / mol (HMF initial)] x 100 (2)

The faradaic efficiency (FE) of FDCA was calculated by equations (3):

Faradaic efficiency (%) = [mol (FDCA formed) / (Charge / (6 x F))] x 100 3
where F is the Faraday constant (96485 C mol™).

11



4. Optimizations of the electrode and the reaction condition

Table S1. Selected examples on the HMF electrochemical oxidation to FDCA in
alkaline condition.

Catalysts Condition E [V vs. RHE] FE Ref.
1M KOH/10 mM HMF 1.32 V/20 mA cm2
99.4% at 1.23 V
NiFe-LDH/CP 1 M KOH/50 mM HMF 1.5 V/~180 mA cm [1]
77.2% at 143V
1M KOH/100 mM HMF 1.5V /~280 mA cm2
NiCoFe-LDHs 1 M NaOH/5 mM HMF 1.51V/20 mA cm2 ~90% at 1.54V [2]
CuxS@NiCo LDHs 1 M KOH/10 mM HMF 1.34 V/20 mA cm™ ~90% at 1.32V [3]
Co—P/CF 1 M KOH/50 mM HMF 1.38 V/20 mA cm2 [4]
NisSo/NF 1 M KOH/10 mM HMF ~1.35 V/10 mA cm? 99% at 1.423 V [5]
NizP NPA/NF 1 M KOH/10 mM HMF ~1.35 /10 mA cm2 99% at 1.423 V [6]
CoO-CoSe, 0.1 M KOH/10 mM HMF ~1.35 V/20 mA cm™? 97.9% at 143V [7]
NiSe@NiOy 1 M KOH/10 mM HMF ~1.35 /20 mA cm 2 99% at 1.423 V [8]
NiCo,04 1 M KOH/5 mM HMF 1.53 V/14.8 mA cm™ 87.5%at 1.5V [9]
CoNW/NF 1M KOH/10 mM HMF 1.311 V/10 mA cm2 98.6% at 1.49 V [10]
~1.23 V/10 mA cm?
CuCo,04 1 M KOH/50 mM HMF 94% at 1.45 V [11]
~1.37 /150 mA cm
NixB 1M KOH/10 mM HMF ~1.40 V/10 mA cm2 99%at 1.45V [12]
hp-Ni 1M KOH/10 mM HMF ~1.35 /10 mA cm™ 98% at 1.423 V [13]
99.4% at 1.52 V
E-CoAl-LDH-NSA 1 M KOH/10 mM HMF ~1.30 V/10 mA cm2 97.47% at 1.57 V [14]
69.63% at 1.62 V
MoO,-FeP@C 1 M KOH/10 mM HMF ~1.405 V/100 mA cm2 97.8% at 1.424V [15]

12




Co30,4 nanowire 1 M KOH/100 mM HMF ~1.65 V/100 mA cm2 98.4% at 1.469 V [16]
NisN@C. 1 M KOH/10 mM HMF ~1.45 /180 mA cm 98% at 1.45 V [17]
Co0-CoSe, 1 M KOH/10 mM HMF ~1.43 V/40 mA cm2 91%at 1.43 V [18]
VN 1 M KOH/10 mM HMF ~1.45 V/120 mA cm2 90% at 1.45 V [19]
(FeCrCoNiCu)304
1 M KOH/50 mM HMF ~1.5 V/55 mA cm2 96.6% at 1.5 V [20]
nanosheets
Pt/Ni(OH), 1 M KOH/50 mM HMF ~1.5 V/30 mA cm2 ~96% at 1.5V [21]
CoFe@NiFe 1M KOH/10 mM HMF ~1.5 /65 mA cm2 ~99.8% at 1.5V [22]
CoFe Prussian Blue
1 M KOH/500 mM HMF ~1.5 V/45 mA cm2 ~84% at 1.42 V [23]
Analogue Films
intermetallic iron
1 M KOH/100 mM HMF ~1.5 V/300 mA cm2 ~94%at 1.5V [24]

silicide (FeSi)

