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SUPPLEMENTAL METHODS

Modeling the effects of cell constriction on growth dynamics

Here we discuss the effects of constriction dynamics on the growth rate of a dividing cell. We begin

with the equation for exponential volume growth: dV/dt = kVV , where kV is the volumetric growth rate.

Using a spherocylindrical geometry for the cell, with the length of the septal region along the cell’s long

axis given by d (Fig S8A inset), the volume of the septal region is given by Vs = (3w− d)d2π/12. Thus

V (L,w,d) = πw3/6+(L−w−d)πw2/4+(3w−d)d2π/12. Rearranging for L, we find that

L(t) = (L0−w/3)ekV t +w/3+d(t)− d(t)2

w
+

d(t)3

3w2 . (1)

Thus, given a mathematical form for d(t), we can fit L(t) and κ(t) = (1/L)(dL/dt) to experimental data.

Prior works have found that constriction does not start until around (or after) t/τ = 0.5 [32]. With the

initiation of constriction occurring at tc > 0.5, we model d(t) as a smooth function with d(t < tc) = 0 and

a fitting polynomial for t > tc, subject to the boundary condition d(τ) = w, i.e., the septum is fully formed

at division (Fig S1A). The resulting fit is shown in Fig. 1A, showing the onset of super-exponential during

the constriction phase as opposed to the entire cell cycle as seen in data. Furthermore, exponential volume

growth with constriction requires the growth rate to fall back to the initial value during the same cell cycle,

which does not match with each E. coli dataset addressed in this work (Fig S1C). Fig. S1B shows how

dL/dt changes with time during constriction, causing this non-monotonicity as the cell shape approaches

that of two daughter cells.

Intergenerational Modeling of Bacterial Growth

Here we detail how the underlying variables of our growth model, ribosome abundance R, cell length L,

surface area S, and division protein copy number X , change from one generation to the next and how they

are affected by cell division. Following the adder model for cell size regulation, cell length at division is

related to the cell length at birth as: Ln(τ) = Ln(0)+∆n, where n is the generation index. Thus, assuming

symmetric division, we obtain a recursion relation connecting cell length at birth at successive generations:

Ln+1(0) = (Ln(0)+∆n)/2. This relation ensures a very strong correlation between the birth sizes of subse-

quent generations such that the birth size approaches the mean added size. The adder model is equivalent

to assuming that division occurs once a threshold X0 of division proteins is reached, leading to the relation

∆n = X0k2
n/(αnβn). For the purposes of our modeling and without loss of generality, we assume that the

division proteins are used up during division such that X0(0) = 0, which is also equivalent to assuming that

X is the amount of division proteins accumulated since birth. Given that we neglect shape change due to
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septum formation in our model, the way S is handled during division is simply a consequence of Ln+1(0),

i.e. Sn+1(0) = πwn+1(0)Ln+1(0) = πwn+1(0)(Ln(0)+∆n)/2, with the steady-state value S(0) = πw0∆.

An adder mechanism for cell length control implies an adder model for ribosome homeostasis, such

that Rn(τ) = Rn(0)+ kn∆n/αn. Following symmetric division, Rn+1(0) = 1
2 Rn(τ)−RU

n+1, where RU
n+1 is

the amount of ’unused‘ ribosomes that are removed from the active ribosome pool R following the division

event. There are few potential physical explanations for a non-zero value of RU. It is possible that the rate

of ribosome degradation peaks around the division event rather than remaining a time-independent quantity.

Currently, experimental data to confirm or deny this is not available and such future work would be an

interesting test of the model. Another possibility is that there is a temporary increase in free ribosome

abundance, Rf, following division. Consider a simple model of ribosomes transitioning between active (R)

and inactive (Rf) forms: dR/dt = (k− d− k−)R+ k+Rf, dRf/dt = k−R+(k+− d)Rf, where d denotes the

passive degradation rate, k+ and k− are he binding and unbinding rates of ribosomes to and from mRNAs.

