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ABSTRACT Lipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their
lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respi-
ration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single
component lipid bilayers and calculated their viscosities. The viscosity was calculated via a Green-Kubo relation, with the stress-
tensor autocorrelation function modeled by a stretched exponential function. By simulating a series of lipids at different temper-
atures, we establish the dependence of viscosity on several aspects of lipid chemistry, including hydrocarbon chain length,
unsaturation, and backbone structure. Sphingomyelin is found to have a remarkably high viscosity, roughly 20 times that of
DPPC. Furthermore, we find that inclusion of the entire range of the dispersion interaction increases viscosity by up to
140%. The simulated viscosities are similar to experimental values obtained from the rotational dynamics of small chromophores
and from the diffusion of integral membrane proteins but significantly lower than recent measurements based on the deformation
of giant vesicles.
SIGNIFICANCE Viscosity is a critical property of cell membranes that is actively regulated and known to control the rate
of reactions that require the diffusion and encounter of proteins and small molecules. However, experimental
measurements span more than an order of magnitude in the obtained viscosity depending on the technique and analysis.
Extensive simulations of membrane viscosity are presented in order to make progress toward a unified understanding of
membrane viscosity.
INTRODUCTION

The fluidity of cellular membranes is essential for their
function. The diffusion of small-molecule electron carriers
controls the rate of respiration and therefore growth in bac-
teria (1); spatio-temporal patterning of B cells over tens to
hundreds of nanometers determines time-dependent phos-
phorylation of the B cell receptor, in turn determining the
response of the B cell (2). Therefore, it is not surprising
that cells actively regulate lipid synthesis to maintain
fluidity (3) and have evolved mechanisms that couple lipid
synthesis to proteins that detect changes in fluidity (4,5).

Although some general trends are established, a more
complete picture linking lipid chemistry to membrane vis-
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cosity would be of significant value for at least two reasons.
First, it would establish the range of accessible viscosities
and how to achieve them. How much can viscosity be
changed by upregulating unsaturation? What other aspects
of lipid chemistry impact membrane viscosity? Second, it
would help to rationalize why membranes have evolved
their particular lipid compositions, whether adapting to
life at 1000 bar (6) or in striking a balance between mobility
and (im)permeability.

Membrane viscosity has been challenging to measure
experimentally, hampering efforts to identify trends linking
chemistry (e.g., tail unsaturation and length) to changes in
viscosity. Available measurements include the tracking of
diffusing domains (7) or simultaneous observation of rota-
tional and translational diffusion of smaller objects (8);
video microscopy of fluctuating domain boundaries (9,10);
introducing flow over a hemispherical vesicle (11);
measuring optical trapping dynamics (12); and neutron
spin echo spectroscopy (13). The above methods vary in
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Viscosities from equilibrium simulations
the obtained viscosity because the membranes are slightly
different in composition, but they all report values in the
range 10� 9 to 10� 6 Pa m s. However, all of these methods
are demanding to implement and difficult to ‘‘scale up’’ to
compare across many different lipids. This last problem is
addressed by a clever new approach, reported recently by
Faizi et al. (14). The surface shear viscosity of the mem-
brane enters into the relation between the vesicle aspect ra-
tio and applied field, as shown by Vlahovska (15). Faizi
et al. report viscosities for eight different lipids and lipid
mixtures in giant unilamellar vesicles, obtaining values
ranging from 4 to 60 �10� 9 Pa m s, consistent with earlier
measurements. This is a significant advance, as it permits
the collection of viscosities for many lipids and lipid
mixtures.

However, other measurements report significantly lower
values for membrane viscosity. Ramadurai et al. (16)
measured diffusion constants of membrane proteins (with
sizes ranging from 1 to 36 transmembrane helical segments)
reconstituted into giant unilamellar vesicles. The data were
in good agreement with the quasi-2D hydrodynamic theory
of Saffman and Delbruck (17), with the fit yielding a viscos-
ity of about 30 � 10� 11 Pa m s. Measurements based on the
rotational diffusion of small chromophores typically yield
values in the range of 50 to 500 � 10� 11 Pa m s (3). Mea-
surements based on the intramolecular dynamics of small
chromophores generally yield values 10� lower still (18).
Thus, there is a discrepancy among experimental reports,
with rotational and translational diffusion of small mole-
cules and proteins consistently obtaining lower viscosities
than longer wavelength measurements.

A few simulation studies have also reported membrane
viscosities. A series of pioneering papers from den Otter
and coworkers (19,20) used the SLLOD method to impose
shearing boundary conditions, obtaining surface shear vis-
cosities for Martini lipids. Zgorski et al. used a similar
nonequilibrium approach to obtain viscosities for a few
all-atom lipids, modeled with the CHARMM36 all-atom
force-field (21). These simulations obtain values for the sur-
face viscosity that are closer to the diffusion-based measure-
ments referenced in the last paragraph. For example, the
simulated viscosity of DOPC (see Table 1 for the definition
of the abbreviation DOPC, as well as all other abbreviations
of lipid names used in this paper) was found to be 20 �
TABLE 1 Simulated lipids, their melting temperatures Tm , and the

Abbreviation Lipid

DLPC 1,2-dilauroyl-sn-glycero-3-phosphocholine

DMPC 1,2-dimyristoyl-sn-glycero-3-phosphocholine

DPPC 1,2-dipalmitoyl-sn-glycero-3-phosphocholine

POPC 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine

DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine

DOPC 1,2-dioleoyl-sn-glycero-3-phosphocholine

DAPC 1,2-diarachidonoyl-sn-glycero-3-phosphocholine

PSM N-palmitoyl-D-erythro-sphingosylphosphorylcholine
10� 11 Pa m s, about 20 times lower than the value reported
by Faizi et al. but consistent with the lower values obtained
by Ramadurai et al.

In the present work, simulated viscosities are reported for
15 different lipids and conditions, varying in chain compo-
sition and backbone, and over a 60� temperature range. The
viscosities are obtained from equilibrium simulations using
a Green-Kubo relation (22–26), together with a new analysis
based on an analytic approximation to the long-time
behavior of the Green-Kubo integral. Although it is techni-
cally challenging to obtain precise viscosity estimates from
equilibrium simulations, this approach eliminates complica-
tions arising from thermostatting nonequilibrium simula-
tions. The results reveal some expected trends: chain
unsaturation decreases viscosity, and viscosity increases
with chain length. One significant surprise is that the
viscosity of palmitoyl sphingomyelin is 20 times larger
than DPPC at the same temperature. Including the full range
of the dispersive tail of the van der Waals interactions
increases the viscosity of DPPC at 50�C from 8.6 �10� 11

to 20.4 �10� 11 Pa m s and DOPC at 30�C from
13.0 �10� 11 to 18.0 �10� 11 Pa m s. We find that the simu-
lated viscosities are in agreement with experimental
measurements based on rotational dynamics of small chro-
mophores and diffusion of integral membrane proteins but
are about 10� smaller than longer wavelength measure-
ments based on vesicle deformation.
MATERIALS AND METHODS

Simulations with standard cutoff treatment

System generation

Each system was built using the CHARMM-GUI Bilayer Builder (27–30).

It was initialized in a 10� 10 nm2 box, with 4 nm of water above and

below the bilayer, resulting in a roughly ð10 nmÞ3 cube with approximately

250–350 lipids and 80–100 TIP3P water molecules per lipid (31). The lipids

were modeled with the CHARMM36 force-field (32,33). The temperatures

selected are listed in Table 1. Each system was duplicated five times to

create five independent replicas. Simulations in this section used a standard

VFSWITCH truncation over the interval of 8 to 12 Å.

