Supplemental methods

Blood counts and analysis

Blood was collected by cardiac puncture in mice. Complete blood count (CBC) was measured by Hemavet 950FS (Drew Scientific). Percentage of neutrophils was analyzed by differential test. Absolute neutrophil count (ANC) were determined in peripheral blood by CBC and differential. Some samples were also analyzed by flow cytometry, with ACK lysing buffer (Gibco) used to lyse red blood cell prior to analysis of leukocyte markers, and neutrophils were identified as CD45⁺CD11b⁺Ly6G⁺.¹

Preparation of lung and marrow cell suspensions

For analysis of single cell lung suspensions, the right lung inferior lobe was minced and then digested with 5 mg/ml type I collagenase (Worthington) and 1 mg/ml DNAsel (Worthington) in RPMI1640 (Corning) at 37 °C for 45 min and subsequently passed through a 70 μ m cell strainer. ACK lysing buffer (Gibco) was used for red blood cell lysis ¹. Bone marrow cells were flushed from the femurs, filtered through 70 μ m cell strainer and red blood cells were lysed with ACK lysing buffer (Gibco). ²

Bronchoalveolar lavage

Bronchoalveolar lavage (BAL) samples were obtained by three sequential one ml lavages with ice cold PBS with 2mM EDTA and 2% FBS. The 1st ml of BAL supernatant was frozen at -80°C for ELISA. After red cell lysis with ACK lysis buffer (Gibco), pooled cells from all 3 ml were used to enumerate cell counts by hemocytometer and the leukocyte differential using Wright-Giemsa stained cytospins.

ELISA

BAL and plasma cytokines were analyzed using Mouse IL-1β ELISA kit, Mouse IL-6 ELISA kit, Mouse CXCL1 ELISA kit, Mouse CXCL2 ELISA kit and Mouse G-CSF ELISA kit (all from R&D systems).

Neutrophil depletion during zymosan-induced lung inflammation

Neutrophil depletion followed a double antibody-based protocol^{3,4}, as previously described¹. Mice were injected IP with 200 µg Anti-Ly6G antibody (clone: 1A8, BioXcell) on days 0 and 2 and 100 µg Anti-Rat IgGk antibody (clone: MAR18.5, BioXcell) on day 1. Mice were challenged with 20 µg zymosan IN 4 hours after Anti-Ly6G antibody IP injection on day 2. Mice were euthanized 18 hours after zymosan challenge and evaluated for neutrophil depletion in peripheral blood obtained by cardiac puncture. White blood cell counts (WBC) were analyzed using a Hemavet and % of neutrophils was scored by Wright-Giemsa stained blood smears. ¹

Flow cytometry

BAL and lung single cell suspensions were incubated with anti-mouse CD16/32 (clone 2.4G2, BioXcell) to block Fc-receptors, and stained as outlined below. Data were collected on FACScan (BD) or LSRFortessa (BD) and analyzed by FlowJo (Tree Star Inc.).

For regular BAL and lung single cell staining: BV510 Rat anti-mouse CD45 antibody (clone 30-F11, BD Horizon), V450 Rat anti-mouse Ly6G antibody (clone 1A8, BD Horizon), PE-Cy7 Hamster anti-mouse CD11c antibody (clone HL3, BD Pharmingen), APC Rat anti-mouse CD11b antibody (clone M1/70, eBioscience), PE Rat anti-mouse siglec-F antibody (clone E50-2440, BD Pharmingen), PerCP/Cy5.5 Rat anti-mouse Ly-6C antibody (clone HK1.4, Biolegend). Gating strategy was as shown previously.¹ Neutrophils were identified as CD45⁺Ly6G⁺CD11b⁺, and also confirmed by CD45⁺Ly6C^{int}CD11b⁺. Eosinophils and alveolar macrophages were identified as CD45⁺CD11c⁻SiglecF⁺ and CD45⁺CD11c⁺SiglecF⁺ respectively.