In this framework, a non-zero RU could result from a temporary increase in Rf, potentially due to a decrease

in transcription rates and/or an increase in the rate that mRNA unbinds from ribosomes, following division.

Rf then decays back into R throughout the following cell cycle. Fig S7B illustrates these dynamics with

parameters fit to data, as a refinement of the simple model of dR/dt = kR. Making physical assertions about

these fitting parameters beyond a proof of concept is beyond the capacity of what can be inferred from cell

length and width data.

Returning to the dynamics of R, we can write a recursion relation connecting ribosome abundance in

successive generations: Rn+1(0) = (Rn(0)+ kn∆n/αn− 2RU
n+1)/2. Recalling λn = Ln(0)−αnRn(0)/kn, in

terms of average dynamics (no fluctuations in k and α) we find that λn+1− λn ≈ αRU
n+1/k− λn/2. This

expression indicates that a non-zero RU is necessary for a non-zero λ to persist. In terms of steady-state

values, L(0) = ∆, R(0) = k∆/α − 2RU, and λ = 2αRU/k. Fig S7 illustrates these values in experimental

context for a single growth condition.
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Figure S 1. Effects of constriction on E. Coli growth dynamics. (A) Length of septum d (normalized by average

cell width of the cylindrical portion), as a function of time. d(t) is an 8th order fitting polynomial and constrained as

described in the supporting methods. Inset: Schematic of a constricting cell. (B) The average rate of change in L for

cells grown in TSB at 37 C taken from [4]. A fit of exponential volume growth is shown in black and the constriction

volume growth model is shown in dashed red. (C) Fits of the constriction volume growth model (1) to average growth

rate data for seven different growth conditions grown at 37 C, taken from [4]. Error bars are negligible on the plotted

scale.
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Figure S 2. Cell length dynamics of E. Coli. (A) Length of a representative cell cycle grown in TSB media at 37◦C

vs absolute time fit with exponential growth in length (green), volume (dashed blue), and super-exponential growth

rate model (black). (B) Ensemble-averaged length of E. coli cells grown in TSB media at 37◦C vs normalized time

t/τ , where τ is cell cycle duration. The average data is fit with exponential growth in length (green), volume (dashed

blue), and super-exponential growth (black) with neglidgible error bars. (C) Error from each of the fits in (B) to the

experimental data. (D) Evolution of growth parameter λ across generations for three representative cells, showing

that λ is uncorrelated between successive generations. Data for (A-D) taken from [4].
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Figure S 3. Cell length and ribosome abundance vs growth rate. (A) Population-averaged initial cell length 〈L0〉

vs 〈k〉. The black curve shows an exponential fit to the data (〈L0〉= (1.50 µm)exp((16.19 min)〈k〉)). (B) Dependence

of 〈αR0〉/〈L0〉 on elongation rate 〈k〉. The black line shows a linear fit to the data (〈αR0〉/〈L0〉= (0.56 µm)〈k〉). Data

for (A) and (B) taken from [4].



7

Quadratic Fit

TSB

Rich MOPS

Glucose 12AA

Glucose 6AA

Glucose

Sorbitol

Glycerol

0.00 0.02 0.04 0.06 0.08
- 2.0

- 1.8

- 1.6

- 1.4

- 1.2

- 1.0

<k>[min- 1]

<K
>

Quadratic Fit

TSB

Rich MOPS

Glucose 12AA

Glucose 6AA

Glucose

Sorbitol

Glycerol

0.00 0.02 0.04 0.06 0.08

0.07

0.08

0.09

0.10

0.11

0.12

<k>[min- 1]

σ
K

Linear Fit

TSB

Rich MOPS

Glucose 12AA

Glucose 6AA

Glucose

Sorbitol

Glycerol

0.00 0.02 0.04 0.06 0.08

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

<k> [min- 1]

σ
Λ

Linear Fit

TSB

Rich MOPS

Glucose 12AA

Glucose 6AA

Glucose

Sorbitol

Glycerol

0.00 0.02 0.04 0.06 0.08
- 1.00

- 0.95

- 0.90

- 0.85

- 0.80

<k> [min- 1]

