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Structure of supplementary material

This supplementary material provides the technical details of retrieving our surface groups
measure as a proxy for economic activity. It presents all procedures and analyses referred
to in the paper and the underlying data.

In Section S1, we describe the procedure we develop for retrieving the surface groups
measure from daytime satellite imagery and conduct the internal validity analysis. In
Section S2, we perform several analyses to demonstrate the value of surface groups as a
proxy for economic activity. In Section S3, we present our application of surface groups
to the causal analysis comparing the effect of higher education institutions on regional
innovation in East and West German regions.
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S1 Computation of surface groups

S1.1 Overview

This section describes our procedure for detecting surface groups as a novel proxy for
economic activity at detailed regional levels. In developing this procedure, we follow the
remote-sensing literature, which has successfully applied machine-learning techniques to
identifying, for example, built-up land cover from subsets of Landsat data (e.g., 1, 2).
Our procedure adds to this literature by combining data from four Landsat satellites to
produce a time series of data on different types of land cover starting in 1984. To produce
these data, we use GEE as a platform and apply supervised machine-learning techniques
with the objective of classifying the annual type of land cover of every Landsat pixel
location in Germany. We proceed in four steps that Fig. S1 illustrates.

First, we prepare the Landsat data to retrieve the input data for the classification algo-
rithm. We combine the data of four Landsat satellites (Landsat-4, Landsat-5, Landsat-7,
and Landsat-8) to produce composite data containing the qualitatively best observation
per pixel location and year.1 As we choose those observations that best differentiate
between vegetated and unvegetated areas for this composite, we refer to it as “greenest”
pixel composite. This greenest pixel composite constitutes the input data that we pass
on to the classification algorithm.

Second, to be able to classify the observations in the greenest pixel composite, we add
CORINE Land Cover (CLC)2 data as an external source of ground-truth information.
These data, which come from a pan-European project commissioned by the European
Environment Agency (EEA),3 map land cover in European countries for five reference
years (1990, 2000, 2006, 2012, 2018). Based on a survey of the literature that applies land
cover classifications (e.g., 6, 7), we obtain from the CLC data the six different types of
land cover that we refer to as surface groups : built-up surfaces (builtup), grassy surfaces
(grass), surfaces with crop fields (crops), forest-covered surfaces (forest), surfaces without
vegetation (noveg), and water surfaces (water). The classification algorithm requires this
ground-truth information on surface groups to be able to recognize patterns in the input
data and link these patterns to the different surface groups. For example, the spectral
values of an input pixel showing a grassy surface differ from those of an input pixel
showing a built-up surface. The CLC data provide the classification algorithm with
the true surface group for a subset of the input pixels. By using external ground-truth
data, we overcome the resource-intensive necessity of visually interpreting (i.e., manually
classifying) input pixels to retrieve ground-truth information.

Third, we produce the training data for the classification algorithm. To obtain these
training data, we draw a stratified random sample of pixels from the greenest pixel
composite and match the CLC ground-truth information on surface groups to the pixels
in this sample. We then use the training data to train the classification algorithm, which
is a Random Forest (RF) algorithm with ten decision trees. After training the algorithm,
it classifies every observation in the greenest pixel composite into one of the six surface
groups.

Fourth, the classification result is the output data that contain the surface group of
every Landsat pixel location annually from 1984 through 2020. To assess the accuracy of

1We use the Landsat Collections distributed by the U.S. Geological Survey (3) and directly accessible
through GEE.

2The acronym “CORINE” stands for “coordination of information on the environment” (4).
3The CLC data are distributed by the EEA (5) and directly accessible through GEE.
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the classification (i.e., the internal validity), we perform five-fold cross-validation.

S1.2 Greenest pixel composite of Landsat data as input data

Satellite data from the Landsat program serve as input data for the machine-learning
procedure for detecting surface groups. Since 1972, Landsat satellites have continuously
recorded remotely sensed imagery of the earth, providing a unique basis for various appli-
cations in mapping and monitoring land cover (8, 9). Throughout the history of Landsat,
the various operating agencies have launched eight satellites, one of which (Landsat-6)
failed to reach orbit (10, 11). As of 2022, Landsat-7, Landsat-8, and Landsat-9 remain
active, with Landsat-9 having launched only in September 2021 (12, 13).4

We gather the input data for our algorithm to detect surface groups from the spectral
information that Landsat satellites capture. Every Landsat satellite carries sensors that
remotely measure the spectral reflectance of the earth’s surface (16). The improving
technical specifications of these sensors from one satellite generation to the next entail
an increase in the number of spectral bands that each satellite captures (17). Table S1
provides the technical specifications of the different sensors that Landsat satellites carry,
including their spectral resolution, years of operation, and wavelengths of the spectral
bands that the sensors capture.

We use information in the six spectral bands that the sensors on Landsat-4, Landsat-
5, Landsat-7, and Landsat-8 have in common (highlighted gray in table S1). These bands
contain the surface reflectance in the visible blue (BLUE), visible green (GREEN), visible
red (RED), short-wave infrared (SWIR1 and SWIR2), and near-infrared (NIR) ranges
of the electromagnetic spectrum. Consequently, we begin our observation period with
the 1982 launch of Landsat-4. However, due to a series of technical failures throughout
the lifetime of Landsat-4 (18) and the resulting scarcity of Landsat-4 imagery for Ger-
many, the effective start of our observation period is 1984 (although we include Landsat-4
imagery in later years whenever available).

We exclude imagery from the pre-Landsat-4 period and information in the thermal
infrared spectral bands for the following reasons. We exclude pre-Landsat-4 satellites be-
cause they differ substantially from their successors in captured wavelength and in spatial
resolution (19). Therefore, when combining all sensors, we cannot achieve a consistent
pixel classification, which is a prerequisite for a valid economic measure. Moreover, due to
technological and organizational constraints at the time, imagery in the Landsat archives
is scarce for Germany until the 1980s (11). This scarcity of imagery makes the detection
of surface groups unfeasible for the pre-Landsat-4 period, regardless of the sensors the
satellites carried. Furthermore, we do not use the thermal infrared spectral bands because
their technical specifications change over time and differ from the remaining bands (e.g.,
coarser spatial resolution, different numbers of bands, see table S1). In addition, the
bands’ specifications notwithstanding, temperatures in Germany vary over the seasons so
that thermal information would be of little help for detecting surface groups.

As with the night light intensity data that economists commonly use (20), we compute
the surface groups annually. As Landsat satellites record a geographic location on earth
multiple times per year (11), we have to use annual composites of these records. Unfor-
tunately, pre-processed annual composites incorporating imagery from multiple Landsat

4The remote-sensing literature and related disciplines have applied Landsat data for numerous purposes,
for example, the assessment of water conditions in the Bahamas (14) and the investigation of tree species
diversity in the Alps (15).
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satellites do not exist, requiring us to produce such composites from the available images
and use these composites as input data for our algorithm.

We produce pixel-based annual composites of Landsat images. Among all available
observations of a given pixel within a year, we choose the one pixel that best serves
the purpose of detecting surface groups. This pixel-based compositing procedure (as
compared to scene-based compositing) prevents a loss of information due to, for example,
cloud-covered pixels and enables the researcher to choose those pixels best suitable for a
specific application—in our case, the detection of surface groups (21). Given the long time
span that we analyze, the production of annual composites also entails less computational
effort than other approaches such as data stacking (22).

For both the compositing and the actual pixel classification (see section S1.4), we
follow studies from the remote-sensing literature (e.g., 1, 23) and add three indices to the
data: First, the Normalized Difference Vegetation Index (NDVI) differentiates vegetated
from unvegetated surfaces and is one of the most frequently used indices in the remote-
sensing literature (24, 25); Second, the Normalized Difference Water Index (NDWI) differ-
entiates open water from other surfaces (26);5 Third, the Normalized Difference Built-up
Index (NDBI) differentiates built-up surfaces from other surfaces (28). Similar to prior
work (1), we compute these three indices for Landsat data as follows:

NDV Ip =
NIRp −REDp

NIRp +REDp

(S1)

NDWIp =
GREENp −NIRp

GREENp +NIRp

(S2)

NDBIp =
SWIR1p −NIRp

SWIR1p +NIRp

(S3)

with p denoting pixels as the unit of observation.
For the compositing of Landsat images, we proceed in three steps. First, we collect

all images available within a given calendar year for Germany, our study region. We
restrict the pool of images to those taken between March and November, that is, we
exclude the meteorological winter months in the northern hemisphere. We do so because
the potential snow cover and the absence of large parts of the vegetation during winter
might confuse the machine-learning algorithm. Second, we drop pixels showing clouds
or cloud shadow and pixels with implausible values in one of the spectral bands. Clouds
obscure the actual surface we want to observe, and cloud shadow distorts a pixel’s actual
reflectance, whereas a pixel with clear vision does not (e.g., 29). Implausible values, such
as a negative reflectance in one of the spectral bands, might result from erroneous data
transmission. Third, among the remaining pixels we choose the best one available. In
so doing, we emphasize the distinction of built-up land from other surfaces, because—as
with the logic underlying the use of night light intensity as a proxy for gross domestic
product (GDP)—we expect economic activity to concentrate in urban or industrial areas.
Therefore, a clear distinction between built-up surfaces and other surfaces will improve
our proxy for economic activity.

Our procedure of compositing Landsat data provides us with a greenest pixel com-
posite that we can use as input data for the machine-learning algorithm. This composite

5Another index exists under the name “NDWI”, which was developed to identify liquid water inside
plants (27). This other NDWI relies on different spectral bands than the NDWI we use.
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covers the geographical area of Germany and consists of one observation per pixel for
every year since 1984. The variables in the dataset are the pixel’s values in the six spec-
tral bands we use in this paper (see table S1) and the added indices NDVI, NDWI, and
NDBI. If the compositing procedure cannot identify a valid observation for a pixel lo-
cation within a calendar year (e.g., if all available pixels show clouds), the data contain
missing values. Fig. 1 A in the paper visualizes the greenest pixel composite with the
visible spectral bands BLUE, GREEN, and RED for 2018.

S1.3 CLC data as ground-truth data

To retrieve ground-truth information for a subset of the greenest pixel composite, we use
CLC data. The European Commission began the CORINE program that produces these
data in 1985, with the goal of creating a standardized database on land cover to support
policymakers in environmental affairs (4, 30). Since then, five phases of the program
have produced CLC databases for the five reference years 1990, 2000, 2006, 2012, and
2018 (hereafter denoted as CLC1990, CLC2000, CLC2006, CLC2012, and CLC2018)
(31). Each database includes a map for the respective year with a pixel resolution of 100
meters, indicating land cover in a variety of classes (31, 32).

Although the medium underlying the classification changed over the years from hard-
copies to computer-assisted technologies, classification still relies mainly on visual inter-
pretation of satellite imagery by professional experts (31, 32). This imagery stems from
various satellites, including Landsat satellites for CLC1990, CLC2000, and CLC2018 (31).
The remote-sensing literature provides successful combinations of CLC and Landsat data
in geospatial analyses (e.g., 33, 34).

To train our machine-learning algorithm, we exploit the CLC data as a source of
ground-truth information for three reasons. First, the earliest of the CLC data’s five
reference years (1990) still falls within the operating time of Landsat-4 (1982–1993), the
oldest Landsat satellite we use in our computations (see section S1.2). This time overlap
improves the prediction of surface groups by providing a better temporal fit of ground-
truth data and input data. Second, although with 100 meters the spatial resolution of
CLC pixels is lower than that of Landsat pixels, CLC pixels still have a much higher
resolution than other external ground-truth data used in the remote-sensing literature
(e.g., night light intensity data with a resolution of one kilometer in 35). This high
resolution improves the prediction of surface groups by providing a better spatial fit of
ground-truth data and input data. Third, the CLC data provide a detailed classification
of surfaces, allowing us to distinguish between various types of surfaces, such as built-up
land, forests, or water. In sum, the CLC data constitute an excellent external source of
ground-truth information for the purpose of detecting surface groups.

The CLC classification consists of five larger groups (level 1), which are further sub-
divided into 15 subgroups (level 2) and 44 detailed groups (level 3). However, even at
levels 1 and 2, this classification simultaneously indicates types of land cover (the land’s
directly observable terrestrial features) and land use (the land’s socioeconomic purpose)
(36–39). Given that automated analyses of satellite data can detect only land cover and
that determining land use requires manual interpretation (39), we cannot directly apply
this classification for the training of our algorithm.

To obtain a classification of land cover types that we can use to train our algorithm,
we aggregate the CLC level 3 classes to larger groups with similar surface characteristics.
We base this aggregation on a survey of the literature that uses CLC data or Landsat
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data for classifying land cover (e.g., 40, 41). However, as this literature does not provide
an unambiguous assignment of CLC classes to larger groups with similar surface charac-
teristics, we identify similarities in the spectral reflectance patterns of pixels in the CLC
level 3 classes through visual inspection and perform repeated trials of our classification
procedure with varying assignments of CLC level 3 classes to larger groups. These trials
yield the result that a classification consisting of six surface groups, which correspond to
the six types of surfaces identified from subsets of Landsat data for the Daqing region in
China (7), best represents similar surface characteristics in Germany:

• Built-up surface (builtup): The surface group builtup contains surfaces with build-
ing of non-natural materials such as concrete, metal, and glass (e.g., residential
buildings, industrial plants, roads). This surface group thus includes all artificial
surfaces (CLC class 1) except for green urban areas (CLC class 141), which prior
work (42) shows to have a lower resemblance with artificial surfaces than with
vegetated surfaces.