13
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Figure S1. (Left) Digital picture of the cell when it is used for reaction. Temperature
changes v.s. time at the cathode chamber measured by an external thermometer. (right)
The parameters of the designed half H cell.
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Figure S2. (Left) LSV curves for NiFe-1 electrode in comparisons with the H>O>
treated NF and the purified NF in 1 M KOH with and without 50 mM HMF. (Right)
LSV curves for NiFe-1 electrodes in 1 M KOH with and without 100 mM HMF (For
the investigations of the influence of H202 in the NiFe-1 electrode preparations to the
current responses of HMF).
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Figure S3. LSV curves for NiFe electrodes using different Fe** precursors in 1 M KOH
with and without 50 mM HMF.
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Figure S4. LSV curves for NiFe-t (t is the reaction time in the synthesis, min) in 1 M
KOH with and without 50 mM HMF.
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Figure S5. LSV curves for NiFe-1 electrodes in 1 M KOH with and without 100 mM
HMF.

For the investigations of the influence of the oxidation states of Fe to the current
responses of HMF. Fe3* performed better.
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Figure S6. Comparisons to the OER and HMF oxidation in terms of LSV curves for
NiFe-1 electrode with and without iR compensation. Condition: 1M KOH with and
without 100 mM HMF.
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Figure S7. Current density in mA cm™ at 1.478 V (vs. RHE) while varying HMF
concentration. Linear fit shows a first order reaction with respect to HMF concentration.
Reaction condition: 1 M KOH, 0.9 cm? geometrical electrode surface.
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(vs. RHE) while reducing electrode surface area. Linear fit of the current (black line)
shows a first order reaction with respect to the geometrical electrode surface. The
dashed blue line serves as a guide to the eye maintaining approximately constant
surface-normalized currents. Reaction condition: 1 M KOH, 50 mM HMF.
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Figure S9. Digital images of the cathode chamber in NiFe-1 catalyzed HMF electro-
oxidation in a H-cell using either the PK-130 membrane (left) or the Nafion™ 117
membrane (middle), and the HPLC result of the yellow solution at the cathode chamber
using Nafion™ 117 membrane (right).

During the chronoamperometric experiment, the color of the solution at the cathode
chamber changed progressively from colorless to light yellow. This phenomenon
suggests that the use of Nafion™ 117 (although it is a fresh prepared one) led to a
significant crossover of HMF/intermediates/unknown products from the anode to the
cathode chamber under high current density electrolysis of HMF with high
concentration.

After the HMF electrooxidation (HMF concentration 100 mM), we analyzed the light-
yellow solution at the cathode chamber (originally 1 M KOH) by HPLC, but only found
atrace of HMF, intermediates and other unknown products that are below the detection
limit. This result is also consistent with the conclusions generated from the
chronopotentiometry experiments, that membrane is the limitation of the high-
concentration HMF (or other substrates) electrooxidation experiments.
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Figure S10. Comparisons of the performances in NiFe-1 catalyzed HMF electro-
oxidation in a H-cell using either the Nafion™ 117 membrane or the PK-130 membrane.
a) LSV curves, b) Current densities, charges v.s. time curves, d) electrocatalytic
performances. Reaction condition: 1 M KOH and 100 mM HMF.

Experimental observations suggest that the current response and kenetics of HMF
electrolysis over NiFe-1 using PK-130 membrane is only slighly better than that of
using Nafion™ 117 membrane, although the final FDCA yields and FEs are almost the
same.
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5. Extension the synthesis to other non-noble metal modified metal foams and
their performances in HMF electro-oxidation

General:

The unified synthesis strategy led to the successful synthesis of various high-
performance modified metal foams, as we have exemplified in the electrochemical
oxidative upgrading of HMF to FDCA (vide infra). Thus, the synthesis could also be
extended to the use of other non-noble/noble precursors (e.g., Mg), though in specific
cases (e.g., Fe foam) higher thickness foams should be used.

It is also suggested, beyond the Ni, Fe, Cu foams, that other foams (e.g., Co foam, Ti
foam) could be used as the matrix for the synthesis of advanced modified metal foams.
Together with the results obtained in the NiFe-1 catalyzed, highly efficient and selective
oxidative upgrading of various substrates, the scope of the present work can be
substantially extended.

