FBXW7 β isoform drives transcriptional activation of a proinflammatory TNF cluster in human pro-B cells

Yang *et al.*

Contains Supplemental Methods, Supplemental Figures, and Supplemental Tables

2

SUPPLEMENTAL METHODS

Dataset usage

We accessed RNA-seq data from the St. Jude Cloud, an initiative of St. Jude Children's Research Hospital (https://www.stjude.cloud) and from the Cancer Cell Line Encyclopedia (CCLE) (https://sites.broadinstitute.org/ccle). St. Jude Cloud data used for this analysis (EGAD00001002704 and EGAD00001002692) were accessed by permission from the Computational Biology Committee through the European Bioinformatics Institute (EMBL-EBI).

Spearman correlation

Correlations and their significance were computed using the nonparametric Spearman's rankorder correlation implemented in R function cor.test().

Cell culture

REH cells were maintained in RPMI-1640 medium supplemented with 10% FBS, 2 mmol/L lglutamine, 25 mM HEPES, and antibiotic-antimycotic at 37°C and 5% CO₂. 293T cells were cultured in DMEM with the same supplements.

Cell lysis for immunoprecipitation (IP) and immunoblotting (IB)

Cells were centrifuged at 250 × g for 5 minutes. The cell pellet was lysed on ice in buffer containing 150mM NaCl, 50mM Tris pH 8.0, 1% Triton X-100, and 2 × Halt protease and phosphatase inhibitors (Thermo Fisher 78446, 100×). Protein concentration of lysates was maintained at $2 - 4 \mu g/\mu L$. Cell debris was pelleted at 5000 × g for 5 minutes. Supernatant was collected for direct IB or IP before IB.

In-solution digestion prior to mass spectrometry

Cell pellets were lysed solubilized and digested with the iST kit (PreOmics GmbH, Martinsried, Germany) per manufacturers protocol. Briefly, the resulting pellet was solubilized, reduced and alkylated by addition of SDC buffer containing TCEP and 2-chloroacetamide then heated to 95°C for 10 minutes. Proteins were enzymatically hydrolyzed for 1.5 hours at 37°C by addition of LysC and trypsin. The resulting peptides were de-salted, dried by vacuum centrifugation and reconstituted in 0.1% TFA containing iRT peptides (Biognosys Schlieren, Switzerland).

Mass Spectrometry (MS) Analysis

Samples were analyzed on a QExactive HF mass spectrometer (Thermo Fisher Scientific San Jose, CA) coupled with an Ultimate 3000 nano UPLC system and EasySpray source. Peptides were separated by reverse phase (RP)-HPLC on Easy-Spray RSLC C18 2um 75 μ m id × 50 cm column at 50°C. Mobile phase A consisted of 0.1% formic acid and mobile phase B of 0.1% formic acid/acetonitrile. Peptides were eluted into the mass spectrometer at 300 nL/min with each RP-LC run comprising a 95-minute gradient from 1 to 3% B in 5 min, 3-45%B in 90 min. The mass spectrometer was set to repetitively scan m/z from 300 to 1400 (R = 120,000) followed by data-dependent MS/MS scans on the twenty most abundant ions, dynamic exclusion with a repeat count of 1, repeat duration of 30s, (R=15000) and a nce of 27. FTMS full scan AGC target value was 3e6, while MSn AGC was 2e5, respectively. MSn injection time was 32 ms; microscans were set at one. Rejection of unassigned, 1, 6-8 and >8 charge states was set.

MS raw data processing

Peak lists obtained from MS/MS spectra were identified using a combination of three search engines (MSGF+, Comet, and X!Tandem). The search was conducted using SearchGUI. Protein

identification was conducted against a concatenated target/decoy version of the Homo sapiens complement of the UniProtKB. The decoy sequences were created by reversing the target sequences in SearchGUI. The identification settings were as follows: Trypsin, Specific, with a maximum of 2 missed cleavages, 10.0 ppm as MS1 and 0.02 Da as MS2 tolerances; fixed modifications: Carbamidomethylation of Cys, variable modifications: Oxidation of Met and Acetylation of protein N-term. Peptides and proteins were inferred from the spectrum identification results using PeptideShaker version 1.16.45. Peptide Spectrum Matches (PSMs), peptides and proteins were validated at a 1.0% False Discovery Rate (FDR) estimated using the decoy hit distribution.