• Grassy surfaces (grass): The surface group grass contains surfaces covered by grass
or other plants with similar surface reflectance (e.g., natural grassland, city parks).
This surface group thus includes pastures (CLC class 23) and natural grassland
(CLC class 321), which have similar surface characteristics (6, 42). In addition, due
to the similarities in surface reflectance that we detect in our trials, we add to the
surface group grass the green urban areas (CLC class 141) that we exclude from
the surface group builtup.

• Surfaces with crop fields (crops): The surface group crops contains surfaces with
vegetation for agricultural purposes (e.g., hayfields, vineyards). This surface groups
thus includes all agricultural areas (CLC class 2) except for pastures (CLC class
23), which belong to the surface groups grass.

• Forest-covered surfaces (forest): The surface groups forest contains surfaces covered
by trees or other plants with similar surface reflectance (e.g., mixed forests, moors).
This surface group thus includes all forests and semi-natural areas (CLC class 3)
except for grassland (CLC class 321), which belongs to the surface group grass, and
open spaces with little or no vegetation (CLC class 33), which differ in spectral
reflectance from the remaining CLC classes in the surface group forest (42, 43)

• Surfaces without vegetation (noveg): The surface group noveg contains surfaces
with (almost) no vegetation or buildings (e.g., bare rock, sand plains). This surface
group thus includes open spaces with little or no vegetation (CLC class 33), which
we exclude from the surface group forest.

• Water surfaces (water): The surface group water contains any type of water surface
(e.g., rivers, lakes). This surface group thus includes wetlands (CLC class 4) and
water bodies (CLC class 5), which we aggregate following prior work (44).

Table S2 provides a correspondence table of CLC classes for our algorithm. These six
surface groups into which the classification algorithm divides the input data constitute
the basis for our proxy for economic activity. Fig. 1 B in the paper visualizes the ground-
truth surface groups that we obtain from the CLC2018 data.
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S1.4 Training data and classification algorithm

We apply a machine-learning algorithm that classifies the input data of the greenest pixel
composite into the six surface groups builtup, grass, crops, forest, noveg, and water. From
the input data, we draw a stratified random sample of pixels to train the algorithm and
retrieve the corresponding ground-truth information from CLC data. The classifier we
use is a RF algorithm with ten decision trees.

Following prior work (23), we perform pixel-based classification. For every pixel in
our training sample, the machine-learning algorithm predicts the pixel’s surface group
from the spectral values and the added indices NDVI, NDWI, and NDBI. Compared
to machine-learning algorithms that perform object-based classification, which addition-
ally considers information from neighboring pixels, pixel-based classification requires less
computational power (45, 46). Although the majority of studies in the remote-sensing lit-
erature suggest that machine-learning algorithms performing object-based classification
better predict land cover than those performing pixel-based classification (e.g., 46), some
studies find no significant performance difference (e.g., 47). In particular, one of these
studies finds no significant difference using Landsat data (48). Therefore, given the spa-
tial and temporal size of the data we analyze in this paper, we decided to use pixel-based
classification through traditional machine-learnning algorithms such as RF or Support
Vector Machines. Our assessments of external validity (see section “External validity”
in the paper and section S2) confirm that choosing this machine-learning classification
yields a valid proxy for economic activity.

However, in future research, object-based classification through deep-learning algo-
rithms based on convolutional neural networks (CNNs) such as U-Net (49) or ResNet
(50) has the potential to even better classify different types of land cover and thus of-
fers and important avenue for future improvements. The remote-sensing literature has
successfully applied CNNs to land-cover classification for specific geographic study areas
and detected potential improvements in prediction accuracy (e.g., 51–53). While beyond
the scope of our paper, extending these applications to a global scale has great potential
for improving economic proxies for GDP or other socioeconomic indicators.6

To classify the pre-processed Landsat data, we use the RF algorithm with ten decision
trees.7 Several studies in the remote-sensing literature find that RF outperforms other
algorithms when applied to land cover classification (e.g., 54, 56). For example, an assess-
ment of the performance of three different algorithms that the remote-sensing literature
commonly uses (Classification and Regression Tree, Support Vector Machines, and RF)
reveals that RF performs best in predicting built-up land cover in India with Landsat-7
and Landsat-8 data (23). Furthermore, RF requires less computational power (54). As to
the number of decision trees, performance increases with the number of trees, although
after ten trees the increase is negligibly small relative to the increase in computational
power required (23).8 Therefore, RF with ten decision trees best suits the purpose of our
paper.

6We thank an anonymous reviewer for pointing us towards the potential benefits of CNNs in land-cover
classification and for providing additional arguments for the discussion on potential improvements in
this context and in the main text of the paper.

7For a description of the RF method’s application for land cover classification, see, e.g., 54, and for a
description of the method’s application in economics, see, e.g., 55.

8For example, while the prediction’s overall accuracy increases by about two percentage points when
increasing the number of trees from three to ten, it increases only by about one more percentage point
when increasing the number of trees from ten to 100 (23).
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We draw a stratified random sample of a total of 30,000 pixels to serve as training data
for the classification algorithm. For every year in the CLC data (1990, 2000, 2006, 2012,
2018), we randomly choose 1,000 pixels of each surface group. Generally, the number of
pixels in the training data correlates positively with prediction accuracy but negatively
with computational effort (56, 57). Therefore, we choose a slightly larger number of pixels
in the training data than in comparable applications from the remote-sensing literature
(e.g., 2, 23) to achieve an accurate classification, but keep this number low enough to
maintain a reasonable computational effort.

By restricting the pool of pixels from which we draw the stratified random sample we
use as training data, we substantially reduce the influence of potentially imprecise ground-
truth observations resulting from the difference in spatial resolution between Landsat (30
meters) and CLC data (100 meters). Due to the coarser CLC resolution, the CLC surface
groups might not be accurate for Landsat pixels at the boundary of two CLC surface areas.
While a CLC pixel might correctly belong to the builtup surface group, because more than
half of the pixel’s area contains built-up surfaces, not all Landsat pixels that fall within
the CLC pixel are necessarily builtup. Therefore, we do not use Landsat pixels that fall
within CLC pixels at the boundary of two CLC surface areas as training data, that is,
the CLC pixel and all its neighboring pixels must belong to the same surface group. This
restriction reduces the number of imprecise ground-truth observations and thus improves
the quality of the training data, which correlates positively with the accuracy of the RF
prediction when applied to land-cover classification (56, 58, 59).

A comparison of Figs. 1 A and 1 B (right column) in the paper illustrates the reason
for the sampling restriction to inner CLC pixels. For example, we do not use the CLC
pixels at the boundary of the water and grass surface areas in Fig. 1 B. At this boundary,
some of the CLC water pixels contain parts of the vegetation at the lakeshore, and, vice
versa, some of the CLC grass pixels contain parts of the lake. Therefore, the boundary
CLC pixels are not representative for the true surface groups of the Landsat pixels that
fall within these CLC pixels. Excluding the unrepresentative ground-truth in-formation
reduces the risk of imprecise ground-truth information in the training data. The resulting
benefit of this exclusion is that the algorithm can more accurately classify unrepresenta-
tive pixels (e.g., the forest and grass pixels that belong to the nature reserve (Vogelinsel
im Altmühlsee) in the south-west of Fig. 1 C, as well as similar examples throughout
Germany).

S1.5 Accuracy assessment of output data

To assess the prediction accuracy of our classification in the output data, we follow prior
work (23) and perform five-fold cross-validation9 by drawing five subsets from the greenest
pixel composite. In drawing the subsets, we apply the same stratification criteria as for
the training dataset, with the only difference being that instead of 1,000 pixels per surface
group, we now draw only 250. Thus each of the five subsets consists of 7,500 pixels, that
is, 250 per surface group and year. For the cross-validation to be valid, the subsets must
not overlap. In other words, one pixel can belong to only one subset.

Next, imitating our procedure for generating the output data, we use the five subsets
to perform five iterations of pixel classification. During each iteration, we use four of
the subsets as a training set. Consequently, every iteration leaves out a different subset,
and the training set of four subsets includes precisely the same number of pixels as the

9For descriptions and discussions of this method, see, e.g., 60, 61
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training set we actually use for the computations. We train the classification algorithm
with the four-subset training set, then classify the left-out subset.

As indicators of prediction accuracy, for every iteration and for each of the six surface
groups separately, we calculate overall accuracy, true-positive rate, true-negative rate,
balanced accuracy, and user’s accuracy (see the Internal Validity section in the paper).
Complementing the five-fold cross-validation results for the entire sample in Table 1 of
the paper, Tables S3 through S8 show the results separately for every CLC year.

The five-fold cross-validation results show that our output data constitute an inter-
nally valid measure of land cover. All indicators of prediction accuracy reveal that our
classification algorithm accurately identifies the six surface groups, suggesting that we
adequately implemented the procedures from the remote-sensing literature. Therefore,
the output data of our algorithm is highly suitable for analyzing whether the surface
groups are an externally valid proxy for economic activity in Section S2.10

S1.6 Transfer to all countries across the world

Producing our surface groups proxy depends on two external datasets—Landsat imagery
(to retrieve the greenest pixel composite as input data) and CLC data (ground-truth
data). While Landsat data are available for the entire world,11 consistent ground-truth
data are not. As such, we use two different strategies—one covering the European coun-
tries included in the CLC data (CLC countries)12 and another covering the rest of the
world (non-CLC countries)—to retrieve ground-truth data.

Our procedure for detecting surface groups is straightforwardly transferable to CLC
countries (i.e., most European countries). For these countries, CLC data include com-
prehensive and consistent ground-truth information. Therefore, producing the surface
groups for any given CLC country works exactly as for our German example. As the
data do not cover 1990 (the first of the five CLC reference years) for a few CLC coun-
tries, we make one adjustment to the training-sample construction for these countries.13

In the stratified random sample to serve as training data, we randomly draw 1,250 instead
of 1,000 pixels per surface group and year. Consequently, as for CLC countries that cover
all five reference years, the training data comprise a total of 30,000 pixels (thus a size
identical to that for CLC countries with ground-truth data for all five reference years).

We address the challenge in producing our proxy for non-CLC countries—the selec-
tion of adequate ground-truth data from which to draw the training sample—through a
selection rule based on the Köppen-Geiger climate classification system (64, 65). At the
highest level of aggregation, this system differentiates between five climate zones of the
world: tropical (zone A), arid (zone B), temperate (zone C), cold (zone D), and polar

10Additional analyses on the correlation between surface groups and administrative measures of land
cover also reveal that surface groups validly indicate their corresponding type of land cover in admin-
istrative statistics.

11For example, Landsat-7 covers any region between the 81.8° north and south latitudes, thus not covering
uninhabited places such as Antarctica and the far northern part of Greenland (62)

12Countries included in the CLC data are Albania, Austria, Belgium, Bosnia and Herzegovina, Bulgaria,
Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Italy, Kosovo, Latvia, Liechtenstein, Lithuania, Luxembourg, Malta, Montenegro,
The Netherlands, North Macedonia, Norway, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia,
Spain, Sweden, Switzerland, Turkey, and the United Kingdom (see 63).

13CLC countries without data for the reference year 1990 are Albania, Bosnia and Herzegovina, Cyprus,
Finland, Iceland, Kosovo, North Macedonia, Norway, Sweden, Switzerland, and the United Kingdom
(see 63).
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(zone E) (64).14 When classifying surface groups for non-CLC countries, we calculate
which percentage of a country’s area falls within each of the five climate zones. We then
draw a random sample of 30,000 pixels (same size as in the procedure for CLC coun-
tries) from all available CLC data (i.e., from all countries participating in CORINE) and
stratify the pixel selection by climate zone, that is, for each climate zone the percentage
of pixels in the training sample belonging to that climate zone corresponds to the target
country’s percentage of pixels belonging to that climate zone. For example, if 30 percent
of a country’s area belong to climate zone C and the remaining 70 percent to climate
zone D, the training sample will consist of 9,000 pixels from climate zone C and 21,000
pixels from climate zone D. All other stratification criteria for CLC countries (e.g., same
number of pixels per surface group and CLC year) also apply for non-CLC countries.

As none of the CLC countries features the tropical climate zone A, we assign the
percentage of a non-CLC target country’s area in climate zone A (if any) to CLC pixels
in the temperate climate zone C. We do so, because climate zone C is most similar to
climate zone A in terms of vegetation (the main selection criterion in constructing our
greenest pixel composite from Landsat data as input data). As we restrict the pool
of Landsat images for constructing the greenest pixel composite and, consequently, the
training data to those images taken between March and November (thus excluding the
meteorological winter months in the northern hemisphere), climate zones A and C also
have similar temperature levels during the period we consider.

As in the procedure for CLC countries, we exclude Landsat images taken during
meteorological winter months in constructing the greenest pixel composite for non-CLC
countries. For non-CLC countries in the northern hemisphere, we exclude images taken
between December and February (similar to the exclusion for CLC countries), while we
exclude images taken between June and August for non-CLC countries in the southern
hemisphere. For countries within the Tropic of Cancer and the Tropic of Capricorn we do
not exclude any images, because temperatures (and thus vegetation) in these countries
stay almost constant over the seasons.