For pro-IL-1 β intracellular staining: BV510 Rat anti-mouse CD45 antibody, V450 Rat anti-mouse Ly6G antibody, PE-Cy7 Hamster anti-mouse CD11c antibody, APC Rat anti-mouse CD11b antibody, PE Rat anti-mouse Siglec-F antibody, PerCP/Cy5.5 Rat anti-mouse Ly6C antibody, FITC Rat anti-mouse IL-1 β (Pro-form) (clone NJTEN3, Invitrogen), FITC mouse IgG1, κ Isotype control (clone MOPC-21, BD Pharmingen). Neutrophils were identified as CD45⁺SiglecF⁻CD11b⁺Ly6G⁺, eosinophils and AMs were identified as CD45⁺SiglecF⁺CD11c⁻ and CD45⁺SiglecF⁺CD11c⁺ respectively, Ly6C^{hi} monocytes were identified as CD45⁺SiglecF⁻CD11b⁺Ly6C^{hi}, other cells were identified CD45⁺ cells except neutrophils, eosinophils, AMs and Ly6C^{hi} monocytes. Gating strategy is shown in Fig. S1A and S1D.

In neutrophil depletion experiments: BV510 Rat anti-mouse CD45 antibody, V450 Rat anti-mouse Ly6G antibody, PE-Cy7 Hamster anti-mouse CD11c antibody, PE Rat anti-mouse siglec-F antibody, PerCP/Cy5.5 Rat anti-mouse Ly-6C antibody. Neutrophils were identified as CD45⁺SiglecF⁻Ly6C^{int}, eosinophils and AMs were identified as CD45⁺SiglecF⁺CD11c⁻ and CD45 ⁺SiglecF⁺CD11c⁺ respectively, Ly6C^{hi} monocytes were identified as CD45⁺SiglecF⁻Ly6C^{hi}. Gating strategy is shown in Fig. S1E.

For analysis of marrow granulopoiesis: PE-Cy7 Rat anti-mouse Gr-1 antibody (clone RB6-8C5, Invitrogen), PE-Cy7 Rat anti-mouse B220 antibody (clone RA3-6B2, Invitrogen), PE-Cy7 Rat anti-mouse TER-119 antibody (clone TER-119, Invitrogen), PE-Cy7 Hamster anti-mouse CD3e antibody (clone 145-2C11, BD Pharmigen), BV421 Rat anti-mouse c-Kit antibody (clone 2B8, Biolegend), APC-Cy7 Rat anti-mouse CD16/32 antibody (clone 93, Biolegend), PerCP-Cy5.5 Rat anti-mouse Sca-1 antibody (clone D7, Invitrogen), FITC Rat anti-mouse CD34 antibody (clone RAM34, Invitrogen). LSK cells (Lin⁻Sca⁻1⁺c-kit⁺), granulocytic-monocytic progenitors (GMP, Lin⁻Sca⁻1⁻c-kit⁺CD34⁺CD16/32⁻) and megakaryocyte-erythroid progenitors (MEP, Lin⁻Sca⁻1⁻c-kit⁺CD34⁺CD16/32⁻) were determined by flow cytometry. Gating strategy is shown in Fig. S3A.

For analysis of committed neutrophil precursors: PE-Cy7 Rat anti-mouse B220 antibody, PE-Cy7 Rat anti-mouse TER-119 antibody, PE-Cy7 Hamster anti-mouse CD3e antibody, BV421 Rat anti-mouse c-Kit antibody, PE Rat anti-mouse Ly6G antibody (clone 1A8, BD Pharmingen), FITC Rat anti-mouse CD34 antibody. Myeloblast (Lin⁻c-Kit^{hi}Ly6G⁻), promyelocyte (Lin-c⁻Kit^{int}Ly6G⁻), myelocyte (Lin⁻c-Kit⁻Ly6G^{low}), metamyelocyte (Lin⁻c-Kit⁻Ly6G^{int}), and Ly6G^{hi} PMN neutrophil (Lin⁻c-Kit⁻Ly6G^{hi}) were identified by flow cytometry. Gating strategy is shown in Fig. S3B.