5.1 Synthesis

Except for the changes in the precursors and metals foams, the synthesis of other
modified metal foams followed the steps described for the synthesis of NiFe-1, which
has been given in the experimental section. Those samples were explored for HMF
electrooxidation, and the performances at various charges are shown in 5.2.

Moreover, various characterizations of those samples are conducted, and the results are
shown in 5.3.
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5.2 HMF electro-oxidation over modified metal foams

5.2.1 HMF electro-oxidation over modified Ni foams

Ni foam
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Figure S11. HMF electro-oxidation over Ni foam. a) LSV curves, b) Current densities,
charges v.s. time curves, c) electrocatalytic performances after passing the charge of
145 C, and d) the percentages of the products and intermediates of the final sample.
Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S12. HMF electro-oxidation over Ni foam-Co. a) LSV curves, b) Current
densities, charges v.s. time curves, c) electrocatalytic performances after passing the
charge of 164.2 C, and d) the percentages of the products and intermediates of the final
sample. Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S13. HMF electro-oxidation over Ni foam-Fe?*. a) LSV curves, b) Current
densities, charges v.s. time curves, c) electrocatalytic performances after passing the
charge of 300 C, and d) the percentages of the products and intermediates of the final
sample. Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S14. HMF electro-oxidation over Ni foam-Cu. a) LSV curves, b) Current
densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode
chamber measured by an external thermometer, d) electrocatalytic performances after
passing the charge of 288.6 C, and e) the percentages of the products and intermediates
of the final sample. Reaction condition: 1 M KOH and 100 mM HMF.

28



Ni foam-Mn

500
PN 400 o | e yyithout HMF (a)
g
2
300 -
g
£
>
£ 200-
L]
]
Z
H] 100
o
01 T T T
12 1.3 14 15
Potential (V vs. RHE)
c)
( Performance
104
102
100
98
96
94
92
90
88
86
carbon balance Con. (%)

%)

1.6

Current density (mAIcmz)

FDCA yield (%) faradaic efficiency

(%)

400 300
-200
-
@)
=
=
100 =
=
&)
40
-100 T T
[] 2000 4000 6000
Time (s)
furoic acid HMF

o,

(d)

FFCA
2%

FDCA
97%

Figure S15. HMF electro-oxidation over Ni foam-Mn. a) LSV curves, b) Current
densities, charges v.s. time curves, c) electrocatalytic performances after passing the
charge of 263 C, and d) the percentages of the products and intermediates of the final
sample. Reaction condition: 1 M KOH and 100 mM HMF.
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5.2.2 HMF electro-oxidation over modified Fe foams

Fe foam Co
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Figure S16. HMF electro-oxidation over Fe foam-Co. a) LSV curves, b) Current
densities, charges v.s. time curves, c) electrocatalytic performances after passing the
charge of 239 C, and d) the percentages of the products and intermediates of the final
sample. Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S17. HMF electro-oxidation over Fe foam-Ni. a) LSV curves, b) Current
densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode
chamber measured by an external thermometer, d) electrocatalytic performances after
passing the charge of 293.1 C, and e) the percentages of the products and intermediates
of the final sample. Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S18. Digital figures of the Fe-foam-Cu.

After the synthesis and drying, we took out the sample from the oven. The sample
seemed to be good, however, it is very fragile when it was cut for measurements. Thus,
the experiments with this sample failed. However, experience and experiments with
other modified Fe metal foams suggest that good performance of Fe-foam-Cu could be
expected, if Fe-foam with higher thickness would be used.
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5.2.3 HMF electro-oxidation over modified Cu foams
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Figure S19. Overview on the HMF electro-oxidation over Cu foam based
electrocatalysts: LSV curves. Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S20. HMF electro-oxidation over Cu foam. a) LSV curves, b) Current densities,
charges v.s. time curves, c) electrocatalytic performances after passing the charge of
243 C, and e) the percentages of the products and intermediates of the final sample.
Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S21. HMF electro-oxidation over Cu foam-Co. a) LSV curves, b) Current
densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode
chamber measured by an external thermometer, d) electrocatalytic performances after
passing the charge of 243.2 C, and e) the percentages of the products and intermediates
of the final sample. Reaction condition: 1 M KOH and 100 mM HMF.
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densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode
chamber measured by an external thermometer, d) electrocatalytic performances after
passing the charge of 243.2 C, and e) the percentages of the products and intermediates
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Figure S23. HMF electro-oxidation over Cu foam-Fe. a) LSV curves, b) Current
densities, charges v.s. time curves, c) electrocatalytic performances after passing the
charge of 246.8 C, and e) the percentages of the products and intermediates of the final
sample. Reaction condition: 1 M KOH and 100 mM HMF.
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5.3 Structural characterizations of the modified metal foams