The procedure for producing surface groups for non-CLC countries also offers the
flexibility of classifying Landsat pixels only for subregions of a country, with all steps
of our classification procedure (i.e., draw of training sample, training of algorithm, and
classification of pixels in the Landsat greenest pixel composite) taking place for each sub-
region separately. Such a separation of subregions can be useful for large countries with
differences in vegetation and climate across subregions. For example, splitting the U.S.
by states could improve the classification output because the states differ substantially in
terms of vegetation and climate. Moreover, the average area size of a U.S. state roughly
equals that of a CLC country, so that through splitting the U.S. into states the proportion
of training data size and size of the greenest pixel composite would stay constant, thus
potentially improving the classification output further. The same reasoning applies to
other large countries such as Australia, Canada, or China.

14The Köppen-Geiger climate classification data (from 64) are publicly available at https://doi.org/10.
6084/m9.figshare.6396959.
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Fig. S1. Overview of procedure for detecting surface groups.
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Table S2. CLC classes and assignment for algorithm

CLC class Our
Level 1 Level 2 Level 3 algorithm

1 Artificial surfaces 11 Urban fabric 111 Continuous urban fabric builtup
112 Discontinuous urban fabric builtup

12 Industrial, commercial, 121 Industrial or commercial units and public facilities builtup
and transport units 122 Road and rail networks and associated land builtup

123 Port areas builtup
124 Airports builtup

13 Mine, dump, and 131 Mineral extraction sites builtup
construction sites 132 Dump sites builtup

133 Construction sites builtup
14 Artificial, non-agricultural 141 Green urban areas grass

vegetated areas 142 Sport and leisure facilities builtup

2 Agricultural areas 21 Arable land 211 Non-irrigated arable land crops
212 Permanently irrigated arable land crops
213 Rice fields crops

22 Permanent crops 221 Vineyards crops
222 Fruit tree and berry plantations crops
223 Olive groves crops

23 Pastures 231 Pastures, meadows, and other permanent grass
grasslands under agricultural use

24 Heterogeneous 241 Annual crops associated with permanent crops crops
agricultural areas 242 Complex cultivation patterns crops

243 Land principally occupied by agriculture, with crops
significant areas of natural vegetation

244 Agro-forestry areas crops

3 Forest and 31 Forests 311 Broad-leaved forest forest
semi-natural areas 312 Coniferous forest forest

313 Mixed forest forest
32 Shrubs and/or herbaceous 321 Natural grassland grass

vegetation associations 322 Moors and heathland forest
323 Sclerophyllous vegetation forest
324 Transitional woodland/shrub forest

33 Open spaces with little 331 Beaches, dunes, and sand plains noveg
or no vegetation 332 Bare rock noveg

333 Sparsely vegetated areas noveg
334 Burnt areas noveg
335 Glaciers and perpetual snow noveg

4 Wetlands 41 Inland wetlands 411 Inland marshes water
412 Peatbogs water

42 Coastal wetlands 421 Coastal salt marshes water
422 Salines water
423 Intertidal flats water

5 Water bodies 51 Inland waters 511 Water courses water
512 Water bodies water

52 Marine waters 521 Coastal lagoons water
522 Estuaries water
523 Sea and ocean water

Authors’ illustration based on a prior illustration (68, p. 27). CLC classes listed as in official CLC nomenclature (32).
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Table S3. Five-fold cross-validation results with respect to built-up sur-
faces (surface group builtup)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.827 0.664 0.859 0.761 0.481
2000 0.838 0.610 0.886 0.748 0.530
2006 0.838 0.593 0.897 0.745 0.585
2012 0.844 0.606 0.887 0.747 0.493
2018 0.795 0.558 0.853 0.705 0.482

Average 0.828 0.606 0.877 0.741 0.514

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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Table S4. Five-fold cross-validation results with respect to grassy sur-
faces (surface group grass)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.839 0.468 0.912 0.690 0.514
2000 0.826 0.513 0.891 0.702 0.495
2006 0.823 0.517 0.888 0.703 0.496
2012 0.852 0.428 0.937 0.682 0.575
2018 0.813 0.327 0.921 0.624 0.477

Average 0.831 0.451 0.910 0.680 0.511

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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Table S5. Five-fold cross-validation results with respect to surfaces with
crop fields (surface group crops)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.816 0.461 0.889 0.675 0.458
2000 0.847 0.416 0.937 0.677 0.583
2006 0.828 0.396 0.931 0.664 0.581
2012 0.852 0.348 0.955 0.652 0.611
2018 0.817 0.281 0.950 0.615 0.583

Average 0.832 0.381 0.932 0.657 0.563

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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Table S6. Five-fold cross-validation results with respect to forest-covered
surfaces (surface group forest)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.892 0.509 0.969 0.739 0.771
2000 0.899 0.725 0.936 0.830 0.701
2006 0.886 0.756 0.914 0.835 0.648
2012 0.901 0.711 0.940 0.825 0.713
2018 0.895 0.726 0.933 0.830 0.709

Average 0.895 0.685 0.938 0.812 0.708

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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Table S7. Five-fold cross-validation results with respect to surfaces with-
out vegetation (surface group noveg)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.890 0.732 0.921 0.827 0.652
2000 0.891 0.754 0.913 0.834 0.585
2006 0.894 0.644 0.918 0.781 0.434
2012 0.850 0.847 0.850 0.849 0.543
2018 0.827 0.801 0.829 0.815 0.236

Average 0.870 0.756 0.886 0.821 0.490

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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Table S8. Five-fold cross-validation results with respect to water surfaces
(surface group water)

Year Overall True-positive True-negative Balanced User’s
Year accuracy rate rate accuracy accuracy

1990 0.908 0.683 0.952 0.817 0.740
2000 0.902 0.623 0.959 0.791 0.759
2006 0.915 0.693 0.961 0.827 0.787
2012 0.915 0.692 0.959 0.826 0.768
2018 0.905 0.667 0.957 0.812 0.772

Average 0.909 0.672 0.958 0.815 0.765

The yearly values indicate the average over all five iterations within the
respective year. Average indicates the average over the yearly values as
indicated in Table 1 of the paper.
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S2 External validity analyses

S2.1 Overview

In this section, we investigate the surface groups measure’s external validity as a proxy for
economic activity. The purpose of the measure is to approximate economic activity over
a long time series and at small regional levels. To examine whether the surface groups
fulfill this purpose, we require external data on economic activity at small regional levels.
With such external data, we can empirically analyze the quality of a surface groups-based
prediction of economic activity.

In our main validation analyses, we draw on two external sources of validation data
to analyze the surface groups-based prediction of economic activity. First, from admin-
istrative statistics, we extract a regionally disaggregated direct measure of GDP, the
most commonly used indicator of economic activity in the literature evaluating previ-
ous satellite-based proxies for economic activity (e.g., 69, 70). The administrative GDP
measure is available at the county (Kreis) level15 from 2000. Second, we use the so-
cioeconomic dataset RWI-GEO-GRID (71) that provides household income as a further
indicator of economic activity with a very high level of regional detail. This indicator is
available at the level of grid cells sized one square kilometer (and thus independent of
administrative borders), but annually only from 2009.

To evaluate the surface groups-based prediction of economic activity, we perform Or-
dinary Least Squares (OLS) regressions of the two indicators of economic activity (GDP
and household income) on the surface groups. These regressions allow us to determine
how much of the variation in economic activity the surface groups explain. Furthermore,
we analyze the distribution of the regression residuals to assess potential biases in the
prediction of economic activity. Throughout this evaluation, we compare the surface
groups-based prediction of economic activity to the prediction based on night light inten-
sity data from the U.S. Air Force Defense Meteorological Satellite Program Operational
Linescan System (DMSP OLS). This commonly used night lights-based prediction thus
serves as a benchmark for assessing the quality of our daytime-based prediction using
surface groups.

In additional validation analyses, we examine further predictive properties of surface
groups. We investigate within-region predictive power, evaluate surface groups against
newer night light intensity data with higher spatial resolution from the Visible Infrared
Imaging Radiometer Suite (VIIRS), assess the surface groups’ performance in relation
to data on built-up land cover from the Global Human Settlement Layer (GHSL), and
compare the predictive value of surface groups to a prior approach in Africa (72).

By using external validation data that are available for limited time series, the anal-
yses in this section provide insight into the quality of the surface groups as a measure
for applications in economic research. After describing the external data we use for
these analyses in more detail, we present the analysis of surface groups as a novel six-
dimensional proxy for economic activity. Finally, we show how the six surface groups can
be combined into a single-variable proxy.

S2.2 Validation data

To obtain economic indicators at detailed regional levels, we draw on two data sources.
First, we use administrative regional data. We access these data via the “Regionaldaten-

15As of 2020, Germany comprised 401 counties.

21



bank Deutschland”,16 a database belonging to the German Federal Statistical Office’s
(GFSO) data portal, GENESIS.17 This database comprises a variety of regional statistics
from the GFSO and the statistical offices of the 16 federal states (Bundesländer), with
varying time series and levels of regional disaggregation. GDP information in the admin-
istrative statistics is available at the county level, the next lower administrative regional
unit after the federal states, from 2000 through 2018.18 Following prior work (70), we use
real (i.e., deflated)19 GDP measures in euros as a validation measure for our analyses.
We denote real GDP as GDP .

Second, we use RWI-GEO-GRID (71), a grid-level dataset containing socioeconomic
indicators collected from a variety of public and private sources, but annually available
only from 2009 through 2016 (for a more detailed description of this dataset, see 73).
From this dataset, we extract a measure of household income that allows us to analyze
economic activity at a regional level even more detailed than the administrative county
level. This measure is available at the level of grid cells sized one square kilometer, an
extremely high level of regional detail, and indicates the total purchasing power of all
households living in a grid cell (73). The grid cells in this dataset follow the system of
the European Reference Grid distributed by the European Soil Data Centre (ESDAC)20

(73). To evaluate the quality of the surface groups-based prediction at this very detailed
regional level, we use real household income measured in euros at the grid level as a
further indicator of economic activity. For data protection, the dataset contains missing
or zero values for grid cells with a population below five inhabitants or households (73).
However, we expect economic activity and thus household income in these grid cells to
be negligibly small, so that our analysis excludes grid cells essentially without economic
activity. Altogether, Germany comprises 381,425 grid cells, between 146,382 and 148,509
of which (depending on the year) contain positive values of household income within our
observation period. We denote real household income as HHI.

To compare the quality of the prediction that uses surface groups to the prediction
that uses night light intensity in our main validation analyses (section S2.3), we use DMSP
OLS night lights data, available from 1992 through 2013.21 Simply put, these data capture
the intensity of light sources on earth at night (74). This night light intensity constitutes a
valuable proxy for economic activity at the national level and at larger subnational levels
such as federal states or metropolitan areas (69, 75, 76). The technological developments
of the 21st century have improved both the accessibility of night lights data and the
computational capabilities for processing these data (20). Consequently, night lights

16https://www.regionalstatistik.de/genesis/online/ (accessed July 19, 2021).
17The acronym “GENESIS” stands for “Gemeinsames Neues Statistisches Informations-System”. See
https://www.statistikportal.de/de/datenbanken (accessed July 19, 2021).

18We use data table 82111-01-05-4 “Bruttoinlandsprodukt/Bruttowertschöpfung nach Wirtschafts-
bereichen – Jahressumme – regionale Tiefe: Kreise und krfr. Städte” available at https:
//www.regionalstatistik.de/genesis/online?operation=previous&levelindex=1&step=1&titel=
Tabellenaufbau&levelid=1626691580813&acceptscookies=false#abreadcrumb (accessed June 29,
2021).

19We deflate to 2000 prices according to the consumer price index provided by the GFSO.
See https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=
61111-0001&startjahr=1991#abreadcrumb (accessed November 4, 2021).

20Available from https://esdac.jrc.ec.europa.eu/content/european-reference-grids (accessed August 13,
2019).

21We use the Version 4 DMSP-OLS Nighttime Lights Time Series distributed by the National Oceanic
and Atmospheric Administration’s (NOAA) National Geophysical Data Center, available at https:
//ngdc.noaa.gov/eog/dmsp/downloadV4composites.html#AVSLCFC (accessed October 25, 2021).
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data have become an attractive data source for economists in the last decade. Similar to
prior work (70), we use the pre-processed version of the DMSP OLS data (i.e., the version
corrected for, e.g., clouds or unusual lighting such as forest fires). This version contains
one observation per pixel and year, indicating the intensity of light sources on earth at
night.22 The intensity variable is a digital number ranging between 0 and 63. To achieve
regional correspondence with the administrative GDP data and RWI-GEO-GRID, we
calculate the average DMSP OLS night light intensity at the county and at the grid level
(denoted as NLDMSPOLS).

Furthermore, we use three other data sources in Section S2.4. First, we use VIIRS
night lights data, which prior research has confirmed to be a valid proxy for economic
activity (77, 78), as an alternative to the DMSP OLS benchmark.23 While VIIRS data
offer a higher spatial resolution than DMSP OLS data (500 meters vs. one kilometer
at the equator), their available time series is substantially shorter (2012–2020 vs. 1992–
2013). As the 2012 and 2013 VIIRS composites differ from later years by not being built
from stray-light corrected data (79), we do not use these two years in our analyses to have
a consistent benchmark. Like DMSP OLS data, VIIRS data contain one observation per
pixel and year. We denote the regional average of the VIIRS night light intensity variable,
which indicates radiance measured in nano Watts per square centimeter per steradian,
as NLV IIRS.