For CD101 staining experiments: BV510 Rat anti-mouse CD45 antibody, V450 Rat antimouse Ly6G antibody, AF-647 Rat anti-mouse CD101 antibody (clone 307707, BD Pharmingen), PE Rat anti-mouse CD11b antibody (clone M1/70, eBioscience). CD101^{neg} neutrophils (CD45⁺CD11b⁺Ly6G⁺CD101⁻) and CD101^{pos} neutrophils

(CD45⁺CD11b⁺Ly6G^{hi}CD101⁺) were identified by flow cytometry. As naive mice have a very low content of CD101^{neg} lung neutrophils, we studied only Ly6G⁺CD11b⁺ CD101^{pos} neutrophils from this group. Gating strategy for different tissues is shown in Fig. S4.

Histology and Immunohistochemistry

In some experiments, the left lung was fixed by inflation using 10% formalin, dehydrated by ethanol, embedded in paraffin, and cut into 5 µm sections for analysis of histology, as previously described. ¹ Tissue sections were stained with H&E. For immunohistochemistry, tissue sections underwent antigen retrieval with Antigen unmasking solution (Vector Laboratories) with the manufacture's protocol, and then were blocked with 2% gelatin from cold water fish skin (Sigma-Aldrich) for 1 hour at room temperature, incubated with a 1/500 dilution of Rabbit anti-mouse myeloperoxidase antibody (ab139748, Abcam) at 4°C overnight, followed by incubation with biotinylated goat anti-rabbit antibody (1/500 dilution for 1 hour at room temperature, Vector Laboratories) and detected by VECTASTAIN ABC kit (Vector Laboratories) and DAB peroxidase substrate kit (Vector Laboratories). Sections were counterstained with hematoxylin (Gill's formula, Vector Laboratories). The images were captured with NanoZoomer digital slice scanner (Hamamatsu Photonics, Japan). Images were analyzed by NDP.view2 software (Hamamatsu Photonics).

Immunofluorescence

Formalin fixed, paraffin embedded lung tissue sections underwent antigen retrieval with Antigen unmasking solution (Vector Laboratories) with the manufacture's protocol, and then were blocked with 2% gelatin from cold water fish skin (Sigma-Aldrich) for 1 hour at room temperature, incubated with 1/100 dilution of goat anti-mouse IL-1 β antibody (Cat # AF-401-NA, R&D systems) and Rat anti-mouse Ly6G antibody (clone 1A8, Invitrogen) at 4°C overnight, followed by incubation with 1/500 dilution of AF488 donkey anti-goat IgG (Cat # A11055, Invitrogen) and 1/500 dilution of AF594 donkey anti-rat IgG (Cat # A21209, Invitrogen) for 1 hour at room temperature. 1 µg/ml DAPI (Cat # 10236276001, Roche) was used for nuclear counterstaining. ProLong Gold antifade reagent (Cat # P36930, Invitrogen) was used as mounting media. Images were acquired by Zeiss Axio Imager M2 upright fluorescence microscope (Carl Zeiss Inc.), using an EC Plan-Neofluar 20X (NA 0.5) air objective (Carl Zeiss) with an ORCA-Flash 4.0 digital camera (Hammamatsu Photonics, Japan), and by ZEN 2 pro (blue edition) software for (Carl Zeiss) or acquired by Zeiss Axio Observer D1 inverted fluorescence microscope (Carl Zeiss Inc. Thornwood, NY), using an EC Plan-Neofluar 20X (NA 0.5) air objective (Carl Zeiss) with an Axiocam 503 dual color B/W digital camera (Carl Zeiss), and by ZEN 2.3 (blue edition) software. Images were further processed and analyzed using ImageJ (National Institutes of Health).

qPCR

RNA from lung tissues was extracted with RNAeasy Plus Mini Kit (Cat # 74136, Qiagen). cDNA was synthesized by High-Capacity cDNA Reverse Transcription Kit (Cat # 4368813, Applied Biosystems). qPCR was performed using TaqMan Fast Universal PCR Master Mix (Cat # 4352042, Applied Biosystems) on a 7500 Fast Real-Time PCR system (Applied Biosystems) with the following primers purchased from Thermo Fisher: Csf3 Mm00438335_g1, II6 Mm00446190_m1, Cxcl1 Mm04207460_m1, Cxcl2 Mm00436450_m1 and Gapdh

Mm99999915_g1. Gapdh were used to normalize the expression of target genes as an internal control.