Fe foam-Ni

Figure S24. SEM images of Fe foam-Ni electrode at different magnifications.
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Figure S25. Structural characterizations of Fe foam-Ni electrode at the 24 place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Fe foam-Co

Figure S26. SEM images of Fe foam-Co electrode at different magnifications.
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Figure S27. Structural

characterizations of Fe foam-Co electrode at the 07 place,

including low-magnification SEM images, the corresponding elemental mappings, and

point and shoot analyses.
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Ni foam-Mn

Figure S28. SEM images of Ni foam-Mn electrode at different magnifications.

42
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Figure S29. Structural characterizations of Fe foam-Co electrode, including

magnification SEM images, and the corresponding EDX analyses.
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Ni foam-Co

Figure S30. SEM images of Ni foam-Co electrode at different magnifications.
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Figure S31. Structural characterizations of Ni foam-Co electrode,

magnification SEM images, and the corresponding EDX analyses.
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Ni foam-FeZ*

Figure S32. SEM images of Ni foam-Fe?* electrode at different magnifications.
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Figure S33. Structural characterizations of Ni foam-Fe?* electrode, including low-
magnification SEM images, and the corresponding EDX analyses.
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Cu foam-Fe3*

Figure S34. SEM images of Cu foam-Fe3* electrode at different magnifications.
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Figure S35. Structural characterizations of Cu foam-Fe®* electrode, including low-
magnification SEM images, and the corresponding EDX analyses.
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Figure S36. Structural characterizations of Cu foam-Fe®* electrode at the 11 place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Cu foam-Ni

Figure S37. SEM images of Cu foam-Ni electrode at different magnifications.

51



Spektrum 1
Element

]
§.

Massen % Sigma Atom %

2

Slo|u(8

WADWAD84070001 2021003126 NLM %50 2mm
Cu-foam + Ni 15kV mixed Chg-up

BHHERR
EEEEEE

Blolo!

eeeee

WADWA084070004 202103126 NLM
Cu-foam + Ni 15KV mixed Chg-up

g[7[2[2[2["

Figure S38. Structural characterizations of Cu foam-Ni electrode, including low-
magnification SEM images, and the corresponding EDX analyses.
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Figure S39. Structural characterizations of Cu foam-Ni electrode at the 11 place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Cu foam-Co

Figure S40. SEM images of Cu foam-Co electrode at different magnifications.
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Figure S41. Structural characterizations of Cu foam-Co electrode, including low-
magnification SEM images, EDX and the corresponding elemental mappings.



Figure S42. SEM images of Ni foam-Cu electrode at different magnifications.
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Figure S43. Structural characterizations of Ni foam-Cu electrode, including low-
magnification SEM images, and EDX.

57



6. Electrochemical characterizations of various electrodes
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Figure S44. CV curves of NiFe-1 electrode with 100 mM HMF at different scan rates

(left), and charging current differences (Aj = janode - jeathode) plotted against scan rates
(right).
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Figure S45. CV curves of Nickel foam electrode with 100 mM HMF at different scan
rates (left), and charging current differences (Aj = janode - jeathode) plotted against scan
rates (right).
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Figure S46. CV curves of Nickel foam-H20> electrode with 100 mM HMF at different

scan rates (left), and charging current differences (Aj = janode - jeathode) plotted against
scan rates (right).
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Figure S48. LSV curves in the presence of 100 mM HMF over different electrodes
after normalized by ECSA.
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Figure S49. Nyquist plots over NiFe-1 electrode in comparisons with the H>O, treated
NF and the purified NF in the presence of 50 mM HMF at 1.437 V (vs. RHE).
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Figure S50. LSV curves of the HER over NiFe-1 electrode in 1 M KOH with and
without 50 mM HMF.
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Figure S51. Chronopotentiometry curves of NiFe-1 electrode collected at -10 mA/cm?
in 1 M KOH with 50 mM HMF (left), and the contaminated reference electrode and
membrane after the first chronopotentiometry experiment (right).