Minimization, equilibration

All simulations in this section were performed using the GROMACS

2020.4 simulation package. Initial minimization and equilibration followed
simulation temperature(s) Ts

Tail structure Tm ðKÞ Ts ðKÞ
12:0 271 286, 329

14:0 297 312, 329

16:0 314 329

16:0–18:1 271 283, 293, 303, 313, 323, 329

18:0 328 343

18:1 (D 9-cis) 256 283, 329

20:4 (cis) 204 329

d18:1/16:0 314 329
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the protocol provided by the CHARMM-GUI, as detailed in Table S1 (27–

30). All five replicas are generated from the same initial positions; the dif-

ferences arise in step ‘‘equilibration 1,’’ where the velocities are randomly

generated with a different seed for each replica.

After minimization and equilibration, a 5 ns NPT simulation was run,

saving the box sizes every 5 ps for each replica. Temperature control

used the Nose-Hoover extended ensemble method (34,35) set to the temper-

atures listed in Table 1 with a temperature coupling constant of 1 ps for the

lipids and water separately. Pressure control used the Parrinello-Rahman

extended ensemble method (36) with a pressure of 1 bar coupled semiiso-

tropically, compressibility of 4.5 � 10�5 bar�1, and a pressure coupling

constant of 5 ps. For each replica, the box sizes were analyzed for those

1000 frames, and the frame closest to the average xy-cross-sectional area
was selected. Each of the 5 replicas, therefore, had very slightly different

box dimensions. The full NVT production runs were initialized from these

snapshots.

NVT production simulations

The production simulations were performed under NVT conditions in order

to avoid systematic errors possibly introduced by pressure coupling algo-

rithms. Temperature control was provided by a Nose-Hoover thermostat

with the same parameters as above. Finally, the pressure tensor was stored

every frame (i.e., every 2 fs), which was necessary due to the high-fre-

quency oscillations in the stress autocorrelation function.
Simulations comparing standard and long-range
cutoffs

CHARMM (37) v.c45b1 and v.c46b1 were used for these simulations;

the latter was required for the Lennard-Jones particle-mesh Ewald (LJ-

PME) implementation (38). A total of 16 simulations with 288 lipids

were generated: two lipid types, DPPC or DOPC; two van der Waals

(VDW) treatments, truncation via VFSWITCH or long range via LJ-

PME; and four replicas of each lipid and VDW treatment pair. All simu-

lations used PME with a 10 Å real-space cutoff, k ¼ 0.34, and a grid

spacing of ca. 1 Å for the electrostatic term. The VFSWITCH treatment

truncates the VDW pair potential to zero with a force switching interval

of 8–12 Å, while LJ-PME computes pairwise energy inside the 10 Å cut-

off, and long-range particle-mesh VDW energy from a grid outside the

cutoff, using the same k and grid spacing as the electrostatic PME calcu-

lations. The VFSWITCH simulations employed the standard C36 lipid

force-field and TIP3P water model, while the LJ-PME simulations used

the recently released ‘‘all36_lipid_ljpme’’ force-field (39) with the same

TIP3P water model. The volumes chosen for each of the lipid and

VDW treatments represented an average from NPT simulations of each

pairing.

Coordinate sets for the NVT simulations were derived from the

average unit cell sizes from NPT simulations. The DPPC/VFSWITCH

replicate simulations used an existing coordinate set (40) with different

random initial velocities assigned for each replicate. For all others,

especially the LJ-PME systems, new NPT simulations were performed

using the same simulation conditions that would be used for each

NVT replicate. After determining the average cell size, NPT coordinate

sets that closely matched the average size were selected, and replicates

with new random initial velocities were begun. The sizes and run

times for the NVT simulations are listed in Table S2. All simulations

saved the pressure tensor from every integration step for the viscosity

calculations and coordinate sets at 50 ps intervals for diffusion

calculations.

The viscosity calculations used timeseries of the Pxy element of the pres-

sure tensor, sampled at 2 fs intervals. The correlation function of the fluc-

tuations about the average was computed, and the integral from 0 to

10 ns was stored in Pa m s viscosity units. These files were used as input

to the Python code that was used to perform the stretched exponential fits
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to obtain the total lateral viscosity htot and thereby the surface viscosity

hmem after accounting for the water thickness.

To obtain the viscosity of bulk TIP3P water with LJ-PME, a cubic box of

2665 water molecules was used for five simulations in the NPT ensemble

using the same conditions as the lipid simulations at temperatures of

20�C, 25�C, 30�C, 40�C, and 50�C. All five were run for 45 ns, the average

volume over the last 40 ns was computed, and the simulation frame with

volume closest to the average was extracted for each temperature. The ex-

tracted coordinates and unit cell sizes were then used to start five 45 ns

NVT ensemble simulations, one at each temperature, saving the pressure

tensor from each 1 fs integration step via the IUPTEN keyword. At each

temperature, the viscosity integral was computed via the Green-Kubo rela-

tion using the averaged correlation functions of the Pxy, Pyz, and Pxz tensor

elements from the last 42 ns of the respective simulation. Standard errors

were determined using three 14 ns blocks; the plateau value was computed

as the average over the 2–4 ps range of the integral. The computed viscos-

ities (Table S3) are higher than those calculated with an 8–12 Å cutoff on

the LJ parameters (41) but are still substantially lower than experiments

(last column of the table).

To compute the lateral lipid diffusion constants Dsim, coordinate trajec-

tories were image unfolded to remove any translations added to preserve

the packing of the periodic cell during the simulation. Timeseries for the

center of mass (COM) motion of each lipid and for each bilayer leaflet

were then computed from the unfolded coordinates; each lipid COM times-

eries was corrected for leaflet drift by subtracting the corresponding leaflet

COM timeseries. For lateral diffusion in a system with the surface normal

aligned with z, only the x and y coordinates of the lipid COM are used to

compute the mean-squared displacement. The mean-squared displacement

averaged over all lipids was used to compute Dsim from the slope of a linear

fit over the range 10–100 ns for these systems. The average and standard

error of Dsim were computed using the four replicate simulations for each

system.

As shown by Camley et al. (42), diffusion constants obtained from sim-

ulations of membranes carried out with periodic boundary conditions

contain substantial artifacts because of long-wavelength hydrodynamic in-

teractions predicted by the Saffman-Delbruck equation (17). Consequently,

Dsim must be extrapolated to infinite system size ðDNÞ to sensibly compare

simulated and experimental diffusion constants. The procedure used here is

based on the periodic Saffman-Delbruck (SD) equation developed by Cam-

ley et al. (42):

DPBC ¼ kBT

2L2

X
ks0

AðkÞ
AðkÞ2 � BðkÞ2e

� k2b2R2=2 (1)

k T
Z

d2k AðkÞ 2 2 2
DN ¼ B

2 ð2pÞ2 AðkÞ2 � BðkÞ2e
� k b R =2 (2)

AðkÞ ¼ h k2 þ h k cothðhwkÞ þ b
mono w

/hmonok
2 þ hwk þ b as hw/N

BðkÞ ¼ hwk cschðhwkÞ þ b
/b as hw/N

:

The symbols here are DPBC, the diffusion constant obtained from a simu-

lation carried out with periodic boundary conditions; L, the bilayer edge

length; hw, the total thickness of the water layer above and below the

bilayer; R, the particle radius; hmem, the membrane surface viscosity;

hmono ¼ hmem=2 the monolayer surface viscosity; hw, the viscosity of the

surrounding water; b, theinterleaflet friction; and b ¼ 0:828494. Equa-

tion 1 is both a generalization of the SD equation (17) for periodic systems

and an extension to particles that reside in only one leaflet (i.e., monotopic).

While the SD equation is considered reliable for transmembrane proteins



FIGURE 1 A snapshot of a single frame of a DOPC simulation, as an

example. Note especially the shear direction being measured in the present

work, in the in-plane ðxyÞ direction, in yellow. Symbols L (the length along

x and y), H (the height of the cell along bilayer normal z), h (the bilayer

thickness), and hw (the total thickness of the water layer across the periodic

boundary) are used in formulas later in this article. Note that H ¼ hþ hw.

To see this figure in color, go online.
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with large hydrodynamic radii, its application to membrane lipids was only

recently shown to be valid (43).