RNA-sequencing and analysis.

RNA was prepared from sorted live (7-AAD-negative) neutrophils from lung single-cell suspensions. Neutrophils were identified as Live (7-AAD-negative) CD45⁺CD11b⁺Ly6G⁺ along with CD101, and sorted as CD45⁺CD11b⁺Ly6G⁺CD101^{neg} or CD45⁺CD11b⁺Ly6G⁺CD101^{pos} cells on the FACSAria Fusion cell sorter (BD). 50,000-200,000 cells/sample were sorted into RPMI1640 + 20% heat-inactivated FBS, and each group had three replicate samples. Total RNA was isolated using RNeasy Plus Micro Kit (Qiagen). All samples showed RNA integrity (RIN) of > 9.7. RNA-seg libraries were prepared using the Clontech SMARTer Kit. Samples were prepared according to library kit manufacturer's protocol, indexed, pooled, and sequenced on an Illumina NovaSeq 6000. RNA-seq reads were aligned to the Ensembl release 76 primary assembly for mouse. Ribosomal genes and genes not expressed in the smallest group size minus one samples greater than one count-per-million were excluded from further analysis. The TMM size factors and the matrix of counts were then imported into the R/Bioconductor package Limma.⁵ Linear modeling (limma/voom) was used to compare gene expression across samples. Differential expression analysis was performed to analyze for differences between conditions and the results were filtered for only those genes with Benjamini-Hochberg falsediscovery rate adjusted p-values less than or equal to 0.05. Heatmaps and Venn diagrams were created using R. Hallmark gene sets ⁶ were analyzed using generally applicable gene set enrichment (GAGE).⁷

References

1. Song Z, Huang G, Chiquetto Paracatu L, et al. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. *Blood*. 2020;135(12):891-903.

2. Bagaitkar J, Pech NK, Ivanov S, et al. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1alpha/G-CSF axis. *Blood*. 2015;126(25):2724-2733.

3. Boivin G, Faget J, Ancey PB, et al. Durable and controlled depletion of neutrophils in mice. *Nat Commun*. 2020;11(1):2762.

4. Faget J, Boivin G, Ancey P-B, et al. Efficient and specific Ly6G+ cell depletion: A change in the current practices toward more relevant functional analyses of neutrophils. *bioRxiv*. 2018:498881.

5. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res*. 2015;43(7):e47.

6. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst.* 2015;1(6):417-425.

7. Luo W, Friedman MS, Shedden K, Hankenson KD, Woolf PJ. GAGE: generally applicable gene set enrichment for pathway analysis. *BMC Bioinformatics*. 2009;10:161.

Song et al.