Second, we use the GHSL data, which are provided by the European Commission and
contain, among other things, information on built-up land cover in five-year intervals.
These pixel-level data have a 100-meter resolution and are based on a classification of
daytime satellite imagery (including Landsat). From these data, we extract two measures
of built-up land cover—one that indicates absolute built-up surface in square meters and
one that indicates absolute built-up volume in cubic meters—and take their regional
averages (denoted as GHSLsurface and GHSLvolume).

24 The information on built-up
volume thus allows us to assess the potential role of building height in proxying economic
activity. While the GHSL data start already in 1975, they are available only in five-year
intervals.

Third, we use an index for village-level asset wealth from prior work in Africa (72).
The authors (72) use African Demographic and Health Survey (DHS) data to construct
this index, including measures for quality of living (e.g., if households have running water).
They then train a neural network to directly predict the index from a combination of
Landsat and DMSP OLS night light intensity data. We use both their original DHS-
based asset wealth index as an outcome to validate the surface groups against (denoted

as AWI) and their predicted asset wealth index as benchmark (denoted as ÂWI).25

To assess the value of the surface groups we derive from Landsat data as a proxy for

22For a few observation years, two satellites collected night light intensity. Consequently, the night lights
data contain two observations per pixel for these years. Following prior work (70), we use the average
of those observations.

23We use the annual VIIRS night lights composites version 2 (79), available from the Colorado School
of Mines at https://eogdata.mines.edu/nighttime light/annual/v20/ (accessed October 27, 2021).

24For surface, we use the 100-meter resolution GHS-BUILT-S R2022A data (80), which are publicly avail-
able from the European Commission at https://ghsl.jrc.ec.europe.eu/download.php?ds=bu (accessed
December 7, 2022). For volume, we use the 100-meter resolution GHS-BUILT-V R2022A data (81),
which are publicly available from the European Commission at https://ghsl.jrc.ec.europa.eu/download.
php?ds=builtV (accessed December 7, 2022). For more information on the concept and methodology
underlying the GHSL data, see the GHSL data package (82).

25Both the original and the predicted asset wealth index are available as a supplement to 72.
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economic activity, we aggregate the pixel-level surface groups information to the different
regional units of the validation data. We do so by counting the number of pixels in
each surface group per regional unit and year, thus generating, at the respective regional
level, six variables indicating the number of pixels per surface group: builtup, grass,
crops, forest, noveg, and water.26 Moreover, to improve the evaluation by accounting
for potential measurement error in the number of pixels per surface group, we calculate
a region’s percentage of pixels with values missing because of, for example, cloud cover
as an indicator of potential measurement error (denoted as %cloud).27

In sum, this set of validation data allows us to perform a precise validation analysis
of surface groups as a novel six-dimensional proxy for economic activity. We argue that if
the quality of the surface groups-based prediction is high in the years that the validation
data cover, this quality is high for earlier periods as well because we consistently measure
the surface groups over time (i.e., for the entire period from 1984–2020). Put differently,
we have no reason to believe that our results on the validity of surface groups as a proxy
for economic activity would change if the validation data were already available from
1984. Therefore, we assume that the conclusions we draw from the validation analysis
also hold for earlier periods for which validation data are not available (1984–1999 for
GDP and 1984–2008 for household income) and, consequently, that the surface groups
proxy economic activity equally well from 1984 through 2020.

S2.3 Validation of surface groups as a proxy for economic activity

To assess the external validity of surface groups as a proxy for economic activity and
to compare them to night light intensity—which has become a widely accepted proxy in
economic research—we perform OLS regressions of the following form:

Yi,t = β0 + β1Xi,t + β2Ci,t + νi,t (S4)

with i denoting the regional unit of observation (i.e., counties for the GDP analysis and
grid cells for the household income analysis), t denoting the year of observation, and
Y denoting the dependent variable ln(GDP ) or ln(HHI). X denotes the independent
variables, that is, the vector of surface groups (including ln(builtup + 1), ln(grass + 1),
ln(crops+1), ln(forest+1), ln(noveg+1), and ln(water+1)) or ln(NLDMSPOLS +1).
C represents a vector of control variables and ν constitutes the error term.

To compare the surface groups-based prediction to the night lights-based prediction,
we restrict the observation periods to those years for which all variables entering the
equation are available. The years of observation are thus 2000 through 2013 for the GDP
analysis and 2009 through 2013 for the household income analysis.28

26For better efficiency, we perform the aggregation tasks of surface groups (and that of any other re-
gionally aggregated variables in our analyses such as night light intensity) to the different regional
units using Esri’s ArcPy package. However, these tasks can be achieved using freeware such as
PyQGIS with similar results. The polygon shapefiles indicating the regional borders of the valida-
tion data in our analyses are available from the German Federal Agency for Cartography and Geodesy
at https://daten.gdz.bkg.bund.de/produkte/vg/vg250 ebenen 0101/ (accessed November 3, 2021; ad-
ministrative regional borders in Germany), from ESDAC at https://esdac.jrc.ec.europa.eu/content/
european-reference-grids (accessed August 13, 2019; grid-cell borders for EU25 countries), and from
the Database of Global Administrative Areas (GADM) at https://gadm.org/download country.html
(accessed November 22, 2021; administrative borders of African and other countries).

27Other reasons for missing values could be implausible spectral values or inexistence of imagery (see
section S1.2). However, cloud cover is the most likely reason.

28The household income data are also available for 2005, but we exclude this year to consistently examine
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To assess whether the combination of surface groups is a valid proxy for economic
activity, we follow prior work (70) by using the natural logarithms of the dependent
variables and the independent variables. We add the value one to the variables inX before
taking their natural logarithms, because they contain values of zero. As the variables inX
do not represent percentage points, they do not add up to 100 and are thus not collinear
by construction. However, an increase in one of the surface groups is associated with a
decrease in at least one other surface group. Still, as our purpose is to achieve the best
possible prediction of economic activity and not to identify the exact association between
each surface group and economic activity, we can include all six surface groups in the
regressions despite a certain degree of collinearity. In an assessment of night light intensity
as a country-level proxy for GDP (70), the authors argue that night light intensity might
be more sensitive to a growth in GDP than to a decline in it, because technology and
other factors constantly change over time. The same logic applies to surface groups.
For example, while a growth in GDP and the construction of new buildings might occur
simultaneously, a decline in GDP might involve a stagnation of construction activities
or an abandonment of buildings rather than a remotely sensible reduction in built-up
surfaces. Therefore, surface groups might also be more sensitive to a growth in GDP
than to a decline in it.

The vector C comprises two control variables that cancel out any bias due to potential
measurement error in the dependent or independent variables. First, year fixed effects
(FE) account for potential quality differences between years in Landsat or DMSP OLS
data. Such differences might occur due to, for example, the technological performance of
satellites or weather conditions. Second, federal state FE control for potential differences
in administrative data collected by the statistical offices of the federal states.29

County-level analysis of GDP. The results of the county-level analysis with real
GDP as the dependent variable in Table S9 show that surface groups explain more of
the variation in GDP than DMSP OLS night light intensity. In the specifications with-
out control variables, surface groups explain 43.9% of the variation in GDP (column 1),
whereas night light intensity explains only 23.0% of this variation (column 3). Including
the control variables does not affect this pattern, with surface groups explaining 62.3%
(column 2) and night light intensity explaining 47.1% of the variation in GDP (column
4). As the specifications with control variables explain a larger percentage of the varia-
tion in GDP for both surface groups and night light intensity, controlling for potential
measurement error improves the prediction but neither affects the predictive properties
of surface groups nor those of DMSP OLS night light intensity. At the disaggregated
regional level of counties, the combination of surface groups and control variables thus
explains a significant percentage of the variation in GDP.

Figs. 2 A and B in the paper show that the statistical distribution of the residuals from
the OLS regressions with control variables (columns 2 and 4 of table S9) looks smoother
and narrower for surface groups than for DMSP OLS night light intensity. This finding
is in line with surface groups explaining more of the variation in GDP than night light

patterns in the temporal distribution of the regression residuals by maintaining a data structure of
consecutive years.

29As we compare the surface groups-based prediction to the night lights-based prediction, we do not
include the percentage of cloud cover (see section S2.2) as a control variable for potential measurement
error in the number of pixels per surface group. The results do not change when we include this control
variable in the prediction using surface groups (see tables S25 and S26).
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intensity, as indicated by the adjusted R2 of the regressions. Moreover, for both surface
groups and night light intensity, the residuals are normally distributed, although the
distribution has more pronounced local maxima in the night lights specification. Surface
groups thus proxy GDP more precisely than DMSP OLS night light intensity.

Furthermore, using surface groups to compare GDP over time and between regions
requires that the prediction error be neither temporally nor spatially biased. Temporal
bias would occur if the prediction error is constant for a given region throughout all
observation years, and spatial bias would occur if the prediction error is equal for clusters
of regions. To assess the existence of such biases, Fig. S3 illustrates the temporal and
spatial distribution of the residuals from the regressions in column 2 of Table S9. For
reference, Fig. S2 provides a map indicating the names of the federal states and the
locations of their capitals. In four-year intervals evenly spread over our observation
period, Fig. S3 shows the estimated residuals for all counties in the respective year,
that is, the degree to which GDP is overestimated (blue counties) or underestimated
(red counties). For comparison, Fig. S4 proceeds similarly for DMSP OLS night light
intensity, illustrating the residuals from the regression in column 4 of Table S9.

Figs. S3 and S4 suggest that the surface groups-based prediction yields a consider-
ably smaller temporal bias than the night lights-based prediction. If a temporal bias in
prediction error existed, the color of a given region would stay the same over the entire
observation period. For surface groups, such a pattern exists for 179 counties (44.9%),
and, for the remaining regions, the color varies over time in Fig. S3. For DMSP OLS
night light intensity, this pattern appears for 339 counties (85.0%), leading to the four
maps in Fig. S4 hardly differing in color. Therefore, although we cannot definitely rule
out the existence of a temporal bias for some regions when proxying GDP with surface
groups, this temporal bias is far less severe than that of proxying GDP with night light
intensity.

The distribution of the residuals across regions in Figs. S3 and S4 suggests a somewhat
larger spatial bias in prediction error for surface groups than for DMSP OLS night light
intensity. If such as bias existed, clusters of similarly colored regions would appear. For
surface groups, 992 observations (18.4%) have the same color as all their geographically
neighboring observations, whereas for night light intensity, this pattern shows for only
565 observations (10.5%). However, for both surface groups and night light intensity,
the clusters appear randomly distributed across the country rather than concentrated
in specific parts (e.g., clusters not only in rural areas, clusters not only in the north).
Therefore, the spatial distribution of the prediction error appears random but yields a
larger bias for surface groups.

Combining the indicators of temporal and spatial bias shows that the smaller temporal
bias of the surface groups-based prediction outweighs the prediction’s larger spatial bias
as compared to the night lights-based prediction. For surface groups, only 11 counties
(2.8%) have the same color as all their neighboring observations and, simultaneously,
the same color throughout all observation years. For DMSP OLS night light intensity,
this pattern appears for 26 counties (6.5%). This finding reflects in the small clusters of
similarly colored counties not showing up in consecutive years in Fig. S3.

In addition, to show that the value of surface groups as a proxy for economic activity
increases with the degree of regional disaggregation, we estimate our OLS model sepa-
rately by county-size groups. Fig. S5 plots average county size within a group against
the adjusted R2 obtained from the separate regressions. As county-size groups, we use
quintiles of the county-size distribution (fig. S5 A) and federal states (fig. S5 B). In ad-
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dition to the original data points obtained from the regressions, Fig. S5 also plots the
linear fitted values to visualize the trend in the data. For both county-size groups, the
plots show a declining trend, that is, the percentage of the variation in GDP explained
by surface groups declines with an increase in county size. Put differently, the smaller
the county size the better the proxy. This finding emphasizes the potential of surface
groups as a valuable measure for analyses at detailed regional levels.

In essence, the county-level analysis of the surface groups-based prediction of GDP
yields the finding that surface groups are a highly suitable proxy for GDP. They explain
a significant percentage of the variation in GDP. Moreover, in comparison to the DMSP
OLS night lights-based prediction, the surface groups-based prediction shows a smaller
bias in the regression residuals. Therefore, surface groups provide a useful alternative for
proxying GDP at disaggregated regional levels such as German counties.

Grid-level analysis of household income. In the grid-level analysis of surface groups
as a proxy for household income, we find the same patterns as in the county-level analysis
of surface groups as a proxy for GDP. Table S10 presents the estimation results for this
grid-level analysis. At this very detailed regional level, the surface groups-based prediction
explains a much larger percentage of the variation in household income than the DMSP
OLS night lights-based predictions (63.6% vs. 27.2% in the specifications without control
variables in columns 1 and 3, and 67.5% vs. 30.7% in the specifications with control
variables in columns 2 and 4). In comparison to the GDP analysis, the control variables
(year FE and federal state FE) improve the prediction only slightly in the household
income analysis, probably because the number of observation years is smaller and because
the dependent variable is not collected within administrative borders.

Figs. 2 C and D in the paper confirm the findings of the regressions. The statistical
distribution of the prediction error for household income is much narrower (although
slightly left-skewed) for surface groups than for night light intensity. The distribution
of the prediction error for night light intensity is slightly right-skewed and, instead of a
peak at the value zero, the distribution exhibits a plateau around this value. Therefore,
surface groups proxy household income at the grid level much more precisely than DMSP
OLS night light intensity.