Plasmids, transfections, viral vectors, and transductions

FBXW7 expression plasmids for transient overexpression:

Each FBXW7 isoform ORF (without the stop codon) was cloned into a pcDNA3.1+ plasmid backbone (pcDNA3.1+/C-(K)-DYK vector) that contained the Kozak sequence N-terminal to the gene insert and a FLAG tag C-terminal to the gene insert by Genscript. The empty pcDNA3.1+ vector control used in the experiments did not contain a FLAG tag. These plasmids were used for transient overexpression in 293T cells via the Lipofectamine 3000 reagent (Thermo Fisher).

Plasmids for CRISPR-Cas9 genome editing:

LentiV_Cas9_puro (cc60) viral vector (gift from Junwei Shi) was used to transduce the REH cell line, yielding the polyclonal REHCas9 cells after puromycin selection.

Each of the CRISPR guide sequences was cloned into the Lenti_gRNA-GFP(LRG)_2.1T plasmid individually. The empty LRG_2.1T plasmid was a gift from Junwei Shi. After cloning, the two CRISPR guide plasmids (in their DNA form) were electroporated into REHCas9 cells simultaneously with the Lonza AMAXA Nucleofector 2b device (device program O-013 and Nucleofector Solution V were used for REH). GFP+ electroporated cells were FACS-sorted into single cell clones at 48h post-transfection. Because the two guides targeted introns that flank the exon of interest, the transient expression of the two guides allowed removal of the specific exon in some of the single cell clones selected through GFP expression. Single cell clones were expanded and subject to PCR-based genotyping to screen for successful editing by the two guides ("2-cut").

Viral FBXW7 expression plasmids for stable reconstitution or overexpression:

The following sequences were gene synthesized and subcloned into the MIGR1 retroviral vector with the BgIII and EcoRI restriction enzymes – the Kozak sequence, start codon, N-terminal VSVG tag, respective FBXW7 isoform ORF, C-terminal FLAG tag, and two stop codons (TGATAA).

CRISPR-Cas9 genome editing and reconstitution

REH cells were stably transduced with LentiV_Cas9_puro (cc60) viral construct, yielding the REHCas9 cells. To generate a pan-FBXW7 KO single-cell clone, REHCas9 cells were transiently transfected with two CRISPR Lenti_gRNA-GFP(LRG)_2.1T DNA constructs simultaneously to remove the coding exon 2 of FBXW7. Finally, the pan-FBXW7 KO cells were stably reconstituted with individual FBXW7 isoform MIGR1 retroviral constructs that carried EGFP for Fluorescence-Activated Cell Sorting (FACS) selection.

Custom antibody generation

FBXW7β peptide-KLH conjugate antigen preparation, immunization of BALB/c and C57BL/6 mice, and antiserum preparation were performed by GenScript. Antigen peptide sequences are indicated in Supplemental Figure 4.

MG132 treatment

REH cells were left untreated or treated with 1:1000 DMSO vehicle or 10 μ M MG132 (Peptide Institute 3175-v) for 4 hours in complete RPMI-1640.

Immunoblot densitometry

ImageJ bundled with Java 1.8.0_172 for Mac OS X (NIH) was used for quantification of overexpressed or endogenous FBXW7 protein isoforms. Peak area measurements were normalized to those of GAPDH control, and the values were further divided by those of lane 1.

SUPPLEMENTAL FIGURES

Β

Supplemental Figure 1. Existing RNA-seq and 5' Cap Analysis of Gene Expression (CAGE) datasets provide no evidence of *Fbxw7β* **expression in mouse hematopoietic tissues. (A)** RNA-seq of various mouse B-cell subsets from NCBI GEO GSE72018 (Brazao T et al. Blood 2016) was reanalyzed to quantify *Fbxw7* isoform expression. HTSeq v0.8.0 was used in intersection-strict mode against the Ensembl mouse gene annotation (GRCm38/mm10 v87). (B) FANTOM5 CAGE transcriptional start site mapping dataset. Mouse *Fbxw7β* RNA expression is detected in nervous tissues but not in lymphocytes. Viewed on Mouse Genome Informatics (MGI) at Jackson Labs: <u>https://tinyurl.com/Mm-FBXW7b</u>

normal donors B

B-ALL patients at St. Jude

Supplemental Figure 2. Gene expression of primary B-ALL patient samples compared to normal counterparts. (A) Principal component analysis of transcriptome profiles of B-ALL patients at Children's Hospital of Philadelphia (CHOP) (n=18), St. Jude Children's Hospital (n=313), and normal BM cell subsets (pediatric n=2, adult n=2; total n=4). (B) Transcript expression of B-cell and hematopoietic markers in B-ALL patients at St. Jude Children's Hospital (n=313) and in normal BM cell subsets (early progenitors, pro-, pre-, immature B cells; n=4). Salmon algorithm (https://combine-lab.github.io/salmon), tximport, DESeq2, and ggplot2 R packages were used for analysis.