Fig. S1. WT and CGD mice were challenged with 20 µg intranasal zymosan. BAL samples were collected at different time points and used for further analysis. (A) Representative gating strategy for identifying pro-IL-1 β^+ cell composition in BAL at 8 hours after 20 µg zymosan IN challenge. Due to high autofluorescence of alveolar macrophages (AMs), CD45⁺ cells were firstly gated as SiglecF⁻ and SiglecF⁺ population, then Pro IL-1 β ⁺ cells were further gated from each population. Upper panel, gating from Isotype control staining. Lower panel, gating from Pro-IL-1 β staining. Percentage of pro-IL-1 β ⁺ cells from CD45⁺ cells was calculated by adding up the percentage of SiglecF⁺ pro-IL-1 β ⁺ and SiglecF⁻ pro-IL-1 β ⁺ cells from CD45⁺ cells. Percentage of each cell population from CD45⁺pro-IL-1 β ⁺ cells were further calculated using flow cytometry results. This gating is related to Figure 1C, Figure S1B and S1C. (B) BAL counts of pro-IL-1B⁺ AMs, neutrophils, eosinophils, Ly6C^{hi} monocytes, and remaining other cells were calculated from flow cytometry results for the percentage of pro-IL-1 β^+ AMs, neutrophils, eosinophils, Ly6C^{hi} monocytes, and other cells. (C) Percentage of pro-IL-1β⁺AMs, neutrophils, eosinophils, Ly6Chi monocytes, and others (CD45⁺SiglecF⁻Ly6G⁻Ly6C^{low-} cells not further characterized) were determined by flow cytometry. (D) Representative flow cytometry gating of BAL pro-IL-1 β ⁺ neutrophils from total neutrophils. Neutrophils were identified as CD45⁺SiglecF⁻ Ly6G⁺Ly6C^{int}, eosinophils and AMs were identified as CD45⁺SiglecF⁺CD11c⁻ and CD45⁺SiglecF⁺CD11c⁺ respectively, Ly6C^{hi} monocytes were identified as CD45⁺SiglecF⁻Ly6G⁻ Ly6C^{hi}. This gating is related to Figure 1D and 1E. (E) Representative figure of flow cytometry gating of BAL cells to assess neutrophil depletion. Mice were sequentially injected IP with anti Ly6G or isotype and anti-Rat Kappa light chain prior to lung challenge with zymosan. Cell composition was determined by flow cytometry. Neutrophils were identified as CD45⁺SiglecF⁻ Ly6C^{int}, eosinophils and AMs were identified as CD45⁺SiglecF⁺CD11c⁻ and CD45⁺SiglecF⁺CD11c⁺ respectively, Ly6C^{hi} monocytes were identified as CD45⁺SiglecF⁻Ly6C^{hi}.

Fig. S2. (A-B) WT and CGD mice were injected intraperitoneally with anti-IL-1 β ab or isotype, followed by IN instillation of 20 µg zymosan after 1 hour. BAL and lung tissue were collected at 8 hours after zymosan challenge. (A) Total leukocyte counts from 3 ml BAL fluid. The percentage of neutrophils were identified by cytospin. BAL PMN counts were calculated by cytospin results. (B) Lung cells were counted from the right inferior lobe. PMN (CD45⁺CD11b⁺Ly6G⁺) counts were calculated by flow cytometry. WT, n ≥ 3 from 1 or more experiments; CGD, n ≥ 4 from 2 independent experiments. Data are means ± standard error of the mean.

Song et al.

Fig. S3. WT and CGD mice were challenged with 20 μg IN zymosan. Bone marrow cells were collected from naïve WT and CGD mice and at 24 hrs from mice challenged with 20 μg intranasal zymosan. (A) Representative flow cytometry gating to identify different hematopoietic progenitors in naïve mice and zymosan challenged mice. Lineage makers were CD3, B220, TER-119 and Gr-1. (B) Representative flow cytometry showing gating to identify differentiation and maturation stages of marrow granulocytes in mice. #1, myeloblast; #2, promyelocyte; #3, myelocyte ; #4, metamyelocyte ; #5, Ly6G^{hi} neutrophil. (C) Percentage of LSK cells,common myeloid progenitors (MEP) were determined by flow cytometry. (D) Percentage of myeloblast, promyelocyte, myelocyte, metamyelocyte and Ly6G^{hi} PMN were determined by flow cytometry.

Fig. S4. Gating strategy to identify CD101^{neg}Ly6G⁺CD11b⁺ neutrophils in various tissues.

Fig. S4. Representative flow cytometry gating to identify CD101^{neg}Ly6G⁺CD11b⁺ neutrophils in the indicated tissues (bone marrow, blood, BAL and lung), showing examples from either naive WT mice or WT challenged with 20 μg IN zymosan and samples collected 24 hours later. CD101 expression on CD11b⁺Ly6G⁺ PMN were analyzed by flow cytometry and showed CD101^{neg} PMN (CD45⁺CD11b⁺Ly6G⁺CD101^{neg}) and CD101^{pos} PMN (CD45⁺CD101^{pos}) populations.