In principle, DPBC and DN can be calculated directly from the preceding

quantities. In practice, this is presently not possible because not all of the

parameters are directly available for all lipids, and those that are contain

large uncertainties. Here, DPBC is replaced by Dsim, and the Bayesian

method described in the appendix of (40) is used to obtain DN consistent

with Eq. 1 and with the uncertainties of each variable. The web-based im-

plementation of this program can be found at https://diffusion.lobos.nih.

gov/bayes.html; 50,000 iterations of Monte-Carlo based sampling were

used to compute the results reported here. Note, AðkÞ and BðkÞ are written
in terms of hw=2 in (40) and (42).

L, H, and hmem were calculated directly for each trajectory; hw for TIP3P

water with an 8–12 Å LJ cutoff at each temperature were calculated previ-

ously (41), and those for LJ-PME for this article (see results) using the same

protocol were calculated as described above. The interleaflet friction was

set to 4.59 � 107 Pa s m�1 for DOPC, a value recently determined from

shearing experiments on supported membranes (44), and b ¼ 2� 107

Pa s m�1, approximately half that of DOPC, consistent with previous

nonequilibrium shearing simulations (21). The hydrodynamic radius would

seem to be simply related to the surface area assuming that the lipid is a

rigid cylinder, but a recent simulation study (21) with independently calcu-

lated hmem and b indicated that R is substantially smaller, as might be ex-

pected for soft cylinder. DN is relatively insensitive to the interleaflet

friction (40), but there is coupling of b and R. Specifically, R increases

from 2 to 3 to 4.5 Å when b is decreased to 1 � 106 Pa s m�1, but the dis-

tributions of R become skewed.
Data analysis

Green-Kubo relation

The shear viscosity h of a homogeneous fluid is related to the fluctuating

part of the stress tensor (PabðtÞ, asb) by a Green-Kubo relation

(22,23,45):

h ¼ 1

kBT V

Z N

0

CPabðs � tÞPabðsÞDsdt (3)

In three dimensions, ða;b ¼ x;y;or zÞ, V is the volume of the system, and

T is the absolute temperature. The argument of the integral

CPabðs � tÞPabðsÞDs ¼ CabðtÞ (4)

is the autocorrelation function of Pab at lag times t. An example is shown

in Fig. 2 for Pxy for a lipid bilayer simulation in which the bilayer lies
FIGURE 2 Example in-plane off-diagonal stress tensor autocorrelation

function CabðtÞ. Note the short-time scale and the oscillations centered

slightly above 0. To see this figure in color, go online.
parallel to the xy plane. (Because the goal of this work is to determine

the in-plane surface shear viscosity, all calculations use only this compo-

nent of the pressure tensor. See Fig. 1.) Resolving high-frequency oscilla-

tions in CabðtÞ necessitate sampling the pressure tensor every 2 fs—

sampling less frequently results in overestimation of the Green-Kubo

integral.

Given an infinitely long simulation, the integral in Equation 3 would

asymptote to a value equal to the shear viscosity. In practice, the finite

duration of the simulation means that the correlation function is

poorly sampled at lag times longer than about 1/10 of the total trajec-

tory length, and its integral (as discussed in more detail below)

systematically underestimates the true asymptote. Direct numerical imple-

mentation of Eq. 3 would therefore require choosing an upper bound t for

the integral

hðtÞ ¼ 1

kBT V

Z t

0

CabðsÞds: (5)
A cursory examination of several autocorrelation integrals (shown in

Figs. S1 and S2) suggests that the choice of integration limit t is not obvious

by inspection—it clearly depends on the system and can have a significant

impact on the obtained viscosity.

An alternative is to describe the stress tensor autocorrelation by a simple

function, the integral of which is known analytically. Then, an estimate for

the infinite time h is obtained by 1) numerically integrating the simulated

autocorrelation function; 2) fitting this to the analytic form; and 3) obtain-

ing the infinite time limit of the resulting analytic fit. This is the procedure

used in this work.

Stress tensor autocorrelation functions for complex fluids (such as en-

tangled polymer melts) are often found to be fit quite well by a stretched

exponential function (Eq. 6) (46). Although this is strictly an empirical

approach, one can readily imagine a series of relaxation processes, each

occurring on a different timescale (47), which together are well-described

by a stretched exponential:

CabðtÞza exp

"
�

�
t

t0

�1=b
#
: (6)
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The integral of the stretched exponential is analytic:

hðtÞ ¼ 1

kBT V

Z t

0

CxyðsÞds

za

Z t

0

exp
h
� ðs=t0Þ1=b

i
ds

¼ a b t0 g

"
b;

�
t

t0

�1=b
# ; (7)

where g is the lower incomplete gamma function, usually defined asZ x
g½b; x� ¼
0

ub� 1e� udu: (8)

The last line in Eq. 7 is the analytic form that is fit to the numerically ob-
tained integral of CxyðtÞ. Data points are weighted in the fit by the inverse of
the variance among the five replicas; the fits are therefore determined mostly

by the best-determined portion of the data. In other words, the long-time

behaviorof the integrated correlation function ispredicted fromits (well-deter-

mined) short-time behavior under a particular assumption for its functional

form. (Fits to single- or bi-exponential decays are clearly poor. See Fig. S5.)

The fit to Eq. 7 is highly nonlinear, and care must be taken when selecting

an algorithm for the fit. With a careful choice of initial parameters for the fit,

least squares is adequate, but a comparison with a basin-hopping method

(48) demonstrates that the latter is more robust to the choice of initial values

for the parameters, as shown in Fig. S6.

The plateau value of hðtÞ is then obtained by a straightforward infinite-

time limit of Eq. 7:

lim
t/N

hðtÞ ¼ lim
t/N

a b t0 g

"
b;

�
t

t0

�1=b
#

¼ a b t0 G½b� ¼ hsys;

(9)

where G½b� is the usual gamma function. Note that this obtains the viscosity

of the entire simulation system (membrane and water) for shearing parallel
to the membrane. In the results, the fit parameter b is reported and typically

varies between five and 10. Rather than report t0, the mean relaxation time

CtDht0G½bþ1� is reported, which in is typically between 100 fs and 20 ps.
Systematic errors in fits to integrated correlation
functions

After inspecting many fits of the data to Eq. 7, it was noted that the apparent

asymptotes of the simulation data were systematically lower than those pre-

dicted by the fits, sometimes by a significant amount (see Fig. S3). We sus-

pected that this is a generic feature of fitting an integrated autocorrelation

function. In order to test this idea, we developed an algorithm to generate

random timeseries with a stretched exponential correlation as in Eq. 6.

(Note that this is nontrivial since the generated timeseries are non-

Markovian. An efficient implementation is described in the supporting ma-

terials and methods under ‘‘generating random data with a stretched-expo-

nential autocorrelation function.’’)

Fig. S8 shows timeseries generated for four different stretching expo-

nents b from b ¼ 1 to b ¼ 8. In each case, the mean relaxation time

CtD ¼ 200, and 10 different random timeseries are generated and averaged,

each with a duration of 200,000 steps. For exponential decay ðb ¼ 1Þ, the
numerical data reach an asymptote that is in good agreement with the un-

derlying analytic expression already for timeseries that are 10t in duration,

in line with a commonly accepted rule of thumb for statistical analysis of

correlation functions. However, for stretching exponents of b ¼ 2 and

greater, the apparent asymptote of the numerical data systematically under-
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shoot the true asymptote of the underlying correlation in a manner that is

very similar to that seen in the molecular dynamics simulation data in

Fig. 8. This behavior becomes more extreme as the correlations become

more stretched. These observations caution against relying on the apparent

asymptote of the numerical integral.
Accounting for the water viscosity

Equation 9 gives the viscosity hsys of the entire system—membrane and wa-

ter together. To obtain the viscosity of the membrane only, we assume that

the water-bilayer system (of total height H) can be represented as two slabs:
one of membrane (with thickness h, so H ¼ hþ hw) and another of water

(see Fig. 1). Assuming constant stress throughout the system, the stress adds

across the slabs as

H Psys
xy ¼ h Pmem

xy þ hwP
w
xy; (10)

wherePmem is the stress tensor in the membrane andPw is the stress tensor

in the water. Considering some (small) shear rate _ε, the relationship be-
tween the stress tensor and the viscosity is

Pxy ¼ � _εh (11)

which, together with Eq. 10, shows that the viscosities of the slabs add

3D
H hsys ¼ h hmem þ hwhw: (12)

This remains true at any shear rate, even as _ε/0.