Furthermore, the assessment of the temporal and spatial distribution of the prediction
error in the household income analysis yields results similar to those in the GDP analysis.
Figs. S6 and S7 show the spatial and temporal distribution of the prediction error in
household income for surface groups and DMSP OLS night light intensity, respectively.
For a better illustration of the very small grid cells, the map shows an area at the borders
of four federal states, with the metropolitan region of Ludwigshafen-am-Rhein/Mannheim
in the south-west and the rural Odenwald region in the east. The gray cells are those
with missing values (i.e., uninhabited or only sparsely inhabited areas).

Again, the smaller temporal bias in the surface groups-based prediction in compar-
ison to the night lights-based prediction outweighs the larger spatial bias. For surface
groups 90,054 grid cells (59.5%) have the same color throughout all observation years,
whereas this number amounts to 131,704 grid cells (87.0%) for DMSP OLS night light
intensity. Moreover, the spatial bias of the surface groups-based prediction is only slightly
larger than the spatial bias of the night lights-based prediction, with 167,095 observations
(22.7%) for surface groups and 126,703 observations (17.2%) for night light intensity hav-
ing the same color as all their geographical neighbors. Combining the two types of biases
shows that for surface groups, 8,166 grid cells (5.4%) have the same color as their neigh-
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bors and, simultaneously, the same color throughout all observation years. For DMSP
OLS night light intensity, this pattern applies to 15,058 grid cells (9.9%). Therefore, the
smaller temporal bias of surface groups again outweighs their slightly larger spatial bias.

Summary. To summarize our main analyses of the surface groups’ external validity,
we show that at the county level (GDP) and at the grid level (household income) surface
groups can serve as a valid proxy for economic activity. At both levels, the surface
groups predict a significant percentage of the variation in economic activity, and this
prediction is more precise (i.e., less biased) for surface groups than for DMSP OLS night
light intensity. Furthermore, the comparative advantage of surface groups as a proxy for
economic activity becomes more pronounced in the grid-level analysis than in the county-
level analysis. This finding, in combination with the GDP analysis by county-size group,
suggests that surface groups are particularly useful for applications that investigate very
small regional units. Although we derive these findings from external validation data
with limited time series, we argue that, due to the high and temporally stable internal
validity of the surface groups measure (see section S1.5), surface groups can also function
as a valid proxy for economic activity for earlier years.

To ensure the surface groups’ validity across all years in economic or other appli-
cations, we recommend (a) including the number of cloud-covered pixels as a control
variable and (b) checking the data for outlier observations and remove those from em-
pirical analyses for particular years and regions. Such outliers can occur in few regions
in years with scarce Landsat imagery (particularly in the 1980s). For these years, our
greenest pixel composite features higher percentages of cloud-covered pixels, pixels show-
ing cloud shadow, or otherwise invalid pixels. As the filters we apply in constructing the
greenest pixel composite cannot detect some of these pixels, our algorithm potentially
produces an erroneous classification for these pixels.30 To obtain more valid results, we
apply outlier corrections in the applications of surface groups in this work, that is, in
the comparison of GDP developments across German counties (fig. 3 in the paper) and
in the analysis of the impacts higher education institutions in East and West Germany
(section Essential improvements in social science research through surface groups data in
the paper). For details on the outlier removal procedure, see Sections S2.5 and S3.

While surface groups offer substantial advantages in proxying economic activity at
disaggregated levels, night light intensity might still be the more appropriate proxy for
cross-country studies or other larger regions. The reason is that land use characteristics
might have heterogeneous meanings for a country’s economy, depending on the country’s
historical development (83). However, for small regional units and early time series,
surface groups constitute a valuable and more accurate proxy for economic activity.

S2.4 Additional validation analyses

We present four additional analyses on the surface groups’ external validity. First, we use
VIIRS night light intensity data as a benchmark to show that surface groups offer higher
precision in predicting economic activity than night light intensity data with higher spatial
resolution than DMSP OLS data. Second, we assess the surface groups’ performance
in relation to GHSL data that provide other metrics for built-up land cover. Third, we
analyze within-region heterogeneity in predicted GDP to demonstrate that surface groups

30Visual inspections of the classification show that most of these undetected invalid pixels are classified
as builtup.
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enable the isolation of subregional changes in economic activity. Fourth, a comparison
to prior work in Africa (72) suggests that surface groups can function as a proxy for
economic conditions also in developing countries.

VIIRS night light intensity as benchmark. To analyze whether surface groups
outperform night light intensity data with higher spatial resolution than DMSP OLS
data in proxying economic activity, we reestimate the OLS model specified in Eq. S4
both at the county level (with GDP as outcome) and at the grid level (with household
income as outcome) with VIIRS night light intensity as a benchmark. The observation
periods of this analysis start in 2014 (first consistent year in the VIIRS data). They end
in 2018 for the county-level analysis (last year in the GDP data) and in 2016 for the
grid-level analysis (last year in the household income data).

Table S11 presents the county-level analysis that compares surface groups and VIIRS
night light intensity as proxies for GDP. Our surface groups proxy achieves 142.2% of the
VIIRS precision in predicting GDP, thus offering a much higher precision. While VIIRS
night light intensity explains only 46.9% of the variation in GDP in the specification
with control variables (column 4), surface groups explain 66.7% of this variation (column
2). Therefore, at the county level our surface groups proxy outperforms even night light
intensity data with a higher spatial resolution than DMSP OLS data.

The grid-level analysis of household income in Table S12 supports the county-level
finding that surface groups outperform VIIRS night light intensity in predicting regional
economic activity. With 51.8%, VIIRS night light intensity explains a lower percentage
of the variation in household income than surface groups with 70.0% (columns 2 and 4).
While VIIRS night light intensity thus appears to perform better in proxying household
income than DMSP OLS night light intensity, our surface groups proxy outperforms both
sources of night light intensity data.

Comparison to GHSL land-cover metrics. To evaluate how the surface groups
perform compared to other land-cover metrics in proxying economic activity, we use the
GHSL data.31 These data (a) provide an alternative measure of built-up surface and
(b) go beyond our surface groups by offering information on building volume (i.e., they
add the dimension of building height). As the extension of built-up land associated with
economic activity can occur both horizontally and vertically, this additional information
can be an important determinant of economic activity.

As in our comparisons to night light intensity, we regress the economic validation
indicators (GDP and household income) on the natural logarithms of either one of the two
GHSL-based measures (GHSLsurface and GHSLvolumne), year FE, and federal state FE
according to Eq. S4, and compare them to a similar specification with the surface groups
metrics as independent variables instead of the GHSL-based metrics. The observation
years are those available in all datasets (2000, 2005, 2010, and 2015 for the GDP analysis;
2005,32 2010, and 2015 for the household income analysis).

31We thank an anonymous reviewer for suggesting to link the surface groups proxy and the GHSL data.
32Note that we do not use the 2005 data on household income in our original comparison to night light
intensity. The reason is that we analyze consecutive annual data in this comparison to consistently
examine patterns in the temporal distribution of the regression residuals (see section S2.3), and the
household income data are not available from 2006 through 2008. As the comparison to GHSL data
is feasible only in five-year intervals, we can use the 2005 data on household income in this new
comparison.
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Table S13 presents the county-level estimation results for GDP. At this level, our
surface groups measure and the GHSL built-up surfaces measure perform equally well in
predicting GDP (explaining 64.4% and 64.3% of the variation in GDP in columns 1 and
2, respectively), suggesting that other measures of built-up land cover at the surface can
match the performance of our proxy. The GHSL built-up volume measure outperforms
our surface groups measure at the county level (explaining 83.1% of the variation in GDP
in column 3). This result suggests that adding the dimension of building height can
substantially improve economic proxies.

The results of the grid-level analysis of household income in Table S14 suggest that
our surface groups perform better in proxying economic activity at this very small re-
gional level compared to both GHSL measures. The surface groups explain 69.4% of the
variation in grid-level household income (column 1), whereas GHSL built-up surface ex-
plains 55.1% (column 2) and GHSL built-up volume 57.8% of this variation (column 3).
Thus the combination of different types of land cover appears to play a more important
in role in proxying grid-level economic activity than building height.

We conclude from these analyses that building volume as indicated in the GHSL data
can play an important role in proxying economic activity but comes at the cost of losing
temporal information. As GHSL data are available only in five-year intervals, they have
the disadvantage of not providing sufficient information for answering research questions
that address short term changes in economic activity and thus benefit from annual data.
As an example, the application of surface groups to studying immediate economic effects
of higher education institutions after the fall of the Iron Curtain (section Essential im-
provements of social science research through surface groups data in the paper) requires
annual data, and other potential applications to studying policy interventions with out-
comes expected in the short term both in Europe and across the world have the same
requirement. In contrast, the advantage of the GHSL data is that they may more pre-
cisely proxy economic activity, particularly in areas where heights matter, if less precise
temporal information is acceptable. Moreover, our proxy offers additional information on
other types of land cover potentially related to economic activity (e.g., cropland) and can
thus provide more precision in countries with, for example, a large agricultural sector.

Within-region predictive power. To analyze the surface groups’ predictive power of
within-region changes in economic activity, we (a) conduct analyses at a higher level of
disaggregation to contrast the usefulness of disaggregated vs. aggregated metrics and (b)
reestimate our model specified in Eq. S4 with region unit (i.e., county) FE. The results
show that (a) surface groups are more useful than night light intensity in disentangling
which subregional units contribute to regional changes in economic activity, while (b) in
more aggregated settings (i.e., settings that do not consider subregional variation) region
unit and year FE alone explain almost all of the variation in economic activity with
neither surface groups nor night light intensity adding any significant value.

Our analyses at a higher level of disaggregation illustrate that surface groups con-
tribute to a better understanding of within-county changes in regional economic activity.
We conduct these analyses at the level of municipalities, the smallest administrative re-
gional unit in Germany.33 Although GDP data do not exist at the municipality level, we

33As of January 1, 2017, Germany comprised 11,266 municipalities (i.e., on average 28.1 municipalities
per county), with one municipality belonging to only one county. We use the territorial status of 2017,
because it corresponds to the territorial status of the data on higher education institutions from prior
work (84) that we use for the social science application we present in the paper and in Section S3.
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can use the surface groups to derive a prediction of GDP at this level. We then com-
pare the municipality-level change over time in this GDP prediction to the county-level
change in the administrative GDP measure. If the change in GDP is similar at both
geographic levels, the municipality-level prediction of GDP does not add any informative
value to the county-level measure. However, if the change in municipality-level predicted
GDP differs from the change in county-level GDP, the new municipality-level prediction
can be informative about within-county heterogeneity in economic development, thus
allowing assessments of which municipalities drive county-level economic activity (i.e.,
how economic activity develops heterogeneously within a county). To investigate which
proxy offers more insight into within-county heterogeneity, we also compare the surface
groups-based and the DMSP OLS night light intensity-based municipality-level GDP
predictions.

We proceed in two steps to analyze municipality-level GDP. First, we predict GDP
at the municipality level. Because both the continuous independent variables and the
dependent variable are natural logarithms of their original values in the county-level
prediction in Table S9, the estimation coefficients are not directly transferable to the
municipality level. Therefore, we standardize these county-level variables to have a mean
of 0 and a standard deviation of 1, then estimate the OLS model specified in Eq. S4
using the standardized variables. As the standardization does not affect the variables’
distributional properties except for the mean and the standard deviation, the OLS result
in Table S17 has the same properties (adjusted R2, F -value, coefficients’ t-values) as
the original unstandardized result. Assuming that the distributional properties of the
variables in the model are identical at the county level and at the municipality level,
we can use the coefficients from the county-level estimation with standardized variables
to predict standardized GDP at the municipality level. We produce one prediction of
standardized municipality-level GDP using surface groups as predictor and one using
DMSP OLS night light intensity.

Second, we construct an indicator for the difference between the municipality-level
change in predicted GDP and the county-level change in administrative GDP. To ob-
tain the municipality-level change in predicted GDP, for each municipality and for both
surface groups and DMSP OLS night light intensity we calculate the difference between
the prediction of standardized GDP in 2013 (the last year in the DMSP OLS night light
intensity data) and that in 2000 (the first year in the administrative GDP data). To
obtain the county-level change in standardized administrative GDP, we proceed similarly
at the county level by calculating the difference in administrative GDP between 2013
and 2000. As final indicators, we then calculate for both surface groups and DMSP OLS
night light intensity the difference between the municipality-level change in the predic-
tion of standardized GDP and the county-level change in standardized administrative
GDP. These indicators measure at the municipality-level whether and to what extent
the municipality-level change in GDP over time deviates from the county-level change in
GDP over time.

Fig. S8 plots the distribution of the two indicators. The figure shows that DMSP OLS
night light intensity yields a lower degree of additional information at the municipality
level in comparison to the county level, that is, surface groups have higher within-region
predictive power for geographies below the county level than DMSP OLS night light in-
tensity. Fig. S8 reveals this relationship through the stronger concentration towards its
mean in the indicator for DMSP OLS night light intensity compared to the larger varia-
tion in the indicator for surface groups. Therefore, surface groups offer more additional
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information at the municipality level. The change in the municipality-level prediction
of standardized GDP using surface groups thus yields substantially more information on
within-county heterogeneity in GDP change in comparison to DMSP OLS night light
intensity.

The higher degree of additional municipality-level information obtainable from surface
groups also becomes obvious in Fig. S9, which illustrates for one county (Wunsiedel) as
an example the two indicators plotted in Fig. S8. In essence, surface groups detect much
more variation in economic activity in this county’s municipalities, represented by the
higher intensity of colors in Figs. S9 A6 and B6.