Fig. S5. (A-D) CGD mice were injected intraperitoneally with anti II-1β ab or isotype 1 hour before 20 μg zymosan challenge, or treated with zileuton or vehicle 30 minutes before and 4 hours after zymosan challenge, and studied at 24 hours. (A) LSK cells, CMP, GMP and MEP counts per femur were calculated by flow cytometry results. (B) Promyelocyte, myelocyte and metamyelocyte counts per femur were calculated by flow cytometry results. (C) Total WBC, percentage of PMN, and absolute neutrophil count (ANC) were determined in peripheral blood by complete blood count and differential. (D) Peripheral blood immature CD101^{neg} PMN and mature CD101^{pos} PMN were determined by flow cytometry, and immature PMN and mature PMN counts were calculated by flow cytometry results. (E-G) CGD mice were treated with

zileuton or vehicle 30 minutes before and 4 hours after 20 µg zymosan challenge and studied at 8 hours or 24 hours. (E) Pro-IL-1 β + PMN counts were calculated from flow cytometry results. (F-G) G-CSF level in plasma were determined by ELISA. (A-E) n ≥ 6 from 2 independent experiments. (F) n ≥ 4 from 2 independent experiments. (G) n ≥ 6 from 3 independent experiments. Data are means ± standard error of the mean. *P < 0.05; **P < 0.01; ***P < 0.001, by student t test.

Song et al.

Fig. S6. (A-B) Hallmark gene sets analyzed using GAGE between the indicated different comparison pairs. (C) Heat map of genes (limma/voom-normalized) that are expressed differentially between WT naive neutrophils and WT immature neutrophils, CGD naive neutrophils and CGD immature neutrophils in the lung from "Hallmark" pathways analyzed using GAGE. (D) Heat map of genes (limma/voom-normalized) that are expressed differentially between WT naive neutrophils and WT mature neutrophils, CGD naive neutrophils and CGD mature neutrophils in the lung from Hallmark gene sets analyzed using GAGE. (E) TNF- α level in 1st ml BAL of zymosan challenged mice were determined by ELISA. n \geq 2 in each group from more than 2 independent experiments. Data are means ± standard error of the mean. (F) Expression of genes (limma/voom-normalized) related to IL-1 β production.

Supplementary Table 1.

Gene list of the 500 most differentially expressed genes generated between CGD and WT immature neutrophils (corresponding to Figure 7E).

Genes are ordered by hierarchical clustering, in the same order as in Figure. 7E. Gene ID, gene name, log Fold change (FC) and Adjusted P Value are provided. Log FC > 0 means up-regulated genes in CGD immature PMNs compared to WT immature PMNs; Log FC < 0 means down-regulated genes in CGD immature PMNs compared to WT immature PMNs.