Supplemental Figure 3. Commercial antibodies against pan-FBXW7 epitopes fail to detect FBXW7β. (A) Western Blot of 293T cells transiently transfected with *FBXW7* isoform overexpression constructs using various antibodies. **(B)** 293T cells were transiently transfected with *FBXW7* isoform overexpression constructs, lysed, immunoprecipitated with anti-FLAG agarose beads, and immunoblotted with Thermo #40-1500 FBXW7 antibody first. Without stripping, the same membrane was blotted with FLAG antibody Sigma #F7425. Overexpression of FBXW7 protein isoforms was confirmed with the FLAG antibody.

Supplemental Figure 4. Attempts to generate FBXW7 β -specific antibodies did not lead to successful protein detection. (A) Amino acid sequence encoded by the FBXW7 β exon. Highlighted sequences were used as two different immunogens for two antisera generation attempts. (B)(C) Antisera Western Blot compared to (D) anti-FLAG Western Blot in 293T cells transiently transfected with *FBXW7* isoform overexpression constructs. Presence of overexpressed isoforms was confirmed after stripping anti-FBXW7 β sera and re-probing with anti-FLAG (Sigma #F7425).

REH

 $\circ \circ$

gRNA guide plasmids

transient transfection

FBXW7

Cas9 lentiviral

transduction

puro selection

α

Α

С

1.5

1.0

0.5

Relative Expression

Supplemental Figure 5. Generation of pan-*FBXW***7 KO REHCas9 single cell clone with 2-cut CRISPR-Cas9 genome editing followed by reconstitution. (A)** Genotyping KO single cell clones with genomic DNA PCR: short amplicon reflects removal of *FBXW*7 coding exon 2 shared by all isoforms. The control sample was transfected with one CRISPR guide targeting an unrelated gene *EMX1*. (B) Mixed primers RT-PCR (30 cycles) to examine RNA expression of KO single cell clone after 2-cut CRISPR-Cas9 genome editing. (C) Taqman qPCR to examine RNA expression of KO single cell clone after 2-cut CRISPR-Cas9 genome editing. Transcript quantity was relative to control sample EMX1_2 sg, where one CRISPR guide was used to target the unrelated gene *EMX1*. (D) Lack of FBXW7α protein expression in KO single cell clone, Western Blot with anti-FBXW7α (Bethyl rabbit polyclonal #A301-720A). (E) Stable reconstitution of REHCas9 FBXW7 KO cells followed by Western Blot with anti-FLAG (CST #2368). FBXW7α-FLAG protein is readily detected. FBXW7β-FLAG is detected at ~64 kDa. MG132 treatment does not affect FBXW7 protein levels. Results representative of 3 independent experiments.