Equation 12 divides the total system viscosity between the membrane

and the water. The viscosity of the water at the simulated temperature is

determined by a fit to data from (49) (for details, see section S4). The shear

viscosity h3Dmem of the membrane slab (with units of Pa s) then depends on

how the membrane thickness is defined, since this determines how the total

system viscosity is divided among the membrane and water slabs. However,

the surface shear viscosity

hmem ¼ h h3D
mem (13)

of the membrane is essentially independent of the chosen definition of

membrane thickness. This is illustrated in Fig. 3. As the assumed membrane
thickness is increased, h3Dmem decreases because the contribution to the total

system viscosity arising from the membrane is distributed across a thicker

slab, which includes more water as h is increased. hmem, however, changes

by less than 1% as the definition of h is varied from 3 to 5 nm. In the results,

which follow, only hmem is reported, taking h as the average z-distance be-
tween phosphorous atoms in the phosphate groups of the two bilayers, aver-

aged over all lipids in each bilayer. Thus, the final expression for the surface

shear viscosity is

hmem ¼ H hsys � hwhw (14)

The additive assumption in Eq. 12 can then be tested by varying the sys-

tem dimension H. Fig. 4 shows the relationship between the z-dimension of

the system and the overall system viscosity. The line in Fig. 4 is a rearrange-

ment of Eq. 12. The quality of the agreement (with the only free fit param-

eter being h3Dmem, the membrane viscosity itself) indicates that the additive

assumption is justified.
RESULTS

Temperature and composition dependence of
membrane viscosity

Fig. 5 plots the surface viscosity for several different
lipids varying in tail length, unsaturation, and backbone



FIGURE 3 The three-dimensional membrane shear viscosity (h3Dmem, top)

and two-dimensional surface shear viscosity (hmem, bottom) averaged over

all 15 DMPC simulations (five simulations at each of three total system thick-

nesses, including both membrane and water). h3Dmem and hmem were computed

for four different choices for the bilayer thickness ðhaÞ: 3, 4, and 5 nm, as

well as the average phosphate-phosphate thickness of 3.8 nm. Equation 13

shows the relationship between these two values. Note that the membrane

surface viscosity is insensitive to the choice of where to draw the mem-

brane/water boundary. Error bars are the standard error among the five inde-

pendent replicas. To see this figure in color, go online.

FIGURE 4 Test of the additive assumption forwater andmembraneviscos-

ity (Eq. 12) The total system viscosity (water andmembrane) was determined

for 15 simulations of DMPC; five replicas each of simulations with box

heights ðHÞ initialized near 8, 13, and 15 nm. The line is a fit to Eq. 12 with

themembraneviscosityh3Dmem as a free parameter. The fit is in good agreement

with theviscosity of an independent simulation ofDMPC, shown in red. Error

bars are the standard error among the five independent replicas at each simu-

lation size. The shaded region shows the error in the fit, obtained by Markov

chain Monte Carlo. To see this figure in color, go online.

FIGURE 5 Viscosities for all measured systems. Symbols and colors will

be used consistently for all following viscosity comparison figures. (For vis-

cosities plotted against K above transition temperature and against reduced

temperature ðT � TmÞ=Tm, see Fig. S7.) Values are reported in Table 2. Er-
ror bars are the standard error among the five independent replicas for each

system. To see this figure in color, go online.
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chemistry, obtained by fits to the integrated stretched expo-
nential form as described in Green-Kubo relation; fitted
parameters are listed in Table 2. The uncertainties are
the standard errors over five replicas. The range of viscos-
ities for this set of lipids (all with phosphocholine head-
groups) and conditions is more than a factor of 20, with
the most unsaturated (di-arachidonic PC) less than 4 �
10�11 Pa m s and palmitoyl sphingomyelin (PSM) approx-
imately 80 � 10�11 Pa m s. With the exception of PSM,
temperature has a more significant effect on viscosity
than lipid chemistry. Fig. S7 plots the same viscosities as
a function of temperature relative to the main phase transi-
tion temperature Tm and as a function of reduced tempera-
ture ðT � TmÞ=Tm. Consideration of Figs. S7 and 5
suggests that, in spite of the strong temperature depen-
dence, there is not a simple universal behavior for the tem-
perature dependence of lipid viscosity that is blind to lipid
chemistry.

Since temperature has such a strong effect on membrane
viscosity, Fig. 6 reports the viscosities of lipids with several
different tail lengths and degrees of unsaturation, all at
329 K. At this temperature, DPPC is still fluid, permitting
comparison of saturated chains from 12 to 16 carbons, as
well as several degrees of unsaturation. (PSM is excluded
from this figure in order to reveal more subtle differences
in viscosity.) At constant temperature, viscosity increases
Biophysical Journal 122, 1094–1104, March 21, 2023 1099



TABLE 2 Fitted parameters and uncertainties

Lipid Tsim hmem CtD b

DLPC 286 22.9(4.7) 8.23(0.13) 5.70(0.65)

329 5.16(0.52) 0.162(44) 9.23(0.46)

DMPC 312 19.2(3.1) 0.82(0.18) 9.14(.73)

329 7.87(0.90) 0.207(71) 9.80(.60)

DPPC 329 13.3(3.9) 0.96(0.48) 9.5(1.9)

DSPC 343 6.50(0.67) 2.1(1.3) 7.0(1.2)

DOPC 283 38.0(6.3) 18.1(1.3) 5.33(.47)

329 7.9(1.4) 0.32(0.16) 10.0(1.5)

DAPC 329 5.3(1.0) 0.24(0.11) 10.7(1.9)

PSM 329 260(110) 9.50(0.24) 10.2(1.2)

PSM Long 329 259(�) 1.07(�) 10.9(�)

POPC 283 40.0(1.5) 15.0(1.4) 5.88(0.19)

293 25.5(3.8) 10.5(1.4) 5.51(0.51)

303 15.1(1.5) 3.02(0.41) 6.55(0.37)

313 12.0(1.2) 1.34(0.27) 7.61(0.56)

323 10.6(2.4) 0.91(0.31) 8.4(1.3)

329 11.7(2.5) 0.32(0.28) 11.9(1.7)

Membrane surface shear viscosity hmem in 1 � 10�11 Pa m s, stretched

exponential/gamma function mean relaxation time CtD in ps, and stretching

exponent b, unitless. Uncertainties are the standard errors of the best fit

values over the five replicas. The ‘‘PSM long’’ simulation was a single

replica with a total duration of 1 ms, and hence no uncertainties in the pa-

rameters are given. The fitted parameter t0 from Eq. 7 can be computed

via t0 ¼ CtD
G½bþ 1�. This value is not directly reported here as it has little

physical meaning and varies widely over orders of magnitude.

Fitzgerald et al.
with chain length for fully saturated chains (left panel of
Fig. 6) since each additional methylene group increases
the VDWattraction between the molecules. In contrast, vis-
cosity is reduced at constant temperature as the degree of
unsaturation is increased (Fig. 6, right panel), reflecting
the reduction in molecular packing that accompanies
increasing chain unsaturation. In both cases, the viscosity
change is correlated with changes in the area per molecule,
with larger area per molecule yielding lower viscosity.

The comparison between DPPC and PSM at 329 K is
especially noteworthy, as they have nearly identical melting
temperatures of 315 K—thus, they are both 14 K above their
main phase transition temperature in Fig. 5. And yet, the vis-
cosity of PSM is roughly 20 times higher than that of DPPC,
1100 Biophysical Journal 122, 1094–1104, March 21, 2023
suggesting a dramatic influence of the sphingosine back-
bone on the viscosity of PSM.