Number	Gene ID	Gene name	CGD imm PMN VS WT imm PMN logFC	CGD imm PMN VS WT imm PMN Adj P.Value
1	ENSMUSG0000040430	Pitpnc1	0.8510	1.66E-04
2	ENSMUSG0000026249	Serpine2	2.2750	6.15E-05
3	ENSMUSG00000058056	Palld	2.1392	1.03E-04
4	ENSMUSG0000068040	Tm9sf4	1.2565	2.85E-04
5	ENSMUSG0000017132	Cyth1	1.3082	4.84E-05
6	ENSMUSG0000002257	Def6	1.1189	1.22E-04
7	ENSMUSG00000055652	Klhl25	1.1784	2.38E-05
8	ENSMUSG0000028412	Slc44a1	1.8307	8.65E-06
9	ENSMUSG0000037822	Smim14	0.8533	2.36E-04
10	ENSMUSG0000005533	lgf1r	1.2086	1.22E-04
11	ENSMUSG0000029723	Tsc22d4	1.2735	4.88E-05
12	ENSMUSG0000030788	Rnf141	1.0958	3.50E-05
13	ENSMUSG0000031622	Sin3b	1.2255	9.57E-06
14	ENSMUSG0000024277	Mapre2	1.6168	7.26E-07
15	ENSMUSG0000031585	Gtf2e2	0.9649	3.40E-05
16	ENSMUSG0000006058	Snf8	1.0000	2.99E-05
17	ENSMUSG0000020029	Nudt4	1.3121	8.31E-06
18	ENSMUSG0000081833	Gm13669	1.4963	1.79E-04
19	ENSMUSG0000033192	Lpcat2	1.0099	4.97E-05
20	ENSMUSG0000055994	Nod2	0.9277	2.19E-05
21	ENSMUSG0000070305	Mpzl3	1.9194	5.80E-05
22	ENSMUSG0000024055	Cyp4f13	1.3238	3.88E-05
23	ENSMUSG0000033885	Pxk	1.3103	7.13E-05
24	ENSMUSG0000029338	Antxr2	1.8421	1.72E-06
25	ENSMUSG0000063406	Tmed5	1.5012	2.55E-05
26	ENSMUSG0000027429	Sec23b	1.2988	2.85E-06
27	ENSMUSG0000024474	Ik	1.1109	1.22E-05
28	ENSMUSG0000064215	lfi27	1.1475	2.96E-04
29	ENSMUSG0000029322	Plac8	1.8635	3.77E-06
30	ENSMUSG0000021982	Cdadc1	1.4395	1.17E-04
31	ENSMUSG0000066441	Rdh11	1.1504	2.66E-04
32	ENSMUSG0000030056	lsy1	1.4330	8.50E-05

33	ENSMUSG0000067613	Krt83	2.3045	2.25E-04
34	ENSMUSG00000052139	Babam2	1.3784	3.40E-05
35	ENSMUSG00000049653	Spatc1	1.6957	2.42E-05
36	ENSMUSG0000092920	Mirt2	1.5579	5.51E-05
37	ENSMUSG00000054905	Stfa3	3.9392	4.85E-05
38	ENSMUSG0000024082	Ndufaf7	1.5626	3.79E-05
39	ENSMUSG00000059316	Slc27a4	1.5390	1.03E-04
40	ENSMUSG0000026696	Vamp4	1.1772	2.24E-05
41	ENSMUSG0000094733	Gm5416	1.9981	8.32E-05
42	ENSMUSG0000024953	Prdx5	1.8274	1.06E-05
43	ENSMUSG00000019795	Pcmt1	1.1607	2.29E-05
44	ENSMUSG00000021576	Pdcd6	1.2525	1.66E-04
45	ENSMUSG0000037958	Nsrp1	1.0530	3.74E-05
46	ENSMUSG00000055447	Cd47	1.4749	1.22E-06
47	ENSMUSG0000063889	Crem	2.2627	1.43E-07
48	ENSMUSG0000038467	Chmp4b	1.2202	8.39E-05
49	ENSMUSG0000026271	Gpr35	1.5706	2.71E-06
50	ENSMUSG0000009633	G0s2	1.3618	7.38E-05
51	ENSMUSG0000074417	Gm14548	1.6020	5.64E-05
52	ENSMUSG0000074417	Gm14548	1.6020	5.64E-05
53	ENSMUSG0000074417	Gm14548	1.6020	5.64E-05
54	ENSMUSG0000031825	Crispld2	2.2653	7.71E-05
55	ENSMUSG0000026068	ll18rap	1.5528	1.56E-04
56	ENSMUSG0000078122	F630028O10Rik	1.4824	5.93E-06
57	ENSMUSG0000059089	Fcgr4	1.2136	2.67E-05
58	ENSMUSG0000022831	Hcls1	1.1464	7.83E-05
59	ENSMUSG0000085245	Gm11713	2.8661	1.07E-04
60	ENSMUSG0000040451	Sgms1	1.3563	1.73E-05
61	ENSMUSG0000030472	Ceacam18	1.9769	1.77E-05
62	ENSMUSG00000049988	Lrrc25	1.0231	1.25E-04
63	ENSMUSG0000030474	Siglece	1.4460	3.35E-05
64	ENSMUSG0000028159	Dapp1	0.8773	2.25E-04
65	ENSMUSG0000018932	Map2k3	0.8638	1.32E-04
66	ENSMUSG00000055866	Per2	1.6433	1.31E-04
67	ENSMUSG0000021555	Naa35	0.8559	1.18E-04
68	ENSMUSG0000035596	Mboat7	1.2505	9.57E-06
69	ENSMUSG0000079597	Gm5483	2.6932	1.31E-05
70	ENSMUSG0000095620	2010005H15Rik	2.6624	2.67E-05
71	ENSMUSG0000021365	Nedd9	1.8210	5.19E-07
72	ENSMUSG0000006850	Tmco6	1.8659	7.22E-06
73	ENSMUSG0000020248	Nfyb	1.2840	1.42E-05
74	ENSMUSG0000048120	Entpd1	1.3312	9.72E-06
75	ENSMUSG0000030747	Dgat2	2.0535	2.01E-05