Figs. S9 A1 and A2 show the surface groups classification underlying the GDP pre-
diction for 2000 and 2013, and Figs. B1 and B2 the corresponding raw DMSP OLS night
light intensity. Figs. S9 A3 and A4 illustrate the surface groups-based prediction of stan-
dardized municipality-level GDP for these two years, and Figs. S9 B3 and B4 the DMSP
OLS night light intensity-based prediction. Figs. S9 A5 and B5 indicate the difference
between Figs. S9 A3 and A4 and that between Figs. S9 B3 and B4, respectively, that
is, the changes in the GDP predictions between 2000 and 2013. Fig. S9 A6 then shows
the municipality-county difference in the change in predicted standardized GDP using
surface groups as predictor and Fig. S9 B6 shows this difference using DMSP OLS night
light intensity (i.e., the same indicators for which Fig. S8 plots the distribution).

Two properties become noticeable. First, the colors in Figs. S9 A3 through A6 are
much more intense than in Figs. S9 B3 through B6. This higher intensity is in line
with Fig. S8, confirming that surface groups offer substantially more information on
within-county heterogeneity by detecting variation in economic activity at the munici-
pality level. Second, the municipalities at the south-western border of the county exhibit
a substantially lower growth in GDP than the county when using surface groups for pre-
diction (blue-colored municipalities in Fig. S9 A6 ), a pattern that is not visible when
using DMSP OLS night light intensity (Fig. S9 B6 ). These municipalities differ from
the other municipalities by being unincorporated areas, that is, typically uninhabited ar-
eas (e.g., forests) belonging to the county but without their own municipal governments.
Therefore, that these uninhabited municipalities exhibit a substantially lower growth in
GDP is a logical consequence of their characteristics. The surface groups detect these
characteristics, whereas DMSP OLS night light intensity does not.

At the more aggregated county level, reestimation of our model specified in Eq. S4
with region unit FE corresponds to, for example, a cross-country analysis of DMSP OLS
night light intensity as a predictor for economic activity in prior work (70). The reason
that this prior work includes region-level FE (in this case countries) is to control for
differences in night light intensity resulting from cultural or economic differences. Such
differences can affect the country-wide use of night lights because of, for example, the
relative importance of daytime activities in comparison to nighttime activities or the
level of technological advancement for producing electricity. However, for within-country
applications analyzing small subnational regions—the type of application that we develop
our proxy for—such differences are less likely to create heterogeneity over time.

The FE estimations show that county and year FE explain almost all of the variation
in economic activity. That is, neither surface groups nor DMSP OLS night light intensity
have enough within-county variation over time to significantly contribute to explaining
within-region changes. Table S15 shows the results of three different FE models that
illustrate this finding: The first model includes only county and year FE without any of
the two proxies; the second includes the surface groups in addition to county and year FE;
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and the third includes DMSP OLS night light intensity in addition to county and year
FE. The models thus correspond to the OLS regressions in Table S9, with the difference
of containing county instead of federal state FE. We estimate all three models using two
different estimation methods, one including the county FE as covariates to obtain an
estimate of the overall variance explained by the models and one considering the county
FE by subtracting the county-level mean of the dependent variable to obtain an estimate
of the within-county variation explained by the model. Both estimation methods show
that the inclusion of any proxy leads only to a negligibly small increase in (adjusted) R2,
with the county and year FE explaining 99.6% of the overall variation in GDP.34

Validation of surface groups for developing countries. To investigate whether
surface groups can serve as a proxy for economic activity in developing countries, we
compare our approach to a prior approach for African countries (72). While both ap-
proaches provide indicators for economic conditions, the approaches differ in the type
of economic conditions they proxy. The prior approach (72) uses African DHS data to
construct an index for village-level asset wealth, including measures for quality of living
(e.g., if households have running water), and then trains a neural network to directly
predict this index from a combination of Landsat and DMSP OLS night light intensity
data. In contrast, our approach intends to proxy regional economic activity as indicated
in administrative statistics, and thus represents primarily industrial economic activity
rather than asset wealth of villages. Moreover, by classifying Landsat pixels into the six
surface groups before using them to predict economic activity, our approach offers a direct
measure for land cover with a potential for applications in regional science studies. The
prior work (72) thus demonstrates that satellite data can be used to predict a particu-
lar developmental characteristic (village asset wealth), while our approach demonstrates
that satellite data can be trained to predict both disaggregated and potentially missing
or erroneous economic activity data (e.g., GDP at disaggregated levels within a county).

To make the comparison, we produce our surface groups proxy for four African
countries—Guinea, Togo, Uganda, and Zimbabwe—using the procedure we outline in
Section S1.6. Choosing these four countries ensures the fairest possible comparison,
because for them the prior approach (72) yields an above-average prediction quality (ac-
cording to R2 reported in Fig. 2 of 72). The prior work (72) provides both its village-level
asset wealth index and its prediction of this index for the years available in the underly-
ing DHS data—2012 for Guinea; 2013 for Togo; 2009, 2011, and 2014 for Uganda; and
2010 and 2015 for Zimbabwe. The locations of villages are indicated by the coordinates
of their geographic centers. Similar to the prior approach, we consider the area within
a radius of 6.72 kilometers of a village’s center for predicting the village’s asset wealth
with surface groups. For each of the four countries separately, we run an OLS regression
of the surface groups, the percentage of cloud cover, and year FE (if applicable) on the
prior work’s (72) DHS-based asset wealth index (see table S18 for the regression results).
The predictions derived from these regressions allow us to calculate the percentage of
the variation in the asset wealth index our approach explains and to compare it to the

34Conducting the FE analysis for household income at the grid level yields similar results, with the grid-
cell and year FE explaining 99.7% of the overall variation in household income and neither including
surface groups nor including night light intensity increases adjusted R2 (table S16). However, the grid-
level analysis can draw on only five observation years (2009–2013) and thus much fewer years than the
county-level analysis (14 years, 2000–2013). For such short time series, FE estimation in general is an
inappropriate econometric method. Therefore, we do not further interpret these results.
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corresponding percentage the prior approach (72) explains.
The results of this comparison show that our approach also contributes to explaining

the variation in the prior work’s (72) DHS-based asset wealth index. Pooling over all
villages in the four countries, our approach explains 59.7% of the variation in the asset
wealth index, compared to 73.6% with the prior approach (72) (corresponds to red R2

in Fig. 2a of 72).35 Our surface groups proxy thus explains a significant percentage of
the index, although lower than the prior approach (72). Despite our metric not being
designed to identify asset wealth like the prior metric (72), our approach performs 81.1%
as well as the prior metric (72) in predicting asset wealth.

While the prior approach in Africa (72) is designed to optimally predict the asset
wealth index this work constructs from DHS data, our approach focuses on predicting a
much broader proxy for regional economic activity. Both approaches explain substantial
variation in the outcome variables they respectively predict. Each approach has compara-
tive advantages and disadvantages depending on the research question (e.g., advantage for
focused, village-level analyses in developing countries with the prior approach of 72, ad-
vantage for broader regional-level analyses in developed countries with our new approach).
Satellite data can provide insight, predictability, and accuracy to various developmental
indicators when trained specifically toward predicting the outcome in context.

S2.5 Surface groups economic proxy

The six surface groups can be combined into a single-variable proxy by computing a
predicted indicator of economic activity using our OLS model specified in Eq. S4. To es-
tablish the external validity of such a single-variable proxy, for both GDP and household
income we estimate Eq. S4 using only one randomly selected quarter of the sample (the
training sample). With the OLS coefficients obtained from the training-sample estima-

tion, we predict GDP ( ̂ln(GDP )) and household income ( ̂ln(HHI)) for one randomly
selected half of the sample (the left-out sample). We do not use the remaining quarter of
the sample to avoid too strong similarity between the training and left-out samples due
to spatial proximity of the training and left-out regions. Randomization takes place at
the region level so that all observations from one region end up in the same sample.

To assess whether this predicted single-variable proxy is as valid as the original proxy,
we then re-estimate the OLS model using only the left-out sample and using the single-
variable proxy as independent variable instead of the original proxy. Again, we proceed
similarly for DMSP OLS night light intensity to have a benchmark comparison.

Tables S20 and S21 present the estimation results for GDP and household income,
respectively. In the specifications using the single-variable proxy as independent variable
(columns 2 and 4), the surface groups-based proxy explains a higher percentage of the
variation in economic activity than the night lights-based proxy (63.2% vs. 50.6% for
GDP and 67.6% vs. 30.9% for household income). This finding corroborates the findings

35Calculating this indicator separately for each of the four countries and then averaging it, our approach
explains 56.9% of the variation in the asset wealth index, compared to 78.8% with the prior approach
(72) (corresponds to black R2 in Fig. 2a of 72). Conducting the analyses at the administrative district
level (see table S19 for the OLS regression results) yields indicators of 69.4% vs. 81.8% when pooling
over all districts in the four countries and weighting by the number of villages (corresponds to red
weighted R2 in Fig. 2b of 72), 71.4% vs. 90.9% when separating by country and weighting (corresponds
to black weighted R2 in Fig. 2b of 72), 50.9% vs. 63.2% when pooling and not weighting (corresponds
to red unweighted R2 in Fig. 2b of 72), and 48.7% vs. 78.8% when separating and not weighting
(corresponds to black unweighted R2 in Fig. 2b of 72).
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of the county-level analysis of GDP and of the grid-level analysis of household income.
Therefore, the surface groups can provide a valid single-variable proxy of economic ac-
tivity, which might be desirable when economic activity is the dependent variable in an
analysis.

Finally, Table S22 shows the results of an OLS estimation that uses all available GDP
data (2000–2018) to train the single-variable surface groups-based economic proxy. More-
over, to improve the quality of the prediction, this estimation also includes the regional
percentage of pixels with cloud cover as a further indicator of potential measurement
error (see section S2.2). This estimation underlies the time series plots of predicted GDP
in Fig. 3 in the paper. In producing Fig. 3, we follow our recommendation in Section S2.3
and remove outlier observations. More specifically, we consider a county-year observation
an outlier if the number of builtup pixels in that year is more than twice as large as the
median number of builtup pixels among all observations from the same county or if more
than ten percent of the observation’s pixels are covered by clouds.

S2.6 Combination of surface groups and GHSL data

While this Section S2 has shown how the surface groups can function as one proxy for eco-
nomic activity, combining them with other metrics can further improve our understanding
of regional economic activity. As an example, in Tables S23 and S24 we combine our six
surface groups with GHSL built-up volume for GDP and household income, respectively.
The regressions in these tables correspond to the model in Eq. S4 but use both surface
groups and GHSL built-up volume as independent variables. We find that the combina-
tion of the two data sources outperforms the separate specifications in proxying economic
activity, explaining 86.8% of the variation in county-level GDP and 73.1% of the variation
in grid-level household income.

These results indicate that combining proxies can improve the prediction of economic
activity. Studies that do not require specific information available in only one dataset
(such as the consecutive annual time series of the surface or the height dimension of
the GHSL data) can thus benefit from combining data sources. Further examining how
economic proxies can be combined for analyzing regional economic activity thus provides
great opportunities for future research.
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Fig. S2. Reference map of German federal states and their capitals.
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Fig. S3. Spatial and temporal distribution of GDP residuals for surface groups. Maps
illustrate residuals from the regression in column 2 of Table S9.
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Fig. S4. Spatial and temporal distribution of GDP residuals for DMSP OLS night light
intensity. Maps illustrate residuals from the regression in column 4 of Table S9.
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Fig. S5. Adj. R2 by county-size group. Values stem from separate regressions of surface
groups on GDP corresponding to the specification in column 2 of Table S9
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Fig. S6. Spatial and temporal distribution of household income residuals for surface
groups. Maps illustrate residuals from the regression in column 2 of Table S10. Maps
show an area at the borders of the four federal states Rhineland-Palatinate, Hesse, Baden-
Württemberg, and Bavaria.
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Fig. S7. Spatial and temporal distribution of household income residuals for DMSP OLS
night light intensity. Maps illustrate residuals from the regression in column 4 of Table
S10. Maps show an area at the borders of the four federal states Rhineland-Palatinate,
Hesse, Baden-Württemberg, and Bavaria.