Fig. 7 shows the surface shear viscosity results for POPC
at a range of temperatures. As expected, viscosity increases
rapidly as the system is cooled toward the main phase tran-
sition. The line is a fit to a Vogel-Fulcher-Tammann model
(50–52), which takes a shifted Arrhenius form:

hðTÞ ¼ A exp

�
B

T � C

�
(15)

with A; B, and C as fit parameters. For POPC, C ¼
258.9(85) K, which is 3–21 K below the T of POPC.
m

This is consistent with published results for polymer sys-
tems such as polyisobutylene, polystyrene, and others
(53), for which it is often found to be 10–100 K lower
than the relevant phase transition temperature (54). The
exact difference between the parameter C and Tm in any sys-
tem is not easily predicted, but empirically, it is nearly al-
ways found that C% Tm.
Long-range LJ interaction increases membrane
viscosity

Table 3 lists the relevant viscosities and diffusion constants
for DPPC and DOPC bilayers of 288 lipids and simulated
without (C36) and with (C36/LJ-PME) long-range LJ cut-
offs. Fig. 8 illustrates the estimation of the bilayer surface
viscosities from the integrals of the pressure correlation
functions. The application of LJ-PME increases hmem by
approximately 140% for DPPC and 40% for DOPC; Dsim

and DN are decreased by 30%–45%. These values of DN

overestimate experiment (as was found earlier (40) for
C36) for both DPPC and DOPC, but the overestimate is sub-
stantially smaller for C36/LJ-PME. Hence, adding long-
range LJ interactions leads to a physically more accurate
force-field.

Setting the viscosity in the extrapolation allows a better
estimate of the lipid hydrodynamic radius from the Bayesian
analysis. Radii estimated directly from lipid surface area are
4.5 Å for DPPC and 4.7 Å for DOPC. These drop
FIGURE 6 Viscosity dependence on chain

length (left panel) and unsaturation (right panel)

at constant temperature (T ¼ 329 K). Symbols

and error bars are defined in Fig. 5. For POPC

(16:0–18:1), the average chain length of 17 carbons

is used. To see this figure in color, go online.



FIGURE 7 POPC viscosities over a range of temperatures fit to Eq. 15.

Error bars are the standard errors among the five independent replicas at

each temperature. To see this figure in color, go online.
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substantially for the two lipids (Table 3). A lipid is not a
hard cylinder, and hence its effective hydrodynamic radius
might be expected to smaller than one estimated from its
surface area. This is consistent with recent work by Kowert
(55), who demonstrated that the hydrodynamic radius of a
methylene group for alkane diffusion in alkanes is smaller
than its LJ radius.
DISCUSSION

Simulations are a useful complement to experimental mea-
surements of membrane surface viscosity because they pro-
vide insight into the chemical details that underlie this
important transport property. It is challenging, however, to
obtain statistically robust estimates from equilibrium simu-
lations, due to slow convergence of the stress tensor autocor-
relation function, and therefore also its integral. The
asymptotic value of the integral is the system viscosity.

A method was therefore implemented in which a generic
analytic form for the autocorrelation is assumed (a stretched
exponential), the integral of which is analytic (a gamma func-
tion). By fitting this analytic function to the numeri-
cally integrated correlation function, a prediction for the
asymptote is obtained that is determined mainly by the well-
sampled, early-time behavior of the stress tensor correlations.

This method was applied to several different lipids, all
with PC headgroups but differing in chain length and unsa-
turation. A sphingolipid was also simulated, and several of
TABLE 3 Values of membrane surface viscosity (hmem, in 1 � 10-11

constants (all in 1� 10�11 m2 s�1) directly calculated from the simulat

and experiment ðDexpt Þ; lipid hydrodynamic radius (R, in Å); and Sa

DOPC using two different treatments of Lennard-Jones long-range

(no cutoff)

Lipid LJ cutoff hmem hw Dsim

DPPC 8–12 Å 8.6 0.252 1.83(0.0

(50�C) none 20.4 0.256 1.07(0.1

DOPC 8–12 Å 13.0 0.299 1.09(0.0

(30�C) none 18.0 0.311 0.69(0.2

The value of the interleaflet friction b used was 2 � 107 Pa s m�1 for DPPC an
the lipids were simulated at different temperatures. Ex-
pected trends regarding the dependence on chain structure
are observed—when compared at the same temperature, vis-
cosity increases with chain length and decreases with chain
unsaturation. No obvious data collapse is observed when
lipids with different chemistries are compared at the same
reduced temperature, suggesting that there is no law of cor-
responding states for lipid viscosity. The dependence of vis-
cosity on temperature for a single lipid is fit very well by an
empirical shifted Arrhenius form, which may be useful if
measurements are obtained at some temperatures but
needed at another. The most striking outcome of this com-
parison is that the sphingosine backbone increases viscosity
by a factor of 20. This is likely due to intermolecular
hydrogen bonds between the amides in the sphingosine
backbones, which have long lifetimes and lead to correlated
motion of many lipids (33).

These results provide some insight into how lipid chem-
istry contributes to homeoviscous adaptation. When
compared at the same temperature (all lipids well above
their melting temperature), a drastic increase in unsaturation
(from DPPC) lowers DAPC viscosity by a factor of 2.5.
Naively, this seems insufficient to compensate for the factor
of 40 change in viscosity of POPC as its temperature is low-
ered. However, in a mixture containing highly unsaturated
lipids, the unsaturated lipids will remain far from their
melting temperature, effectively remaining in the flatter,
higher temperature region of Fig. 7. Moreover, other aspects
of lipid chemistry can have a drastic effect on viscosity, as
seen for PSM.

Recently, Faizi et al. reported a new method based on
vesicle deformation that is more high throughput than other
approaches and thus permits comparison across several
different lipids as in the present article. In some respects,
the simulations agree qualitatively with these data, such as
a reduction in membrane viscosity with increasing unsatura-
tion. Quantitatively, the simulations obtain significantly
lower numbers. For example at 298 K, the simulations
(with truncated dispersion) obtain a viscosity for POPC of
18.8(17) � 10�11 Pa m s, while the experimental value is
about 9 � 10�9 Pa m s. For DOPC at the same temperature
the simulations obtain 16.7(2.3) � 10�11 Pa m s, while the
experimental value is about 4 � 10�9 Pa m s. Thus, the
Pa m s); water viscosity (hw , in 1 � 10�3 Pa s); lipid diffusion

ion ðDsimÞ, extrapolated to infinite system size using Eq. 1 ðDNÞ,
ffman-Delbruck length (LSD ¼ hmem=2hw , in nm) for DPPC and

interactions: C36 (8–12 Å force-switch cutoff) and C36/LJ-PME

DN Dexpt R LSD

4) 3.70 (3.38–4.04) – 2.5 161

2) 2.03 (1.51–2.59) 1.5 1.5 398

3) 2.26 (2.06–2.47) – 2.4 217

0) 1.59 (1.45–1.73) 0.84 3.0 289

d 4.59 � 107 Pa s m�1 for DOPC.
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FIGURE 8 Stretched exponential fits to the auto-

correlation integrals, with a log scale used for the

time axis. Each panel is identified by a label with

the lipid type and VDW method. Integrals of the

four replicates are drawn as thin black lines, their

mean is drawn as a thick black line, and the pale

blue shading is the standard deviation over the rep-

licates. The fit region is indicated by the yellow

highlighting, the fit to the mean is drawn as heavy

red dots, and the plateau from the fit ðhTOTÞ is

drawn as a flat, red dotted line. To see this figure

in color, go online.
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simulated viscosities are about 20–40 times lower than their
experimental counterparts. The inclusion of the full range of
the dispersion increases the viscosity of the C36 lipids by
about 40% for DOPC and by 140% for DPPC, closing the
gap somewhat between simulation and these long-wave-
length experimental measurements. Inclusion of polariz-
ability may narrow the gap further, as preliminary
indications are that other transport properties (in particular,
permeability) are improved in the polarizable force-field.