ρ(
K,

Λ
)

Linear Fit

TSB

Rich MOPS

Glucose 12AA

Glucose 6AA

Glucose

Sorbitol

Glycerol

0.00 0.02 0.04 0.06 0.08

1

2

3

4

5

<k> [min- 1]

λ 0
[μ

m
]

A B C

D E

Figure S 4. Growth-rate dependence of the parameters for the joint distribution P(k,λ ). (A) 〈K〉 vs 〈k〉 from

data with a quadratic fit ((−158.15 min−2)〈k〉2 +(24.52 min−1)〈k〉−2.13). (B) σK vs 〈k〉 from data with a quadratic

fit ((62.42 min−2)〈k〉2+(−5.51 min−1)〈k〉+0.20). (C) σΛ vs 〈k〉 from data with a linear fit ((1.72 min−1)〈k〉+1.15).

(D) Correlation ρ(K,Λ) vs 〈k〉 from data with a linear fit ((−0.68 min−1)〈k〉−0.86). (E) λ0 vs 〈k〉 from data with a

linear fit ((46.3 µm min−1)〈k〉+1.26 µm). Data for (A-E) taken from [4].
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Figure S 5. Properties of inter- and intra-gernerational width dynamics. (A) σw0 vs 〈k〉 from data with an

exponential fit (σw0 = 0.06〈w0〉= (0.02 µm)exp((16.19 min)〈k〉)). (B) The coefficient of variation for w0 is approxi-

mately constant based on prior fitting (CVw0 = µw0/σw0 = 0.06). Data for (A) and (B) taken from [4]. (C) A colormap

showing the approach of (13) to exponential growth (−λ/L) as a function of elongation rate k and time n in units of

average interdivision time τ(k).
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Figure S 6. Super-exponential and exponential length growth produce similar width dynamics. (A) Sample

single cell width trajectories for exponential growth in green and super-exponential growth in red at 〈k〉= 0.04 min−1.

Both trajectories start from the same initial condition and follow the same noise history with free parameters fit to

experimental data as discussed in the main text. (B) Error between the exponential and super-exponential width

SDE integrations as a function of time at 〈k〉 = 0.04 min−1, averaged across 1000 cells. The qualitative shape and

quantitative comparison to the absolute width values is seen across growth conditions.



9

●

●
● ●

0 20 40 60 80 100 120
0

1

2

3

4

t [min]

R
/R
0

R(τ)/2

R
U

R
U

R

Rf

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

t [min]
R
/R

0

A B

Figure S 7. Inferred dynamics of ribosome abundance in E. coli in Glucose 12AA. (A) Representative subsequent

generations of ribosome dynamics inferred from experimental data of cell length. Black lines depict active ribosome

abundance (normalized by the ribosome abundance at birth in the first generation), and red lines indicate the amount of

ribosomes removed from the active pool following division (RU), calculated from the constants k and α as described

in the Appendix. (B) Ensemble-averaged data for ribosome abundance inferred from cell length data. Solid black

depicts normalized active ribosome count while red highlights the average removed from the active pool following

division (RU). Dashed lines show prediction of a potential model for ribosome removal from the active pool (RU) and

allocated to a free ribosome pool (Rf). See Appendix for model details. Data for (A) and (B) taken from [4].
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Figure S 8. Modeling growth dynamics of Bacillus subtilis. (A) Ensemble-averaged length of B. subtilis cells grown

in three conditions at 37◦C vs normalized time t/τ , where τ is cell cycle duration. The average data is fit with the

non-uniform growth model (2) with λ piecewise linear (and continuous, see (C)) around a crossover timepoint. Error

bars are negligible. (B) Ensemble-averaged instantaneous growth rate of B. subtilis cells grown in three conditions at

37◦C vs normalized time t/τ , where τ is cell cycle duration. Error bars show±1 standard error in the mean. We show

fits of (2) as found simultaneously with the length data in (A). (C) Resulting dynamics of λ from the simultaneous

fitting of model (2) to length and growth rate. Data for (A-C) taken from [39].