When conducting the initial chronopotentiometry experiment, we observed that the
required potential at -10 mA/cm? continuously decreased. The bad performance was
thus tentatively ascribed to the poor electrode stability. However, when the H-cell was
washed, the membrane was found to be contaminated/damanaged, possibly due to the
crossover between the membrane and HMF or/and the degradation products (Figure
S9). Also the reference electrode and the working electrode were contaminated.
Therefore, the electrodes were simply washed using ultra-pure water, the membrane
and the electrolytes were changed, and the experiments was repeated. The required
potential at -10 mA/cm? still continuously decreased, but the initinal potential for -10
mA/cm? was identical in subsequent runs, proving the high stability of the electrode.
When comparing electrochemcial peroformances for HMF oxidation in an H-cell using
either the Nafion™ 117 membrane or the PK-130 membrane, the same phenomena
were observed (vide infra). Contaminated membranes may thus be the limitation for
high-concentration HMF electrooxidation experiments, and this might also be true for
other substrates.
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7. Characterizations of the NiFe-1 electrode before and after HMF electro-
oxidation reactions

30.0KV X2 50k SE 10/1 03 ' " 20.0um JJll WADWAGG701 300KV x25.0k SE 10/14/2020 10:02

Figure S52. SEM images of fresh NiFe-1 electrode at different magnifications.
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Figure S53. Structural characterizations of fresh NiFe-1 electrode at the 02(2c) place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Figure S54. Structural characterizations of fresh NiFe-1 electrode at the 02(3c) place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Figure S55. Structural characterizations of fresh NiFe-1 electrode at the 02(4c) place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Figure S56. Structural characterizations of fresh NiFe-1 electrode at the 02(6c) place,
including low-magnification SEM images, the corresponding elemental mappings, and
point and shoot analyses.
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Figure S57. Electron microscope images of the fresh NiFe-1 after sonication the Fe
modified NF in water: a) secondary electron image, b-d) transmission electron images
including the HRTEM images, c) and d).
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Figure S58. AFM height profile of the fresh NiFe-1 after sonication the Fe modified
NF in water.
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Figure S59. HAADF-STEM images of the fresh NiFe-1 sample after sonication the Fe
modified NF in water, the corresponding elemental mappings, and EDX analyses.
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Figure S60. HAADF-STEM images of the fresh NiFe-1 after sonication the Fe
modified NF in water, the corresponding elemental mappings, and EDX analyses.
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Figure S61. XPS analysis of the fresh NiFe-1 electrode, including the survey, Fe 2p,
Ni 2p and O 1s spectra.
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Figure S62. The XRD of fresh NiFe-1 electrode.

It showed the position shift as compared to the pure nickel plate, which led us to conduct
the grazing angle experiments, as shown in the main text.
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Figure S63. The XRD patterns of fresh NiFe-1 electrode in comparisons with the H20>
treated NF and the purified NF.

Conventional XRD, recorded in grazing incidence to increase the surface contribution
to the diffraction patterns, only revealed reflections of nickel (both on a flat sheet and
on the foam), with a slight asymmetry/shift, which could indicate some iron
incorporation (Figs. S62, S63). However, no indication of any other phase than that of
the metal was obtained.
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Figure S64. (a) Radial distance y(R) space spectra (reference samples: Fe foil, Fe2Os,
and NiFe layered double hydroxide (NiFe-LDH)). (c) x(R) space spectra fitting curve
and (d) k?y(k) space spectra fitting curve of NiFe-1.
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Figure S65. a)-d) 3D contour Wavelet transform extended X-ray absorption fine
structure (WT-EXAFS) map with 2D projection of Fe foil, Fe.Os, pristine NiFe-LDH,
and NiFe-1, respectively.
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Table S2. EXAFS fitting results for the local structure parameters around Fe of NiFe-

1.
Reduced R AEp
Chi- factor amp/ N R (Fe-0 path) Gz(Fe-O path) | (eV)
square . So? (Fe-O path) (A) (10342
e (w
()

Fe 1.11+/- 2.035 + 2.81+
NiFe 0.12 4 0003 | S8 087
-1 amp/ Nico.oni R(Fe-o-Ni o%FeoNi | AEo
605.16 | 0.0427 | " (Fe-0-Ni path) path) (eV)

0 path) (A) (10-3/&2)
0.87+/- 3.089+ 1.71+
o+/-2.
0.13 6 0005 | >822 | 057

R = distance between absorber and backscattering atoms.
N = coordination number.