However, the simulations obtain much better agreement
with viscosities obtained from the dynamics of small chro-
mophores or from the translational diffusion of integral
membrane proteins. Some of the earliest measurements
of membrane fluidity were obtained by polarized fluores-
cence spectroscopy of diphenyl hexatriene. When they
are reported as viscosities, they are typically reported as
three-dimensional viscosities, with values from 0.1 to
1.0 Pa s (3). Multiplying by the membrane thickness
(4 nm) (56), this corresponds to a surface viscosity similar
to those reported here. Recent measurements based on the
intramolecular dynamics of a different chromophore yield
values a bit lower: the surface shear viscosity of POPC
from 291 to 315 K ranges from 7.6 to 32 � 10�11 Pa
m s (18), in excellent agreement with the values re-
ported here.

Regarding translational diffusion constants of proteins,
Ramadurai et al. (16) demonstrated that experimental diffu-
sion constants for a wide range of protein sizes are well fit
using the SD equation assuming a membrane viscosity of
0.08 Pa s (with 95% confidence interval 0.06–0.1). In sur-
face viscosity dimensions, this is 32 � 10�11 Pa m s. This
value is approximately 70% (not an order of magnitude)
higher than the surface viscosities of DPPC 20 � 10�11
1102 Biophysical Journal 122, 1094–1104, March 21, 2023
and DOPC 18 � 10�11 Pa m s listed in Table 3. Further-
more, if the simulated lipid diffusion constants in Table 3
are extrapolated to infinite system size using the experi-
mental SD length from Ramaduri et al., the lipid diffusion
constants are significantly closer to experimental values.
In units of 1 � 10�11 m2 s�1, with the 95% confidence in-
tervals in parenthesis, these are 1.27 (1.09–1.47) for
DPPC and 1.16 (1.08–1.27) for DOPC; the experimental
values for these two lipids are 1.5 and 0.84, respectively.
These calculations indicate that both lipid and protein diffu-
sion in simple bilayers are well described by surface viscos-
ities in the range of 20 to 40 � 10�11 Pa m s; conversely,
viscosity values substantially higher will lead to poor fits
for these important experimental observables.

In our view, the key question remains the underlying
reason for the discrepancy between shorter length-scale
measurements (3,18) and simulations on the one hand and
longer length-scale measurements (7–15) on the other. It
might be that the two are measuring different responses,
with the former governed entirely by dissipation within
the membrane. From this perspective, the protein diffusion
data find agreement with the small length-scale measure-
ments because they too are governed entirely by dissipation
within the membrane, with coupling to the solvent only
entering via the SD length. Future efforts might then focus
on resolving this discrepancy in viscosities, resulting in a
complete picture of membrane dynamic response from the
molecular to the cellular scale.
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throughput measurements of viscosity in sub-micrometer-sized mem-
brane systems. Chembiochem. 21:836–844.

19. den Otter, W. K., and S. A. Shkulipa. 2007. Intermonolayer friction and
surface shear viscosity of lipid bilayer membranes. Biophys. J.
93:423–433.

20. Shkulipa, S. A., W. K. den Otter, andW. J. Briels. 2005. Surface viscos-
ity, diffusion, and intermonolayer friction: simulating sheared amphi-
philic bilayers. Biophys. J. 89:823–829.

21. Zgorski, A., R. W. Pastor, and E. Lyman. 2019. Surface shear viscosity
and interleaflet friction from nonequilibrium simulations of lipid bila-
yers. J. Chem. Theor. Comput. 15:6471–6481.

22. Green, M. S. 1954. Markoff random processes and the statistical me-
chanics of time-dependent phenomena. II. Irreversible processes in
fluids. J. Chem. Phys. 22:398–413.

23. Kubo, R. 1957. Statistical-mechanical theory of irreversible processes.
I. General theory and simple applications to magnetic and conduction
problems. J. Physical Soc. Japan. 12:570–586.

24. Mondello, M., and G. S. Grest. 1997. Viscosity calculations of n-al-
kanes by equilibrium molecular dynamics. J. Chem. Phys. 106:
9327–9336.

25. Hess, B. 2002. Determining the shear viscosity of model liquids from
molecular dynamics simulations. J. Chem. Phys. 116:209.

26. Jiang, H., Z. Mester,., A. Z. Panagiotopoulos. 2015. Thermodynamic
and transport properties of H2O þ NaCl from polarizable force fields.
J. Chem. Theor. Comput. 11:3802–3810.

27. Jo, S., T. Kim, ., W. Im. 2008. CHARMM-GUI: a web-based graph-
ical user interface for CHARMM. J. Comput. Chem. 29:1859–1865.

28. Jo, S., T. Kim, and W. Im. 2007. Automated builder and database of
protein/membrane complexes for molecular dynamics simulations.
PLoS One. 2:e880.

29. Wu, E. L., X. Cheng, ., W. Im. 2014. CHARMM-GUI Membrane
Builder toward realistic biological membrane simulations. J. Comput.
Chem. 35:1997–2004.

30. Lee, J., X. Cheng,., W. Im. 2016. CHARMM-GUI input generator for
NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM
simulations using the CHARMM36 additive force field. J. Chem.
Theor. Comput. 12:405–413.

31. Jorgensen, W. L., J. Chandrasekhar,., M. L. Klein. 1983. Comparison
of simple potential functions for simulating liquid water. J. Chem.
Phys. 79:926–935.

32. Klauda, J. B., R. M. Venable, ., R. W. Pastor. 2010. Update of the
CHARMM all-atom additive force field for lipids: validation on six
lipid types. J. Phys. Chem. B. 114:7830–7843.

33. Venable, R. M., A. J. Sodt,., J. B. Klauda. 2014. CHARMM all-atom
additive force field for sphingomyelin: elucidation of hydrogen
bonding and of positive curvature. Biophys. J. 107:134–145.

34. Nos�e, S. 1984. A molecular dynamics method for simulations in the ca-
nonical ensemble. Mol. Phys. 52:255–268.
Biophysical Journal 122, 1094–1104, March 21, 2023 1103

http://refhub.elsevier.com/S0006-3495(23)00070-X/sref1
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref1
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref1
https://doi.org/10.1101/2021.05.12.443834
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref3
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref3
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref3
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref4
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref4
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref4
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref5
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref5
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref6
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref6
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref6
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref7
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref7
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref8
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref8
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref8
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref9
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref9
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref9
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref10
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref10
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref10
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref11
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref11
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref11
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref12
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref12
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref12
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref13
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref13
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref13
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref14
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref14
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref14
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref15
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref15
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref15
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref16
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref16
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref17
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref17
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref17
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref18
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref18
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref18
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref19
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref19
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref19
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref20
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref20
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref20
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref21
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref21
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref21
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref22
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref22
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref22
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref23
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref23
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref23
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref24
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref24
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref24
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref25
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref25
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref26
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref26
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref26
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref26
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref26
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref27
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref27
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref28
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref28
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref28
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref29
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref29
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref29
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref30
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref30
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref30
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref30
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref31
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref31
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref31
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref32
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref32
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref32
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref33
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref33
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref33
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref34
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref34
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref34


Fitzgerald et al.
35. Hoover, W. G. 1985. Canonical dynamics: equilibrium phase-space
distributions. Phys. Rev. A Gen. Phys. 31:1695–1697.

36. Parrinello, M., and A. Rahman. 1981. Polymorphic transitions in single
crystals: a new molecular dynamics method. J. Appl. Phys.
52:7182–7190.