SUPPLEMENTAL TABLES

Supplemental Table 1. Taqman real-time qPCR primers and probes					
Target	Туре	Sequence 5'->3'			
	Primer 1	CGA ACT CCA GTA GTA TTG TGG ACC T			
FBXW7al	Primer 2	TTC TTT TCA TTT TTG TTG TTT TTG TAT AGA			
	PrimeTime Probe	/56-FAM/CC CGT TCA C/ZEN/C AAC TCT CCT CCC CA/3IABkFQ/			
	Primer 1	GAG CCT CTA CCA CAT CAA ACT			
FBXW7ga	Primer 2	AAA GAG CGG ACC TCA GAA CC			
	PrimeTime Probe	/56-FAM/AG CAT TAG C/ZEN/A TCA TTG CCC AAG GC/3IABkFQ/			
	Primer 1	CAG CCG GAC ACA CGG G			
FBXW7be	Primer 2	GGT CCA ACT TTC TTT TCA TTT TGT AAA			
	PrimeTime Probe	/56-FAM/AA ATA CAG A/ZEN/A AAT ATG GGT TTC TAC GGC ACA TTA AAA ATG /3IABkFQ/			
	Primer 1	TGG GAT ATC AAA ACA GGA CAG TGT			
ex10-11)	Primer 2	TAA ACA GGT CAC AGC ACT CTG ATG			
	PrimeTime Probe	/56-FAM/ACAAACATT/ZEN/GCAAGGTCCCAACAAG/3IABkFQ/			
	Primer 1	TGT AGT TGA GGT CAA TGA AGG G			
GAPDH	Primer 2	ACA TCG CTC AGA CAC CAT G			
	PrimeTime Probe	/56-FAM/AA GGT CGG A/Zen/G TCA ACG GAT TTG GTC /3IABkFQ/			
	Primer 1	GTT TGG CTG GTG TCG TTT			
CD52	Primer 2	GCC ACG AAG ATC CTA CCA AA			
	PrimeTime Probe	/56-FAM/TGA GAG TCC /ZEN/AGT TTG TAT CTG TAC CAT AAC CA/3IABkFQ/			
	Primer 1	GTC CCT GAT CCC TGA CCT AA			
LST1	Primer 2	GAA GGA CCA CTG CCA GAA G			
	PrimeTime Probe	/56-FAM/TCG CGG AAT /ZEN/GAT GAT ATA TGT ATC TAC GGG /3IABkFQ/			
	Primer 1	CAG CTG CCC ACC TCA TAG			
LTB	Primer 2	ACA GTA GAG GTA ATA GAG GCC G			
	PrimeTime Probe	/56-FAM/AAA CGC CTG /ZEN/TTC CTT CGT CGT CT/3IABkFQ/			
	Primer 1	AAG AAA CAG CGA TGG ACT CC			
MME	Primer 2	GCA GCT GAT TTT ATG CAG TCT G			
	PrimeTime Probe	/56-FAM/AGG AGC AGG /ZEN/ACA AGG ACC GAG A/3IABkFQ/			
	Primer 1	TTC CAA GGA TAT CTG CCA AGA C			
FRG2C	Primer 2	CAG CAG TGG AGG ATC TTG ATT			
	PrimeTime Probe	/56-FAM/CCA GAA GAG /ZEN/GAG TGC AAC TTG ACG T/3IABkFQ/			
	Primer 1	CTC AGT GCA ATT GGA GAA GAG A			
PCDH10	Primer 2	CCA GGA AGC CGA CAT AGT AAG			
	PrimeTime Probe	/56-FAM/AGT GGT CAT /ZEN/GGA GAC AGT GAA CAG G/3IABkFQ/			

Supplemental Table 2. Regular PCR primers					
RT-PCR mixed primers	Sequence 5'->3'				
FBXW7_syy_al_F	CAGCAAAAGACGACGAACTGG				
FBXW7_syy_ga_F	CAGGACATTTGGTAGGGGAAGG				
FBXW7_syy_be_F	TGACAGGGCATAGTCTCCTCC				
FBXW7_syy_2_R	AAAGAGCGGACCTCAGAACC				
Genotyping PCR primers flanking coding exon 2	Sequence 5'->3'				
FBXW7_syy_gD2_F	AGCCTAATAACTGTGAGAGTGGG				
FBXW7_syy_gD2_R	AAGGGAAGAAACCAGCCAGATC				

Supplemental Table 3. CRISPR guide and Morpholino sequences					
CRISPR guide combinatior	n for coding exon	2 removal			
CRISPR guide	Sequence 5'->	3'			
all FBXW7 sg#1	CTTACGACAT	TTAGGGGCTAG			
all FBXW7 sg#2	CTAGGGTAGACATTTATGTA				
Morpholinos					
Target	Name	Sequence 5'->3'			
FBXW7al	MOalpha	ATTGAATATACTCACTTTTGTTGTT			
FBXW7ga	MOgamma TTCAAATGTGTGAGACTTACCCGTC				
FBXW7be	V7be MObeta GAAGAAACAGCTTACTTACTTGT				
Random control oligo MOctrl 25N, mixture of up to 4^25 different sequences					

Supplemental Table 4. Key flow cytometry and immunoblotting reagents					
Flow cytometry reagent	S				
Specificity	Fluorochrome	Manufacturer	Catalog Number		
Human TruStain FcX		Biolegend	422302		
CD34	PE	Beckman Coulter	IM1459U		
lgM	FITC	Beckman Coulter	B30655		
CD19	APC	Beckman Coulter	IM2470U		
lgD	PE	Thermo Fisher	12-9868		
Immunoblotting antibod					
Specificity	Manufacturer	Catalog Number			
FLAG	Cell Signaling Technology	2368S			
FLAG	Sigma	F7425			
FBXW7	Abcam	ab109617			
FBXW7	Thermo Fisher	40-1500			
FBXW7α	Bethyl	A301-720A			
β-ACTIN HRP	Cell Signaling Technology	12262			
GAPDH HRP	Cell Signaling Technology	3683S			
anti-mouse IgG HRP	Cytiva	NA931-1ML			
anti-rabbit IgG HRP	Cytiva	NA934-1ML			