0% = Debye-Waller factor.
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Figure S66. SEM images of the NiFe-1 electrode after the HMF electro-oxidation
recycling tests at different magnifications.
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M Liniensummenspektrum

Liniensummenspektrym | | | [ |

| Element | Linientyp Massen % Massen % Sigma Atom %

[re K-Serie 007 0.07 007
Nk K-Serie 99.93 0.07 99.93
Gesamt | 100.00 100.00

Figure S67. SEM analysis of the NiFe-1 electrode after the HMF electro-oxidation
recycling tests, including the EDS mappings, line scan analysis and EDX.
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Figure S68. XPS analysis of the NiFe-1 electrode after the HMF electro-oxidation
recycling tests, including the survey, Fe 2p, Ni 2p and O 1s spectra.
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8. NiFe-1 catalyzed anodic oxidation of organic/inorganic substrates
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Figure S69. (left) Temperature changes in the cathode chamber measured by an
external thermometer during the HMF electro-oxidation. (right) degradation of HMF.
Reaction condition: 1 M KOH and 100 mM HMF.
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Figure S70. a) LSV curve of NiFe-1 catalyzed benzyl alcohol electro-oxidation in a H-
cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM benzyl alcohol.
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Figure S71. a) LSV curve of NiFe-1 catalyzed furfural electro-oxidation in a H-cell, b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM furfural.
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Figure S72. a) LSV curve of NiFe-1 catalyzed furfural alcohol electro-oxidation in a
H-cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM furfural alcohol.
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Figure S73. a) LSV curve of NiFe-1 catalyzed glycerol electro-oxidation in a H-cell,
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM glycerol.
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Figure S74. a) LSV curve of NiFe-1 catalyzed ethanol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM ethanol.
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Figure S75. a) LSV curve of NiFe-1 catalyzed ethylene glycol electro-oxidation in a
H-cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM ethylene glycol.

90



(o Acid Resin, 8.0 mm LD Saule 2
Acid Resin, 8.0 mm L.D.. Sule 4

700 s 100 m M m ethanol
600 (a)
] %}
S
2 500 J\
= H” ol
 u (d)
2 300 ‘
£
<
= 200 ]
£
Z 100 N
© OH
0
100 - - - . . - - H
12 13 14 15 1.6
©-+ential (V vs. RHE) |
1000 254
200 |
i = (€) .
3 o e LA
8 € Tw 001 Ve
z wy g .
% o - 00 25 o 150
H 3 Eu o
= v £
z £
£ 200 &
H " 20 res % Cone. Unt Nam.
A 308 000 ormL Anior
028 0.00
412 374 arm Amesensa:
T 5 5 PR P o 0 0 S 100 150 200 2% T 0 — Metnad
Time (s) Reaction time (s)

Figure S76. a) LSV curve of NiFe-1 catalyzed methanol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM methanol.

91



i 300 mm Polyspher OAHY, 6.5 mm i.D. mit Vorsaule
8] 0.1% TFA
~ a 0.8 mmin, 12.0 MPa, 308 K
L 700 | RI. UV 220 nm
= =100 m M ghicose o
2 600 uRIU pe
S
é 500 H OH ol
P (d)
g 400
= 304
-8 300 4
s - 0 20
E 104 0-) OH
8 ’\/ﬁ’ ol
0 = ol
1 ~i
100 - ool -
12 13 14 15 16 A I
PO ypL A -
Potential (V vs. RHE) o [ VT
100 !
4 T T T T T T
. » (c) 00 25 50 75 10.0 125 150 1
B Y e L e 1Detector A Channel 1/
2 ™ P & g .- Detector A Channel 1
£ 600 ® - Peak # Ret. Time Area % Conc Units Name
£ s E s 1 378 577 0.00
s H 2 gl 137 0.00
2 0] 3 » 3 5.16 572 054 mg/mL Glucose
3 ol g5 4 553 721 0.00
. & 5 6.06 243 0.00
3w 20 6 6.32 456 0.00
100 % 7 656 323 0.00
o 8 m 974 0.00
. . oL, . . ; . 9 732 12.82 0.00
100 0 100 200 300 400 500 600 0 100 200 300 400 10 7.98 44.00 1184 mg/mL Formic acid
— 11 867 315 0
Reaction time (5) Total 100.00