41



Fig. S8. Distribution of municipality-county difference in the change in predicted stan-
dardized ln(GDP ) between 2000 and 2013 for surface groups-based and DMSP OLS night
light intensity-based prediction. Figure shows univariate kernel density estimates at 300
points using the Epanechnikov kernel function with a kernel half-width of 0.025.
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Fig. S9. Surface groups, DMSP OLS night light intensity, predictions of standardized
ln(GDP ), changes in predicted standardized ln(GDP ), and municipality-county differ-
ences in the changes in predicted standardized ln(GDP ). Maps show the county of
Wunsiedel (situated in south-east Germany at the border to the Czech Republic).
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Table S9. OLS prediction of GDP using surface groups and using
DMSP OLS night light intensity (county level, 2000–2013)

DMSP OLS
Surface groups night light intensity

Dep. var.: ln(GDP ) (1) (2) (3) (4)

ln(builtup+ 1) 1.625∗∗∗ 1.368∗∗∗

(0.029) (0.035)
ln(grass+ 1) -0.050∗∗∗ -0.132∗∗∗

(0.015) (0.013)
ln(crops+ 1) -0.354∗∗∗ -0.269∗∗∗

(0.012) (0.012)
ln(forest+ 1) -0.095∗∗∗ -0.162∗∗∗

(0.011) (0.011)
ln(noveg + 1) -0.408∗∗∗ -0.246∗∗∗

(0.016) (0.015)
ln(water + 1) -0.153∗∗∗ 0.002

(0.017) (0.015)
ln(NLDMSPOLS + 1) 0.532∗∗∗ 0.432∗∗∗

(0.015) (0.017)
Year FE No Yes∗∗∗ No Yes∗∗∗

Federal state FE No Yes∗∗∗ No Yes∗∗∗

N 5,402 5,402 5,402 5,402
Adj. R2 0.439 0.623 0.230 0.471

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S10. OLS prediction of household income using surface groups
and using DMSP OLS night light intensity (grid level, 2009–2013)

DMSP OLS
Surface groups night light intensity

Dep. var.: ln(HHI) (1) (2) (3) (4)

ln(builtup+ 1) 1.449∗∗∗ 1.412∗∗∗

(0.002) (0.002)
ln(grass+ 1) -0.090∗∗∗ -0.126∗∗∗

(0.002) (0.002)
ln(crops+ 1) -0.422∗∗∗ -0.371∗∗∗

(0.002) (0.002)
ln(forest+ 1) -0.053∗∗∗ -0.066∗∗∗

(0.001) (0.001)
ln(noveg + 1) -0.200∗∗∗ -0.173∗∗∗

(0.001) (0.001)
ln(water + 1) -0.268∗∗∗ -0.211∗∗∗

(0.001) (0.001)
ln(NLDMSPOLS + 1) 0.936∗∗∗ 0.953∗∗∗

(0.002) (0.002)
Year FE No Yes∗∗∗ No Yes∗∗∗

Federal state FE No Yes∗∗∗ No Yes∗∗∗

N 737,626 737,626 737,626 737,626
Adj. R2 0.636 0.675 0.272 0.307

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S11. OLS prediction of GDP using surface groups and using
VIIRS night light intensity (county level, 2014–2018)

VIIRS
Surface groups night light intensity

Dep. var.: ln(GDP ) (1) (2) (3) (4)

ln(builtup+ 1) 1.419∗∗∗ 1.249∗∗∗

(0.040) (0.049)
ln(grass+ 1) -0.054∗∗ -0.151∗∗∗

(0.026) (0.024)
ln(crops+ 1) -0.312∗∗∗ -0.233∗∗∗

(0.018) (0.019)
ln(forest+ 1) -0.165∗∗∗ -0.205∗∗∗

(0.018) (0.019)
ln(noveg + 1) 0.028 0.043

(0.033) (0.030)
ln(water + 1) -0.239∗∗∗ -0.043∗

(0.024) (0.022)
ln(NLV IIRS + 1) 0.482∗∗∗ 0.382∗∗∗

(0.025) (0.026)
Year FE No Yes∗∗∗ No Yes
Federal state FE No Yes∗∗∗ No Yes∗∗∗

N 1,995 1,995 1,995 1,995
Adj. R2 0.499 0.667 0.213 0.469

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S12. OLS prediction of household income using surface groups
and using VIIRS night light intensity (grid level, 2014–2016)

VIIRS
Surface groups night light intensity

Dep. var.: ln(HHI) (1) (2) (3) (4)

ln(builtup+ 1) 1.297∗∗∗ 1.275∗∗∗

(0.002) (0.002)
ln(grass+ 1) -0.123∗∗∗ -0.160∗∗∗

(0.002) (0.002)
ln(crops+ 1) -0.356∗∗∗ -0.324∗∗∗

(0.002) (0.002)
ln(forest+ 1) -0.076∗∗∗ -0.074∗∗∗

(0.002) (0.002)
ln(noveg + 1) -0.061∗∗∗ 0.058∗∗∗

(0.002) (0.002)
ln(water + 1) -0.222∗∗∗ -0.184∗∗∗

(0.002) (0.001)
ln(NLV IIRS + 1) 1.394∗∗∗ 1.377∗∗∗

(0.003) (0.003)
Year FE No Yes∗∗∗ No Yes∗∗∗

Federal state FE No Yes∗∗∗ No Yes∗∗∗

N 446,524 446,524 446,524 446,524
Adj. R2 0.671 0.700 0.497 0.518

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S13. OLS prediction of GDP using surface
groups, using GHSL built-up surface, and using GHSL
built-up volume (county level, 2000–2015 in 5-year in-
tervals)

GHSL GHSL
Surface built-up built-up
groups surface volume

Dep. var.: ln(GDP ) (1) (2) (3)

ln(builtup+ 1) 1.296∗∗∗

(0.059)
ln(grass+ 1) -0.119∗∗∗

(0.022)
ln(crops+ 1) -0.258∗∗∗

(0.020)
ln(forest+ 1) -0.176∗∗∗

(0.021)
ln(noveg + 1) -0.096∗∗∗

(0.029)
ln(water + 1) -0.049∗∗∗

(0.028)
ln(GHSLsurface + 1) 0.803∗∗∗

(0.030)
ln(GHSLvolume + 1) 1.003∗∗∗

(0.021)
Year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

Federal state FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 1,550 1,550 1,550
Adj. R2 0.644 0.643 0.831

Robust standard errors in parentheses. All models in-
clude intercept. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S14. OLS prediction of household income using
surface groups, using GHSL built-up surface, and using
GHSL built-up volume (grid level, 2005–2015 in 5-year
intervals)

GHSL GHSL
Surface built-up built-up
groups surface volume

Dep. var.: ln(HHI) (1) (2) (3)

ln(builtup+ 1) 1.363∗∗∗

(0.003)
ln(grass+ 1) -0.164∗∗∗

(0.002)
ln(crops+ 1) -0.342∗∗∗

(0.002)
ln(forest+ 1) -0.066∗∗∗

(0.002)
ln(noveg + 1) -0.111∗∗∗

(0.002)
ln(water + 1) -0.227∗∗∗

(0.002)
ln(GHSLsurface + 1) 0.468∗∗∗

(0.001)
ln(GHSLvolume + 1) 0.416∗∗∗

(0.001)
Year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

Federal state FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 438,601 438,601 438,601
Adj. R2 0.694 0.551 0.578

Robust standard errors in parentheses. All models in-
clude intercept. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S15. FE prediction of GDP using surface groups and using DMSP OLS night
light intensity (county level, 2000–2013)

County FE County FE
covariates through within-estimator

DMSP DMSP
OLS night OLS night

No Surface light No Surface light
proxy groups intensity proxy groups intensity

Dep. var.: ln(GDP ) (1) (2) (3) (4) (5) (6)

ln(builtup+ 1) 0.023∗∗∗ 0.023∗∗∗

(0.006) (0.007)
ln(grass+ 1) -0.002 -0.002

(0.006) (0.006)
ln(crops+ 1) -0.021∗∗∗ -0.021∗∗∗

(0.005) (0.005)
ln(forest+ 1) 0.007 0.007

(0.005) (0.007)
ln(noveg + 1) -0.012∗∗∗ -0.012∗∗∗

(0.003) (0.003)
ln(water + 1) 0.001 0.001

(0.003) (0.004)
ln(NLDMSPOLS + 1) 0.076∗∗∗ 0.076∗∗∗

(0.010) (0.010)
Year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 5,402 5,402 5,402 5,402 5,402 5,402
Adj. R2 0.996 0.996 0.996
Adj. within-R2 0.295 0.301 0.307

Robust standard errors in parentheses. All models include intercept. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table S16. FE prediction of household income using surface groups and using DMSP
OLS night light intensity (grid level, 2009–2013)

Grid cell FE Grid cell FE
covariates through within-estimator

DMSP DMSP
OLS OLS
night night

No Surface light No Surface light
proxy groups intensity proxy groups intensity

Dep. var.: ln(HHI) (1) (2) (3) (4) (5) (6)

ln(builtup+ 1) 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001)
ln(grass+ 1) 0.000 0.000

(0.000) (0.000)
ln(crops+ 1) 0.004∗∗∗ 0.004∗∗∗

(0.000) (0.000)
ln(forest+ 1) 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000)
ln(noveg + 1) -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)
ln(water + 1) -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)
ln(NLDMSPOLS + 1) -0.000 -0.000

(0.001) (0.001)
Year FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 737,626 737,626 737,626 737,626 737,626 737,626
Adj. R2 0.997 0.997 0.997
Adj. within-R2 0.044 0.044 0.044

Robust standard errors in parentheses. All models include intercept. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table S17. OLS prediction of GDP using surface groups and using DMSP OLS
night light intensity with standardized variables (county level, 2000–2013)

DMSP OLS
Surface groups night light intensity

Dep. var.: standardized ln(GDP ) (1) (2) (3) (4)

standardized ln(builtup+ 1) 1.975∗∗∗ 1.642∗∗∗

(0.035) (0.041)
standardized ln(grass+ 1) -0.109∗∗∗ -0.285∗∗∗

(0.032) (0.028)
standardized ln(crops+ 1) -0.771∗∗∗ -0.585∗∗∗

(0.026) (0.025)
standardized ln(forest+ 1) -0.224∗∗∗ -0.381∗∗∗

(0.025) (0.027)
standardized ln(noveg + 1) -0.782∗∗∗ -0.471∗∗∗

(0.032) (0.029)
standardized ln(water + 1) -0.296∗∗∗ 0.003

(0.033) (0.030)
standardized ln(NLDMSPOLS + 1) 0.486∗∗∗ 0.395∗∗∗

(0.014) (0.015)
Year FE No Yes∗∗∗ No Yes∗∗∗

Federal state FE No Yes∗∗∗ No Yes∗∗∗

N 5,402 5,402 5,402 5,402
Adj. R2 0.439 0.623 0.230 0.471

Robust standard errors in parentheses. All models include intercept. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table S18. OLS prediction of asset wealth index in African
countries using surface groups (village level)

Guinea Togo Uganda Zimbabwe
Dep. var.: AWI (1) (2) (3) (4)

ln(builtup+ 1) 0.430∗∗∗ 0.559∗∗∗ 0.774∗∗∗ 0.668∗∗∗

(0.066) (0.051) (0.041) (0.034)
ln(grass+ 1) 0.321∗∗∗ -0.038 -0.050 -0.248∗∗∗

(0.093) (0.083) (0.043) (0.093)
ln(crops+ 1) -0.452∗∗∗ -0.458∗∗∗ -0.559∗∗∗ -0.403∗∗∗

(0.115) (0.089) (0.052) (0.073)
ln(forest+ 1) -0.298∗∗∗ 0.030 0.007 -0.182∗∗∗

(0.076) (0.054) (0.028) (0.060)
ln(noveg + 1) -0.039 -0.042 -0.265∗∗∗ 0.014

(0.054) (0.040) (0.021) (0.063)
ln(water + 1) 0.236∗∗∗ -0.067∗∗∗ 0.021 0.184∗∗∗

(0.059) (0.024) (0.017) (0.032)
Year FE n/a n/a Yes∗∗∗ Yes∗∗∗

%cloud 0.466 -0.081 -0.365 0.198
(0.627) (0.379) (0.268) (0.644)

N 300 300 778 793
R2 0.624 0.663 0.533 0.457

Robust standard errors in parentheses. All models include in-
tercept. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. AWI denotes the
DHS-based asset wealth index from prior work (72). Available
years are 2012 for Guinea, 2013 for Togo, 2009, 2011, and 2014
for Uganda, and 2010 and 2015 for Zimbabwe.
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Table S19. OLS prediction of asset wealth index in African
countries using surface groups (district level)

Guinea Togo Uganda Zimbabwe
Dep. var.: AWI (1) (2) (3) (4)

ln(builtup+ 1) 0.226 0.738∗∗ 0.424∗∗∗ 0.242∗

(0.211) (0.249) (0.076) (0.123)
ln(grass+ 1) 0.751∗∗ -0.300 0.106∗∗ -0.485∗∗

(0.320) (0.307) (0.046) (0.224)
ln(crops+ 1) -0.766∗∗ -0.611∗ -0.462∗∗∗ -0.125

(0.371) (0.290) (0.074) (0.205)
ln(forest+ 1) -1.034∗∗∗ 0.239 0.018 -0.085

(0.265) (0.197) (0.029) (0.128)
ln(noveg + 1) -0.230 -0.016 -0.201∗∗∗ 0.118

(0.198) (0.140) (0.030) (0.116)
ln(water + 1) 0.934∗∗∗ -0.043 -0.034∗∗∗ 0.151∗

(0.259) (0.150) (0.010) (0.081)
Year FE n/a n/a Yes∗∗∗ Yes∗∗∗

%cloud -19.351∗∗∗ -1.979 -8.864∗∗ -16.622
(5.772) (8.518) (4.218) (16.197)

N 34 21 397 120
R2 0.657 0.675 0.389 0.227

Robust standard errors in parentheses. All models include in-
tercept. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. AWI denotes the
DHS-based asset wealth index from prior work (72). Available
years are 2012 for Guinea, 2013 for Togo, 2009, 2011, and 2014
for Uganda, and 2010 and 2015 for Zimbabwe.
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Table S20. OLS prediction of single-variable proxy for GDP using
surface groups and using DMSP OLS night light intensity (county level,
2000–2013)