Supplemental Table 5. List of 150 genes harboring Local Splicing Variants denoted in Venn Diagram intersection in Fig 1B.				
ABHD15-AS1 AC093642.3 AKAP9 ALKBH4 ANKRD36 ANKRD36B ARL17B ASPH ATG9A BCOR BCORL1 BMS1P20 C14/ORF159 C1QTNF3-AMACR C8ORF58 C9ORF156 CA5BP1 CAPN15 CAPN3 CASP8 CCDC39 CENPO CEP250 CTBP2 CTD-3092A11.1 DHX34 EDRF1 ELMOD3 ENSG0000163386 ENSG000025241 ENSG0000025241 ENSG00000255168 FAM111A FAM122C FAM173B FAM228B FANCA FANCD2 FBXO41 FBXW7 GALK2 GKAP1 GSN GTPBP10 HERC2P3 HLA-DRB5 HLA-G HLA-K HMGCR	HOMEZ IDS IFT122 IGHG1 IGHG2 IL3RA INTS4 INVS IP6K2 ITFG2 JPX KB-1572G7.2 KIAA0125 KLC1 L3MBTL1 LHPP LINC00893 LINC01237 LRRC27 LRRC37A LRRC37A4P LUC7L3 MGME1 MLLT10 MRS2 MSTO2P MTERF4 NAT1 NDUFAF6 NPIPB3 NPIPB3 NPIPB5 OGG1 OVOL2 PACRGL PARG PAX8 PAX8-AS1 PCBP1-AS1 PCNX PFKM PIGL PKD1P1 PLGLB1 PMS2P4 POLR2J3 PPIP5K1 PRDM2 PREPL PSMC6 PTAR1	RANBP1 RBSN RCOR3 RHOT1 RNFT1 RP11-1023L17.1 RP11-1023L17.1 RP11-1023L17.1 RP11-1023L17.1 RP11-1023L17.1 RP11-156P1.3 RP11-156P1.3 RP11-33N16.3 RP11-33N16.3 RP11-37501.1 RP11-798G7.5 RP11-864I4.1 RP11-875011.1 RP3-47704.14 RP4-717123.3 RPP14 RRP7BP RSRC2 RSRP1 S100A13 S100PBP SCMH1 SCYL3 SEL0 SFXN2 SGK3 SLC16A1-AS1 SMG1P5 SRP14-AS1 STAG3L1 STRN3 TCAIM TCEB3-AS1 TCTN1 TMEM128 TMEM161B-AS1 TNFSF12 TNFSF12-TNFSF13 UBC WDR27 WIBG ZNF131 ZNF250 ZNF254 ZNF251 ZNF83		

Supplemental Table 6. List of 188 genes differentially expressed in FBXW7 alpha vs beta knockdown cells (MOα vs MOβ). Per Gene Set Enrichment Analysis (collection C5 at <u>www.gsea-msigdb.org</u>), they are enriched in the following top 10 biological processes: dry skin, calcium ion binding, regulation of cell death, tissue development, growth, biological adhesion, Golgi apparatus, regulation of growth, cell-cell signaling, and structural molecule activity. List ranked by log2FoldChange of genes expressed in MOα relative to MOβ.