Figure S77. a) LSV curve of NiFe-1 catalyzed glucose electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM glucose.
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Figure S78. a) LSV curve of NiFe-1 catalyzed 1-propanol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM 1-propanol.
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Figure S79. a) LSV curve of NiFe-1 catalyzed 2-propanol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM 2-propanol.
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Figure S80. a) LSV curve of NiFe-1 catalyzed 1-butanol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM 1-butanol.
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Figure S81. a) LSV curve of NiFe-1 catalyzed benzyl amine electro-oxidation in a H-
cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) GC chromatogram of
the final sample (electrolyte solution was extracted with ethyl acetate, and using
dodecane as internal standard). Reaction condition: 1 M KOH and 100 mM benzyl
amine.

96



electro-oxidation = e\ ' Oil Red O

s

s

Benzyl amine + 1 M KOH

Figure S82. Digital figures of NiFe-1 catalyzed benzyl amine electro-oxidation and the
color change upon the addition of Oil Red O.

Typically, most of the amines have good water solubility. However, benzyl amine in 1M
KOH aqueous solution cannot be completely dissolved. Electrooxidation of this
substrate was explored nevertheless, due to the low oxidation potential compared to
OER. Also the benzyl amine is efficiently converted into the corresponding nitrile at
high current density within a very short time. The benzonitrile is oily, floats on the
surface of the electrolyte, and changes into pink-red color upon the addition of Oil Red
O (an oil-soluble dye). Those observations demonstrate that electrochemical oxidative
upgrading of amines to corresponding nitriles can be highly favorable, and the
products can be efficiently isolated by solvent extraction (here ethyl acetate was used),
or water-oil separation membrane, showing the high promise in large-scale industrial
productions of nitrile products.
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Figure S83. a) LSV curve of NiFe-1 catalyzed 1,6-Diaminohexan electro-oxidation in
a H-cell, b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time
in the cathode chamber measured by an external thermometer, and d) GC
chromatogram of the final sample (electrolyte solution was extracted with ethyl acetate,
and using dodecane as internal standard). Reaction condition: 1 M KOH and 100 mM
1,6-Diaminohexan.
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Figure S84. a) LSV curve of NiFe-1 catalyzed 3-phenylpropan-1-amine electro-
oxidation in a H-cell (blue line is without compensation, while red line is with 85% iR
compensation), b) Current densities, charges v.s. time curves, ¢) Temperature changes
v.s. time in the cathode chamber measured by an external thermometer, and d) GC
chromatogram of the final sample (electrolyte solution was extracted with ethyl acetate,
and using dodecane as internal standard). Reaction condition: 1 M KOH and 100 mM
3-phenylpropan-1-amine.
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Figure S85. Digital figures of NiFe-1 catalyzed 3-phenylpropan-1-amine electro-
oxidation and the color change upon the addition of Oil Red O.
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Figure S86. a) LSV curve of NiFe-1 catalyzed cyclohexanemethylamine electro-
oxidation in a H-cell (blue line is without compensation, while red line is with 85% iR
compensation), b) Current densities, charges v.s. time curves, ¢) Temperature changes
v.s. time in the cathode chamber measured by an external thermometer, and d) GC
chromatogram of the final sample (electrolyte solution was extracted with ethyl acetate,
and using dodecane as internal standard). Reaction condition: 1 M KOH and 100 mM
cyclohexanemethylamine.
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Figure S87. Digital figures of NiFe-1 catalyzed cyclohexanemethylamine electro-
oxidation and the color change upon the addition of Oil Red O.
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Figure S88. a) LSV curve of NiFe-1 catalyzed 1-phenylethanol electro-oxidation in a
H-cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) GC chromatogram of
the final sample (electrolyte solution was extracted with ethyl acetate, and using
dodecane as internal standard). Reaction condition: 1 M KOH and 100 mM 1-
phenylethanol.
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(d)