DMSP OLS
Surface groups night light intensity

Training Left-out Training Left-out
sample sample sample sample

Dep. var.: ln(GDP ) (1) (2) (3) (4)

ln(builtup+ 1) 1.368∗∗∗

(0.083)
ln(grass+ 1) -0.172∗∗∗

(0.025)
ln(crops+ 1) -0.221∗∗∗

(0.025)
ln(forest+ 1) -0.084∗∗∗

(0.021)
ln(noveg + 1) -0.212∗∗∗

(0.027)
ln(water + 1) -0.087∗∗∗

(0.031)
ln(NLDMSPOLS + 1) 0.296∗∗∗

(0.036)
̂ln(GDP ) from (1) 1.067∗∗∗

(0.032)
̂ln(GDP ) from (3) 1.727∗∗∗

(0.073)
Year FE Yes∗∗∗ Yes Yes Yes
Federal state FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 1,324 2,764 1,324 2,764
Adj. R2 0.643 0.632 0.475 0.506

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S21. OLS prediction of single-variable proxy for household
income using surface groups and using DMSP OLS night light intensity
(grid level, 2009–2013)

DMSP OLS
Surface groups night light intensity

Training Left-out Training Left-out
sample sample sample sample

Dep. var.: ln(HHI) (1) (2) (3) (4)

ln(builtup+ 1) 1.415∗∗∗

(0.005)
ln(grass+ 1) -0.128∗∗∗

(0.003)
ln(crops+ 1) -0.381∗∗∗

(0.003)
ln(forest+ 1) -0.066∗∗∗

(0.002)
ln(noveg + 1) -0.179∗∗∗

(0.003)
ln(water + 1) -0.214∗∗∗

(0.003)
ln(NLDMSPOLS + 1) 0.943∗∗∗

(0.005)
̂ln(HHI) from (1) 0.999∗∗∗

(0.001)
̂ln(HHI) from (3) 1.016∗∗∗

(0.004)
Year FE Yes∗∗∗ Yes Yes∗∗∗ Yes
Federal state FE Yes∗∗∗ Yes∗∗∗ Yes∗∗∗ Yes∗∗∗

N 184,323 368,088 184,323 368,088
Adj. R2 0.672 0.676 0.308 0.309

Robust standard errors in parentheses. All models include intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table S22. OLS prediction
of GDP using surface groups
(county level, 2000–2018)

Dep. var.: ln(GDP ) (1)

ln(builtup+ 1) 1.307∗∗∗

(0.029)
ln(grass+ 1) -0.114∗∗∗

(0.012)
ln(crops+ 1) -0.259∗∗∗

(0.010)
ln(forest+ 1) -0.187∗∗∗

(0.010)
ln(noveg + 1) -0.185∗∗∗

(0.013)
ln(water + 1) -0.006

(0.013)
Year FE Yes∗∗∗

Federal state FE Yes∗∗∗

%cloud -5.029∗∗∗

(0.792)

N 7,397
Adj. R2 0.630

Robust standard errors in
parentheses. Model includes in-
tercept. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01.
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Table S23. OLS predic-
tion of GDP combining surface
groups and GHSL built-up vol-
ume (county level, 2000–2015 in
5-year intervals)

Dep. var.: ln(GDP ) (1)

ln(builtup+ 1) -0.058
(0.041)

ln(grass+ 1) 0.056∗∗∗

(0.014)
ln(crops+ 1) -0.135∗∗∗

(0.013)
ln(forest+ 1) -0.013

(0.012)
ln(noveg + 1) 0.025

(0.017)
ln(water + 1) 0.003

(0.018)
ln(GHSLvolumne + 1) 1.103∗∗∗

(0.024)
Year FE Yes∗∗∗

Federal state FE Yes∗∗∗

%cloud -0.677
(1.028)

N 1,550
Adj. R2 0.868

Robust standard errors in paren-
theses. Model includes intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table S24. OLS prediction of
GDP combining surface groups
and GHSL built-up volume (grid
level, 2005–2015 in 5-year inter-
vals)

Dep. var.: ln(HHI) (1)

ln(builtup+ 1) 1.015∗∗∗

(0.003)
ln(grass+ 1) -0.131∗∗∗

(0.002)
ln(crops+ 1) -0.301∗∗∗

(0.002)
ln(forest+ 1) -0.035∗∗∗

(0.001)
ln(noveg + 1) -0.133∗∗∗

(0.002)
ln(water + 1) -0.170∗∗∗

(0.002)
ln(GHSLvolumne + 1) 0.174∗∗∗

(0.002)
Year FE Yes∗∗∗

Federal state FE Yes∗∗∗

%cloud 0.007
(0.051)

N 438,601
Adj. R2 0.731

Robust standard errors in paren-
theses. Model includes intercept.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table S25. OLS prediction of GDP using
surface groups (county level, 2000–2013)

Dep. var.: ln(GDP ) (1) (2)

ln(builtup+ 1) 1.642∗∗∗ 1.360∗∗∗

(0.029) (0.035)
ln(grass+ 1) -0.030∗∗ -0.116∗∗∗

(0.015) (0.014)
ln(crops+ 1) -0.357∗∗∗ -0.282∗∗∗

(0.012) (0.012)
ln(forest+ 1) -0.104∗∗∗ -0.172∗∗∗

(0.012) (0.012)
ln(noveg + 1) -0.407∗∗∗ -0.241∗∗∗

(0.016) (0.015)
ln(water + 1) -0.151∗∗∗ 0.002

(0.017) (0.015)
Year FE No Yes∗∗∗

Federal state FE No Yes∗∗∗

%cloud -2.327∗∗ -4.247∗∗∗

(0.960) (0.923)

N 5,402 5,402
Adj. R2 0.439 0.624

Robust standard errors in parentheses. All
models include intercept. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table S26. OLS prediction of house-
hold income using surface groups (grid level,
2009–2013)

Dep. var.: ln(HHI) (1) (2)

ln(builtup+ 1) 1.462∗∗∗ 1.426∗∗∗

(0.002) (0.002)
ln(grass+ 1) -0.0832∗∗∗ -0.118∗∗∗

(0.002) (0.002)
ln(crops+ 1) -0.413∗∗∗ -0.360∗∗∗

(0.001) (0.001)
ln(forest+ 1) -0.044∗∗∗ -0.057∗∗∗

(0.001) (0.001)
ln(noveg + 1) -0.200∗∗∗ -0.173∗∗∗

(0.001) (0.001)
ln(water + 1) -0.270∗∗∗ -0.214∗∗∗

(0.001) (0.001)
Year FE No Yes∗∗∗

Federal state FE No Yes∗∗∗

%cloud 0.804∗∗∗ 0.904∗∗∗

(0.052) (0.053)

N 737,626 737,626
Adj. R2 0.637 0.675

Robust standard errors in parentheses. All
models include intercept. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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S3 Example for application of surface groups in social science
research

In studying causal effects of higher education institutions in less developed East Ger-
many compared to developed West Germany (section Essential improvements in social
science research through surface groups data in the paper), we use our surface groups
proxy because it allows us to compare economic conditions in East and West German
regions before reunification. In addition, we use a dataset containing information on the
locations and opening years of University of Applied Sciences (UAS) campuses in Ger-
many from prior work (84),36 which collects this information primarily through extensive
online research. The original dataset extends back in time until 1980 and indicates the
exact locations, opening years, and study fields of all public UAS campuses in Germany.
Moreover, it contains annual municipality-level innovation outcomes based on patenting
activities.

For our analysis, we use a municipality-level excerpt from the prior work’s (84) dataset.
For each municipality, this excerpt indicates whether in a given year a municipality is
located within a 25-kilometer travel-distance radius of a UAS campus that offers study
fields in science, technology, engineering, and mathematics (STEM). This definition of
UAS campus areas and the restriction to STEM fields follow previous research on the
innovation effects of UAS campus openings in Switzerland (88–90).37 As innovation out-
comes, the excerpt includes two indicators of regional innovation—patent quantity and
patent quality. Patent quantity indicates the number of priority patent applications per
municipality and year and patent quality indicates the average number of forward cita-
tions three years after a patent’s publication per municipality and year. Both indicators
are constructed as in prior work on Swiss UASs (88) and constitute well-established in-
dicators for regional innovation (e.g., 91, 92). In the data excerpt we use in our analysis,
the indicators are retrieved from the European Patent Office’s Worldwide Patent Sta-
tistical Database (October 2019 version), which has complete information on patenting
activities from 1980 for West Germany and from 1991 for East Germany (84).38 This
data excerpt thus allows us to study causal effects of UASs immediately after the fall of
the Iron Curtain (for more details on the dataset and on UASs, see 84).

Descriptive analyses show that in 1991—that is, shortly after the fall of the Iron
Curtain—East German regions lag far behing West German ones in both patent quantity
and patent quality. Fig. S10 shows the differences between East and West German
municipalities from 1991 through 2015 in both outcomes.39 For both patent quantity
(Fig. S10 A) and patent quality (Fig. S10 B), the difference is positive throughout the
entire observation period, suggesting that East German municipalities had lower levels
than West German ones immediately after reunification and never reach the West German
levels. However, while the East-West gap increased in the first five to ten years after
reunification, those gaps have been closing since 2005. Based on this starting point, we can
use our surface groups proxy to examine whether the UASs helped close the gap between

36For developed countries, previous literature has shown the positive effects of higher education institu-
tions in general (e.g., 85, 86) and of UASs in particular (e.g., 87, 88).

37The 25-kilometer travel-distance radius is based on commuting behavior and the restriction to STEM
fields is done because patenting outcomes represent technological innovation rather than, for example,
social innovation (88–90).

38We thank Dietmar Harhoff from the Max Planck Institute for Innovation and Competition in Munich
for providing the patent data for this analysis.

39Due to its historical situation, we exclude the city of Berlin from this analysis.
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less developed East Germany and developed West Germany. That is, we analyze whether
UASs in East Germany yield different effects than UASs in West Germany and could thus
bring East German regions with a UAS closer to their West German counterparts.

For this analysis, we divide the post-reunification period (beginning in 1991) into
three-year periods p (i.e., p = 1993 denotes the first period from 1991 through 1993,
p = 1996 the second period from 1994 through 1996, etc.).40 We use the first three-
year period as the baseline period (representing the level of innovation immediately after
reunification) to compare the subsequent periods to this baseline. For every three-year
period, we calculate the means of the two outcome variables at the municipality level.

To ensure a comparison of regions with similar levels of economic activity before reuni-
fication, we use the surface groups data as the only reliable proxy for regional economic
development in East Germany before the fall of the Iron Curtain. More specifically, we
perform propensity-score matching to compare similar regions affected by a UAS campus
in East and West Germany, that is, regions that—other than being located in different
parts of the country—have similar pre-reunification characteristics. To do so, we focus
on municipalities with a UAS campus area in the first year of a three-year period p. To
ensure similarity in pre-reunification economic activity, we match East German munic-
ipalities and West German ones based on their average pre-reunification growth in the
six surface groups that proxy the pre-reunification trend in economic activity.41 Thus
we compare municipalities in East Germany with a UAS campus (denoted as East) to
similar municipalities in West Germany. We conduct separate analyses for the seven
three-year periods following the baseline period.42 As outcome variables, we use the dif-
ferences in patent quantity and patent quality between the observed three-year period
and the baseline period, denoted as PQUANdiff and PQUALdiff , respectively.

Our results of the propensity-score matching analysis in Table S27 show that the
increase in patent quantity is significantly smaller in East German UAS regions than in
West German ones until 2008, that is, even 17 years after reunification. The same type
of educational policy thus has very different effects in a developed country as compared
to a less developed, former communist country. Our surface groups proxy allows us to
perform these causal analyses that otherwise would have been impossible or less reliable.
Our detailed analyses also show that the effect on patent quality is roughly identical in
similar East and West German regions. This finding again supports the importance of
reliable data on economic activity at sufficiently disaggregated regional levels, such as the
surface groups proxy we develop in our paper.

40As graduates are one important channel of knowledge transfer from higher education institutions to the
private sector (e.g., 89, 93), we choose the minimum number of years a student needs for graduating
from a UAS to determine period length for this analysis, thus following previous studies on UASs in
Switzerland (e.g., 88, 89).

41Again, to achieve more valid results we follow our recommendation in Section S2.3 and remove outlier
observations, that is, municipality-year observations with a number of builtup pixels more than twice
as large as the median number of builtup pixels among all observations from the same municipality or
with more than ten percent cloud cover.

42These are the three-year periods 1994–1996, 1997–1999, 2000–2002, 2003–2005, 2006–2008, 2009–2011,
and 2012–2014. We do not consider the 2015–2017 period, because the underlying patent data are
complete only until 2018 and we need to end our observation period at least three years earlier to
ensure correct representation of the three-year citation window used to construct that patent quality
indicator.
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Fig. S10. Differences in patent quantity and patent quality between East and West
German municipalites. Differences calculated as West – East.
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Table S27. Propensity-score matching results on patent
quantity and patent quality, comparing UAS municipalities in
East and West Germany

PQUANdiff PQUALdiff

p N (1) (2)

ATT (East = 1) 1996 2,810 -0.542∗∗ 0.022
(0.256) (0.030)

1999 3,333 -1.045∗∗∗ 0.016
(0.327) (0.031)

2002 3,333 -1.382∗∗ 0.067
(0.552) (0.044)

2005 3,365 -1.197∗∗∗ -0.013
(0.454) (0.028)

2008 3,365 -1.091∗∗ 0.052∗

(0.503) (0.031)
2011 3,544 -1.082 0.040

(0.839) (0.031)
2014 3,556 -0.287 0.059∗

(0.443) (0.028)

Table shows average treatment effects on the treated (ATT).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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