37. Brooks, B. R., C. L. Brooks,., M. Karplus. 2009. CHARMM: the bio-
molecular simulation program. J. Comput. Chem. 30:1545–1614.

38. Leonard, A. N., A. C. Simmonett, ., R. W. Pastor. 2018. Comparison
of additive and polarizable models with explicit treatment of long-
range Lennard-Jones interactions using alkane simulations. J. Chem.
Theor. Comput. 14:948–958.

39. Yu, Y., A. Kr€amer, ., R. W. Pastor. 2021. CHARMM36 lipid force
field with explicit treatment of long-range dispersion: parametrization
and validation for phosphatidylethanolamine, phosphatidylglycerol,
and ether lipids. J. Chem. Theor. Comput. 17:1581–1595.

40. Venable, R. M., H. I. Ingólfsson,., R. W. Pastor. 2017. Lipid and pep-
tide diffusion in bilayers: the saffman-delbr€uck model and periodic
boundary conditions. J. Phys. Chem. B. 121:3443–3457.

41. Venable, R. M., E. Hatcher, ., R. W. Pastor. 2010. Comparing simu-
lated and experimental translation and rotation constants: range of Val-
idity for viscosity scaling. J. Phys. Chem. B. 114:12501–12507.

42. Camley, B. A., M. G. Lerner, ., F. L. H. Brown. 2015. Strong influ-
ence of periodic boundary conditions on lateral diffusion in lipid
bilayer membranes. J. Chem. Phys. 143:243113.

43. Schoch, R. L., F. L. H. Brown, and G. Haran. 2021. Correlated diffu-
sion in lipid bilayers. Proc. Natl. Acad. Sci. USA. 118:e2113202118.

44. Anthony, A. A., O. Sahin, ., A. R. Honerkamp-Smith. 2022. System-
atic measurements of interleaflet friction in supported bilayers.
Biophys. J. 121:2981–2993.

45. Balucani, U., and M. Zoppi. 1994. Dynamics of the Liquid State. Clar-
endon Press Oxford University Press, Oxford New York.
1104 Biophysical Journal 122, 1094–1104, March 21, 2023
46. Phillips, J. C. 1996. Stretched exponential relaxation in molecular and
electronic glasses. Rep. Prog. Phys. 59:1133–1207.

47. Berberan-Santos, M., E. Bodunov, and B. Valeur. 2005. Mathematical
functions for the analysis of luminescence decays with underlying dis-
tributions 1. Kohlrausch decay function (stretched exponential). Chem.
Phys. 315:171–182.

48. Wales, D. J., and J. P. K. Doye. 1997. Global optimization by basin-
hopping and the lowest energy structures of Lennard-Jones clusters
containing up to 110 atoms. J. Phys. Chem. A. 101:5111–5116.

49. Mao, Y., and Y. Zhang. 2012. Prediction of the temperature-dependent
thermal conductivity and shear viscosity for rigid water models.
J. Nanotechnol. Eng. Med. 3

50. Vogel, H. 1921. Das temperaturabhaengigkeitsgesetz der Viskositaet
von Fluessigkeiten. Phys. Z. 22:645.

51. Fulcher, G. S. 1925. Analysis of recent measurements of the viscosity
of glasses. J. Am. Ceram. Soc. 8:339–355.

52. Tammann, G., and W. Hesse. 1926. Die Abh€angigkeit der Viscosit€at
von der Temperatur bie unterk€uhlten Fl€ussigkeiten. Z. Anorg. Allg.
Chem. 156:245–257.

53. Williams, M. L. 1955. The temperature dependence of mechanical and
electrical relaxations in polymers. J. Phys. Chem. A. 59:95–96.

54. Williams, M. L., R. F. Landel, and J. D. Ferry. 1955. The temperature
dependence of relaxation mechanisms in amorphous polymers and
other glass-forming liquids. J. Am. Chem. Soc. 77:3701–3707.

55. Kowert, B. A. 2020. Diffusion of polymethylene chain molecules in
nonpolar solvents. J. Phys. Chem. B. 124:3716–3723.

56. Venable, R. M., F. L. H. Brown, and R. W. Pastor. 2015. Mechanical
properties of lipid bilayers from molecular dynamics simulation.
Chem. Phys. Lipids. 192:60–74.

http://refhub.elsevier.com/S0006-3495(23)00070-X/sref35
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref35
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref36
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref36
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref36
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref37
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref37
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref38
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref38
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref38
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref38
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref39
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref39
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref39
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref39
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref39
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref40
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref40
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref40
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref40
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref41
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref41
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref41
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref42
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref42
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref42
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref43
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref43
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref44
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref44
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref44
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref45
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref45
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref46
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref46
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref47
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref47
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref47
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref47
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref48
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref48
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref48
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref49
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref49
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref49
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref50
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref50
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref51
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref51
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref52
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref53
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref53
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref54
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref54
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref54
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref55
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref55
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref56
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref56
http://refhub.elsevier.com/S0006-3495(23)00070-X/sref56


Biophysical Journal, Volume 122
Supplemental information
Surface viscosities of lipid bilayers determined from equilibriummolec-

ular dynamics simulations

James E. Fitzgerald III, Richard M. Venable, Richard W. Pastor, and Edward R. Lyman



Viscosities from equilibrium simulations

S 1 MINIMIZATION AND EQUILIBRATION PARAMETERS FOR THE STANDARD LENNARD-JONES
POTENTIAL CUTOFF SIMULATIONS

Step Integrator Position Strength Dihedral Strength P Coupling T Coupling dt (fs) N Steps

Minim. Steepest Descent 1000 1000 None None N/A 5000

Equil. 1 MD 1000 1000 None Berendsen (1) 1 125000

Equil. 2 MD 400 400 None Berendsen 1 125000

Equil. 3 MD 400 200 Berendsen Berendsen 1 125000

Equil. 4 MD 200 200 Berendsen Berendsen 2 250000

Equil. 5 MD 40 100 Berendsen Berendsen 2 250000

Equil. 6 MD None None Berendsen Berendsen 2 250000
Table S1: ‘Position Strength’ refers to the strength of the position restraints, constraining the Phosphorous atoms in the lipid
headgroups to the 𝑥𝑦-plane (kJ/(mol nm2)). ‘Dihedral Strength’ refers to the strength of the dihedral restraints, restricting the
shapes of the branch in the lipid backbones, as well as any double bonds in the hydrocarbon chains (kJ/(mol rad2)).

S 2 PARAMETERS FOR SIMULATIONS COMPARING STANDARD AND LONG-RANGE CUTOFFS

Lipid van der Waals 𝑡run 𝐴 (Å2) Cell 𝑐 (Å) 𝐿 (Å) ℎ𝑤/2 (Å)

DPPC VFSWITCH 400 63.0 68.09 95.25 13.29

DPPC LJ-PME 400 62.6 67.16 94.94 13.06

DOPC VFSWITCH 500 69.4 66.26 99.99 12.58

DOPC LJ-PME 500 69.2 65.11 99.83 12.23

Table S2: Details of the NVT 288 lipid simulation systems used to compute the surface viscosity and lipid diffusion: 𝑡run is
post equilibration analytical interval; A is surface area/lipid; c is cell height along bilayer normal; L is bilayer edge length;
ℎ𝑤 = 𝐻 − ℎ is the total water thickness (see Figure 1) and ℎ𝑤/2 is used to estimate D∞ from the Periodic Saffman-Delbruck
model. DPPC and DOPC systems contained 30.4 and 33.5 waters/lipid, respectively.
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T °C Volume Viscosity Experiment

20 78.237 0.341(3) 1.002

25 78.554 0.322(1) 0.890

30 78.894 0.311(3) 0.798

40 79.594 0.278(2) 0.653

50 80.341 0.256(3) 0.547

Table S3: LJ-PME simulation viscosity (mPa s) and volume (nm3) of TIP3P water at five temperatures. For viscosity, the
standard error in the final digit is given in parentheses. Experimental values of water are listed in the last column.