Figure S89. a) LSV curve of NiFe-1 catalyzed cyclohexanol electro-oxidation in a H-
cell (blue line is without compensation, while red line is with 85% iR compensation),
b) Current densities, charges v.s. time curves, ¢) conversion and concentration changes
of cyclohexanol and its oxidation products during the electrochemical oxidation of
cyclohexanol, and d) HPLC chromatogram of the final sample. Reaction condition: 1
M KOH and 100 mM cyclohexanol.

KA oil (a mixture of cyclohexanol and cyclohexanone), which can be produced from
lignin-derived phenols or aromatic ethers via reductive routes, are used as high-volume
industrial feed- stock for the manufacture of adipic acid and as essential industrial
precursors in the pesticide, pharmaceutical, and food industries. KA oil contains
C(OH)-C and C(0O)-C bonds, and can be upgraded to adipic acid by electrochemical
oxidative transformations over NiFe-1. HPLC results showed that cyclohexanol was
progressively converted to adipate via cyclohexanone as the intermediate with the 100%
conversion of cyclohexanol, 77.4% vyield of adipic acid and negligible traces of
cyclohexanone after passing a charge of 430 C. This reaction involves the first electro-
oxidation of cyclohexanol to cyclohexanone, which accumulates to the maximum
concentration and thereafter is converted to adipic acid by electrochemical oxidative
cleavage of either C(OH)-C or C(O)-C bonds.

In industry, the manufacture of adipic acid relies almost exclusively on the oxidation of
cyclohexanol or the KA oil with nitric acid as the oxidant in the presence of copper and
vanadium catalysts, producing greenhouse gas nitrous oxides, which raises the cost,
requires additional safety precautions, and is associated with environmental problems.
Under the conditions explored here, electrochemical transformations of lignin-derived
cyclohexanol to adipic acid is conducted under mild and environmentally benign
conditions. Thus, the strategy —electrochemical oxidative cleavage C(OH)-C and
C(0)-C bonds over NiFe-1 electrode —offers a sustainable pathway for the large-scale,
highly efficient and selective production of adipic acid, an industrial important
intermediate to produce nylon 6,6 (polyester, plastic, etc.), which is also widely used in
the food industry and in cosmetics, from renewable biomass substrates.
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Figure S90. a) LSV curve of NiFe-1 catalyzed sorbitol electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer, and d) HPLC chromatogram
of the final sample. Reaction condition: 1 M KOH and 100 mM sorbitol.

High current density and potential shift was observed upon the addition of the sorbitol,
compared to those of the OER. In addition, the solution color changed from colorless
to light yellow and finally to dark yellow. However, the HPLC of the final sample (taken
at the 263.5 C) showed a high amount of an unknown product at retention time of 12.41
min. This peak with other glucose and fructose products may suggest the production of
either oxidation products or C-C cleavage products, which could not be identified at
this point.
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Figure S91. a) LSV curve of NiFe-1 catalyzed urea electro-oxidation in a H-cell (blue
line is without compensation, while red line is with 85% iR compensation), b) Current
densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode
chamber measured by an external thermometer. Reaction condition: 1 M KOH and 100
mM urea.
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Figure S92. a) LSV curve of NiFe-1 catalyzed N2H4 electro-oxidation in a H-cell (blue

line is without compensation, while red line is with 85% iR compensation), b) Current

densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the cathode

chamber measured by an external thermometer. Reaction condition: 1 M KOH and 100

mM N2Ha.
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Figure S93. a) LSV curve of NiFe-1 catalyzed NaBH4 electro-oxidation in a H-cell
(blue line is without compensation, while red line is with 85% iR compensation), b)
Current densities, charges v.s. time curves, ¢) Temperature changes v.s. time in the
cathode chamber measured by an external thermometer. Reaction condition: 1 M KOH
and 100 mM NaBHa.
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