1. ENSG0000263244	56. CTPS2	111.HR	166.CCDC198
2. OLR1	57. CDKN2A	112.ZHX3	167.IGFBP1
3. ENSG00000280571	58. H2BC20P	113.NQO1	168 PPARGC1A
4 C19orf33	59 SMN1	114 KCN.12	169 CPA4
5 KRT6A	60 ENSG00000279149	115 CDH24	170 ACAN
	61 NIT2	116 PLIRPI	171 LINC01139
			172 RMD4
		118 ENSC00000250660	
		110 TMC9	
	04. FRG2D		174.FLG
	65. FRG2C	120.ZINF407	175.FBX010
	00. FAXC		176.ENSG00000224066
12. KR18	67. SMAD9	122.XKR4	177.ENSG00000232725
13. ENSG00000225339	68. PTPN22	123.DENND2B	178.SMIM11B
14. PLPP2	69. ENSG00000263731	124.IGFBP4	1/9.HDX
15. SMOC1	70. ENSG00000268205	125.ENSG00000124224	180.PRDM6
16. FAM83A	71. TMSB4XP4	126.BMP3	181.ENSG00000267459
17. ALPP	72. SELL	127.ARSJ	182.ENSG00000284969
18. DAW1	73. LTB	128.EGR1	183.GAPDHP62
19. ENSG00000281379	74. CD52	129.ZCCHC18	184.ENSG00000261641
20. PDE1C	75. MPO	130.PMEPA1	185.ENSG00000224837
21. FOLR1	76. MAP2	131.NRXN1	186.RPL21P16
22. NPTX1	77. ENSG00000210082	132.SDC2	187.RMRP
23. NKD1	78. SYNGR1	133.WWTR1	188.RPL36AP37
24. SCHIP1	79. CPZ	134.PTPN4	
25. KRT80	80. LST1	135.SCARA3	
26. ANXA3	81. NNMT	136.ALPK2	
27. MTARC1	82. HYPK	137.KCNJ2-AS1	
28. FAM153A	83. ARL17B	138.MBNL1-AS1	
29. ARAP3	84. GBP4	139.KRT19	
30 FPPK1	85 DHCR7	140 WFDC1	
31 CELSR1	86 LMO2	141 C11orf87	
32 WWC1	87 MRPI 10	142 RNF144B	
33 MISP	88 MME	143 OLEMI 3	
34 TINAGI 1	89 NRN1	144 NEB	
	90 FBXW/7	145 SI CAAA	
36 LINC00114		1/6 TXK	
37 PCAT2		147 ENSC00000261434	
		147.EN3600000201434	
	93. UVSSA	140.LFCA12	
39. IDA3		149.ENSG00000241409	
	95. LANCE2	150.FGF5	
41. WDR72	90. FGD0	151.ENSG00000257300	
42. POSTN		152.NECTIN4	
43. MAGED4	98. NID2	153.0130140	
44. CASP1	99. KCNJ16	154.GDF6	
45. ENSG00000262172	100.POLH	155.POU6F1	
46. CDKN2B	101.ENSG00000269837	156.OGN	
47. CPLX2	102.ABHD4	157.LOC105369760	
48. AGR2	103.PHLDA3	158.KCNMA1	
49. NPAS2	104.TENM4	159.EYA2	
50. ENSG00000226239	105.SAMHD1	160.LINC00648	
51. CCDC182	106.KDM7A	161.P3H2	
52. ARRDC3-AS1	107.SLIT2	162.BAZ2B	
53. FBLN2	108.ATXN7	163.ENSG00000243696	
54. NR2F2	109.INKA2	164.ENSG00000285625	
55. GASK1B	110.SLC7A7	165.PDE4C	

Supplemental Table 7. List of 228 genes differentially expressed in FBXW7 alpha vs beta reconstituted cells (KO + α vs KO + β). Per Gene Set Enrichment Analysis (collection C5 at www.gsea-msigdb.org), they are enriched in the following top 10 biological processes: intrinsic component of plasma membrane, locomotion, neurogenesis, cell morphogenesis, cell projection organization, cell-cell adhesion, biological adhesion, taxis, cell migration, and ion transport. List ranked by log2FoldChange of genes expressed in KO + α relative to KO + β .