2 Manuscript submitted to Biophysical Journal



Viscosities from equilibrium simulations

S 3 ALL AUTOCORRELATION INTEGRALS

Figure S1: Autocorrelation integrals for all systems at all temperatures. Colored curves are the individual simulations. Solid
heavy line is the average of those five, with standard deviation of the five replicas in gray. Continued in Figure S2. Autocorrelation
integrals in Pa m s, and times in ns. Pairs of adjacent plots show the same data, on linear and logarithmic time-scales.
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Figure S2: Autocorrelation integrals continued.
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Figure S3: Lower incomplete gamma function fits to two sets of replicas for POPC at low- and high-temperature. Measured
autocorrelation integral in gray, fits in solid color, and asymptotes in thin dotted colored lines. Note the tendency of the data to
apparently undershoot the fit asymptotes. As in Figure S1, pairs of adjacent plots show identical data and fits, on linear and
logarithmic time scales.
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S 4 TIP3P VISCOSITY AT ARBITRARY TEMPERATURE
TIP3P viscosity data for a selection of temperatures was obtained from (2). In order to apply this viscosity data to temperatures
not explicitly measured in (2), this was fit to a VFT model (3) as in Eq. 15, with great success. TIP3P viscosities at different
temperatures were interpolated using this fit. Results of this fit are shown in Figure S4.

Figure S4: Fit of TIP3P viscosity data from (2). Errorbars are present but smaller than the datapoints. Orange shows the fit to
Eq. 15. Black vertical lines show the highest and lowest temperatures used in the present work.

S 5 STRETCHED EXPONENTIAL FIT
The viscosity autocorrelation integral was fit to three assumed forms:

𝜂(𝑡) ≈ 𝑎

∫ 𝑡

0
𝑒−𝑡

′/𝜏d𝑡 ′ = 𝑎 𝜏

(
1 − 𝑒−𝑡/𝜏

)
(1)

𝜂(𝑡) ≈ 𝑎

∫ 𝑡

0
𝑐 𝑒−𝑡

′/𝜏1 + (1 − 𝑐)𝑒−𝑡′/𝜏2d𝑡 ′ = 𝑎

[
𝑐𝜏1

(
1 − 𝑒−𝑡/𝜏1

)
+ (1 − 𝑐)𝜏2

(
1 − 𝑒−𝑡/𝜏2

)]
(2)

𝜂(𝑡) ≈ 𝑎

∫ 𝑡

0
exp

[
−
(
𝑡 ′

𝜏

)1/𝑏
]

d𝑡 ′ = 𝑎 𝑏 𝑡0𝛾

[
𝑏,

(
𝑡

𝑡0

)1/𝑏
]

(3)

and the results of these fits are shown in Figure S5. The autocorrelation integral for each replica was fit to a lower incomplete
gamma function, using the integrals from 10 ps–3.5 ns. At lagtimes below 10 ps, the autocorrelation function is highly oscillatory,
so we excluded this portion from the fit. The fits were weighted using the inverse variance of the five replicas’ integrals at each
timestep. We also found better performace by using logarithmically subsampled points within that interval.

This fit was performed using the basin-hopping algorithm (4). As a rigorous test of the robustness of this algorithm, the data
was fit over a wide range of initial values of the stretching exponent values 𝑏, using both least-squares and basin-hopping. The
results of this are shown in Figure S6. The basinhopping fits give consistent results regardless of initial guess of parameters.
This is extremely important in a fitting algorithm, as the ‘true’ parameter values are not known beforehand—especially in a
complicated form such as this stretched exponential.
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(b) Bi-exponential
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(c) Stretched Exponential

Figure S5: The autocorrelation integrals for all 5 replicas of POPC at 293 K with (a) exponential, (b) bi-exponential, and (c)
stretched exponential integral fits.
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Figure S6: In each of these plots, the 𝑥-axis is the initial assumed value for 𝑏 in the fits. Each datapoint on a single plot is the
result of an individual fit. Results from all five replicas are shown on each plot. Orange triangles are results from basin-hopping
fits, and blue squares are results from least-squares fits.
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Figure S7: The viscosities of all systems studied in the present work, plotted against reduced temperature.
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S 6 GENERATING RANDOM DATA WITH A STRETCHED-EXPONENTIAL AUTOCORRELATION
FUNCTION

Let us define two functions, 𝑟 (𝑡), which will be normally distributed white noise, and the goal autocorrelation function 𝐶𝑔 (𝑡).
Further defining:

F
[
𝐶𝑔 (𝑡)

]
= 𝑆(𝜔) = ℎ̃(𝜔)2 (4)

where F [ 𝑓 ] and 𝑓 both denote the Fourier transform of 𝑓 . Then 𝐶𝑔 (𝑡) = ℎ(𝑡) ∗ ℎ(𝑡), where ∗ denotes convolution. Now define
𝑥(𝑡) ≡ 𝑟 (𝑡) ∗ ℎ(𝑡). Computing 𝐶𝑥𝑥 (𝑡), the autocorrelation function of 𝑥, via its Fourier transform, we find

�̃�𝑥𝑥 (𝜔) = F [𝑥(𝑡) ∗ 𝑥(𝑡)] = 𝑥(𝜔)2 =
(
𝑟 (𝜔) ℎ̃(𝜔)

)2
= 𝑟 (𝜔)2 ℎ̃(𝜔)2 (5)

𝐶𝑥𝑥 (𝑡) = [𝑟 (𝑡) ∗ 𝑟 (𝑡)] ∗ [ℎ(𝑡) ∗ ℎ(𝑡)] = 𝛿(𝑡) ∗ 𝐶𝑔 (𝑡) = 𝐶𝑔 (𝑡) (6)

and thus this definition of 𝑥(𝑡) gives the desired autocorrelation function.
In practice, we take the discretized goal autocorrelation function 𝐶𝑔 (𝑡) on 𝑡 ∈ [0, L · dt], we compute its power spectrum:

𝑆(𝜔) =
��fft [𝐶𝑔 (𝑡)

] �� (7)

specifically, we use the ‘Hermitian fast fourier transform’ algorithm, which assumes that 𝐶★
𝑔 (−𝑡) = 𝐶𝑔 (𝑡) ( 𝑓★ denoting the

complex conjugate of 𝑓 ) which holds, as𝐶𝑔 (𝑡) is real and symmetric. This effectively doubles the number of datapoints going into
a regular Fourier transform—if 𝐶𝑔 (𝑡) is 𝐿 datapoints in length, then 𝑆(𝜔) has a length of 2𝐿 − 2. Then ℎ(𝑡) = fft−1 [

√︁
𝑆(𝜔)].

We then generated a normally distributed signal 𝑟 (𝑡). At this point we have everything needed to generate a signal 𝑥(𝑡) with
autocorrelation of 𝐶𝑔 (𝑡), via

𝑥𝑖 =

𝐿∑︁
𝑗=0

𝑟 𝑗ℎ |𝑖− 𝑗 | =
𝑖∑︁
𝑗=0

𝑟 𝑗ℎ𝑖− 𝑗 +
𝐿∑︁
𝑗=1

𝑟 𝑗ℎ 𝑗−𝑖 . (8)

As a note, a time series generated using this method is non-Markovian; a given 𝑥𝑖 depends on all 𝑟 𝑗≤𝑖 as well as all 𝑟 𝑗>𝑖 .
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Viscosities from equilibrium simulations

Figure S8: Numerically generated timeseries which follow a stretched exponential decay. 8 datasets of each were generated
(light gray lines), with a full trajectory length of 1M timesteps. The average of the 8 samples is shown in black, and the ‘true’
autocorrelation function is in blue, with its asymptote as a blue dotted line. Note that the first three plots (𝑏 = 1, 2, 4) show
100× the mean relaxation time ⟨𝜏⟩, while the final plot shows the entire signal, (nearly 4000× the mean relaxation time).
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