-	ENIO 0 0000000000000000000000000000000000	50 300 4000	445 50%00	(70.41)00
1.	ENSG00000261093	58. IBC1D30	115.FOXO6	172.ANO2
2.	FAM86B2	59. ENSG0000237356	116.SYT1	173.TRDV2
3.	USP41	60. OTOGI	117.MLI T11	174 CACNA1F
1	CBSI		118 MVO10	175 TA
4 .				175.ETA
5.	ENSG00000283228	62. SUHLHZ	119.IRX3	176.ELN
6.	BDNF-AS	63. CEACAM21	120.PCDHB13	177.TRPM2
7.	ENSG00000261459	64. ENSG00000270112	121.LFNG	178.RCAN3
8.	ENSG00000285000	65. FAM53A	122 ARHGAP24	179.II 6ST
<u>0</u>		66 \/\/A8	123 BBS0	180100102723006
10			120.0003	100:200102720000
10.	FAAHZ	67. BCDIN3D-AST	124.5BK1	IOI.LIB
11.	LOC100653049	68. SNORC	125.PDGFRB	182.CASKIN1
12.	EPHA1-AS1	69. PCDH1	126.USP18	183.UMODL1
13.	ZNF287	70. SRGAP1	127.IFI44	184.FGF18
14	I GR6	71 WTIP	128 PTPN6	185 DNAH10
15				196 LINC00467
10.			129.FADF04L	180.LINC00407
16.	ENSG00000239922	73. PDZRN4	130.CDKN2C	187.EIF3CL
17.	PECAM1	74. NIPSNAP3B	131.PALM	188.GPX3
18.	MIR646HG	75. PCDH10	132.SP4	189.TMC8
19.	PKHD1I 1	76. KI HDC7A	133.SNHG5	190.PPI
20	ENSG00000244558	77 WNK3	134 FBXW7	
20.			104.1 DAWA	
21.	RAPSIN	78. LUCATI	135.5NHG3	192.MIME
22.	PIP4K2C	79. DSC3	136.SH3KBP1	193.IL16
23.	SLCO2B1	80. NRP1	137.LIMD2	194.GRIN2B
24.	SGMS2	81. DAPK1	138.ENSG00000281398	195.ENSG00000271046
25	RHPN2	82 HDAC9	139 RFTN1	196 MEG9
20.	SI CEA2	92 CNC11	140 580.20	107 02
20.	SLUGAZ		140.FRG20	197.03
27.	IMPACI	84. ARSG	141.PAG1	198.FANCB
28.	ENSG00000258590	85. SLITRK1	142.RASD1	199.MYOM1
29.	RTBDN	86. GPER1	143.PPM1F	200.ENSG00000225096
30.	DOCK1	87. MBP	144.DTX1	201.MPDZ
31	CHRM2	88 MAP1A	145 SNHG26	202 PRODH
32	CEAP200	80 BIN1	146 NETO1	203 002
22.				203.0102
33.		90. LINC00156	147.IVITZA	204.LINC00070
34.	ENSG00000264058	91. HBEGF	148.LINGO3	205.EVA1A
35.	ZNF521	92. SLCO5A1	149.CD19	206.DIO2-AS1
36.	CDH12	93. ENSG00000272933	150.LCK	207.DNAAF8
37.	CHURC1-FNTB	94. LPAR4	151.ZNF423	208.PLA2G10
38	IDI2-AS1	95 TEPI	152 FRMAP	209 MYO16
30	KPT18P27	06 DSC2	153 DOCK9	210 082442
40		90. D302		210.012742
40.		97. ENSG00000272070	154.RIPOR2	211.ENSG00000271693
41.	PCDH10-D1	98. SPIBNZ	155.LUC105375924	212.ENSG00000279593
42.	ATP1A2	99. IFI27L2	156.KCNK12	213.PRRG1
43.	TRPS1	100.FAT4	157.TNF	214.TBR1
44	ENSG00000271930	101.RGMA	158.COI 5A1	215.ANO9
15	TI R7	102 AGAP1	150 BEST3	216 STAB2
46	SODI	102.710711	160 SEMAGA	217 ENSC00000222074
40.		103.ZNF409		217.ENSG00000233974
47.	PPP1R14A	104.VPS13B	161.TRAC	218.MUC5B
48.	KIF26B	105.NTRK1	162.SLC35E3	219.LPAL2
49.	ENSG00000258592	106.HIC1	163.SPAG1	220.RYR1
50.	ZNF385D	107.RGL1	164.CD52	221.LHX1
51	SALL1	108 CAMK2D	165 FLT1	222 CCR6
52		109 OPN3	166 ENSC0000204282	223 7SW/IM8_AS1
52.		110 PKIC	167 L ST1	224 TMEM265
55.			107.2311	
54.		III.ABCA9	100.ICUSLG	229. SUAKINAZ
55.	ENSG00000227579	112.ZNRF1	169.GBGT1	226.ENSG00000196302
56.	XYLT1	113.CD248	170.MT1X	227.ENSG00000280064
57	SRSF12	114.SEMA3D	171.TMEM52	228.ENSG00000259948

Supplemental Table 8. Top 300 genes whose expression highly correlates with FBXW7 beta exon usage in the St. Jude B-ALL patient cohort. The genes identified in both knockdown and reconstitution experiments (MME/CD10, LTB, CD52, and LST1) were ranked between 22nd and 256th out of the 41,275 genes whose RNA expression were analyzed, or in the top 0.62%. Some other genes that highly correlated with FBXW7 beta-exon usage (ADGRG1, ECM1, PTP4A3, and CD200) mapped to the locomotion and cell migration biological processes annotated by collection C5 on the Gene Set Enrichment Analysis website (www.gsea-msigdb.org).

1. LINC02273 2. VWA2 3. FBXW7-AS1 4. TMEM236 5. AC097375.4 6. SERPINB9 7. ZC3H12D 8. TSPAN7 9. BLACE 10. SPAAR 11. ADGRG1 12. ECM1 13. ELFN2 14. FP325335.1 15. MME-AS1 16. PTP4A3 17. CD200 18. CTDSPL 19. Z94160.2 20. SLC35E3 21. AC008149.1 22. ME 23. TMPRSS11E 24. PRX 25. AC004704.1 26. AC093916.1 27. S100Z 28. ZNF793 29. LARGE2 30. C2orf73 31. SCHIP1 32. IQCJ-SCHIP1 33. AC069023.1 34.	76. CORO6 77. ASB13 78. CD27 79. AP002761.3 80. LINC02538 81. AC010260.1 82. LINC02452 83. RGL1 84. DUSP27 85. AC025423.3 86. AC04466.1 87. AC139769.2 88. NBPF15 89. LINC02487 90. ARHGEF17 91. HDAC7 92. RPL23AP49 93. SLC2A7 94. CRELD2 95. AC007207.1 96. CNKSR3 97. DUX4L26 98. AC009271.1 99. LGMN 100. LINC01416 101. TP53INP1 102. MIR4520-1 103. SOAT2 104. LINC01224 105. AL513523.2 106. AC069272.1 107. NDUFAF6 108. B4GALT6	151. OR4Q3 152. CD27-AS1 153. SCNN1A 154. AL139246.2 155. AC108724.2 156. AC025423.4 157. MDS2 158. ABCA4 159. MSR1 160. KHDRBS3 161. GOLGA8B 162. LINC02571 163. AC087752.3 164. NPAP1P6 165. EMP2 166. AC025423.2 167. AC129915.3 168. AL355916.3 169. AL669970.1 170. SYNPO2 171. MZB1 172. TNRC6C-AS1 173. MDM2 174. AC018552.3 175. VAMP5 176. AL161912.4 177. TDRD1 178. SFXN1 179. RIPOR2 180. AL354993.2 181. AL356234.2 182. AC0272777.1 183.	226. MRPL49P2 227. AC027309.1 228. LRRC70 229. LINC01507 230. LIMK2 231. MAPRE1P1 232. ARHGAP42P4 233. AL512310.2 234. PLCH1 235. AC139769.3 236. PFN1P6 237. ZNF90 238. MYLK 239. AL161782.1 240. NRP1 241. AL713998.1 242. AL021408.2 243. MRVI1-AS1 244. TRERNA1 245. AC006487.1 246. CA6 247. ABLIM1 248. AC025754.1 249. MRGPRG-AS1 250. SLC37A3 251. SSX2 252. TGM7 253. CYTL1 254. RPL10P19 255. DPEP1 256. LST1 257. AGGF1P3 258. NLRP12

51.	FBLN5	126.	LINC01825	201.	CMTM8	276.	AC127029.2
52.	AL355974.2	127.	MAP3K19	202.	LINC01290	277.	AC243967.1
53.	AC131211.1	128.	EGLN1	203.	MYO1B	278.	LAMB4
54.	JPH1	129.	SEMA6A-AS2	204.	AL355916.2	279.	AC093278.2
55.	AC022148.1	130.	AC092839.1	205.	AF067845.4	280.	C1R
56.	AC139718.1	131.	CLUHP10	206.	GRB7	281.	AL139415.1
57.	AC008060.4	132.	AC104564.5	207.	FAM129A	282.	KCNK15
58.	SLC16A14	133.	DLGAP2-AS1	208.	ITPR3	283.	PPP2R2C
59.	CRHBP	134.	ST6GALNAC3	209.	AP003555.2	284.	AF067845.1
60.	PIK3IP1	135.	ALOX5	210.	AL161912.2	285.	TCN2
61.	DLGAP2	136.	NFASC	211.	AC017100.1	286.	LINC00670
62.	ARHGAP29	137.	BNIP3P39	212.	RN7SL88P	287.	NRN1
63.	FRG2C	138.	CCL17	213.	AC040970.1	288.	LINC00544
64.	FBXW7	139.	AC079209.1	214.	AC100803.3	289.	GRIK5
65.	AL356234.3	140.	AC080078.2	215.	LTA	290.	AC092614.1
66.	AC008060.1	141.	AL138881.1	216.	AC006305.3	291.	GPRIN3
67.	AC010542.1	142.	CD52	217.	SV2A	292.	AC004706.1
68.	AL359220.1	143.	AC011447.1	218.	LINC01841	293.	LINC02074
69.	AC087627.1	144.	LINC01471	219.	BNIP3P15	294.	AC100803.1
70.	CMTM2	145.	SEMA6A	220.	LGALS7	295.	GSDMA
71.	ZNF366	146.	LINC02577	221.	GAB1	296.	LINC02564
72.	AC005383.1	147.	UNC93B3	222.	AL669970.2	297.	CERNA1
73.	FGF16	148.	SEMA6A-AS1	223.	SLFN14	298.	AL512428.1
74.	C14orf132	149.	AC246785.3	224.	LYVE1	299.	AC084816.1
75.	AC018781.1	150.	AL731567.1	225.	CHST15	300.	NPR2
				1		1	