	<u>.</u>	-	-	
76	ENSMUSG0000027360	Hdc	1.8667	2.18E-05
77	ENSMUSG0000092060	Bend4	2.2837	1.25E-04
78	ENSMUSG0000020687	Cdc27	1.4752	1.75E-04
79	ENSMUSG00000055805	Fmnl1	0.9203	3.01E-04
80	ENSMUSG0000019986	Ahi1	1.3600	8.88E-05
81	ENSMUSG0000022280	Rnf19a	1.4570	3.77E-06
82	ENSMUSG0000019920	Lims1	1.4234	6.86E-06
83	ENSMUSG0000021796	Bmpr1a	1.6357	3.28E-05
84	ENSMUSG0000079499	6530402F18Rik	1.4332	2.19E-05
85	ENSMUSG0000031134	Rbmx	0.9303	4.69E-05
86	ENSMUSG0000063268	Parp10	1.7731	1.58E-04
87	ENSMUSG0000039236	lsg20	1.4247	2.57E-04
88	ENSMUSG0000078853	lgtp	2.4791	1.61E-04
89	ENSMUSG0000078920	lfi47	3.7197	9.28E-06
90	ENSMUSG0000046879	lrgm1	2.7582	3.38E-05
91	ENSMUSG0000082292	Gm12250	4.1326	1.85E-05
92	ENSMUSG0000037321	Tap1	1.9527	1.40E-04
93	ENSMUSG0000074151	NIrc5	1.6822	8.50E-05
94	ENSMUSG0000090709	Gm17173	2.8646	2.72E-05
95	ENSMUSG0000062991	Nrg1	2.8024	3.26E-05
96	ENSMUSG0000037012	Hk1	1.3088	4.85E-05
97	ENSMUSG0000079197	Psme2	1.4261	2.30E-04
98	ENSMUSG0000024737	Slc15a3	1.4982	5.86E-06
99	ENSMUSG00000101279	Gm18342	2.4477	8.56E-05
100	ENSMUSG0000089844	A530032D15Rik	2.6968	6.37E-07
101	ENSMUSG0000070031	Sp140	2.2990	4.23E-07
102	ENSMUSG0000021196	Pfkp	2.3801	1.00E-08
103	ENSMUSG0000021585	Cast	1.8127	3.81E-07
104	ENSMUSG0000007038	Neu1	1.7295	4.85E-07
105	ENSMUSG0000026519	Tmem63a	2.0361	4.43E-08
106	ENSMUSG0000052477	C130026I21Rik	2.7029	3.38E-05
107	ENSMUSG00000072109	A530040E14Rik	2.7784	3.37E-07
108	ENSMUSG00000070034	Sp110	1.8607	1.16E-06
109	ENSMUSG0000027366	Sppl2a	0.7927	1.91E-04
110	ENSMUSG0000025384	Faap100	0.9361	8.09E-05
111	ENSMUSG00000090136	Gm10177	1.3213	1.93E-04
112	ENSMUSG0000073987	Ggh	1.0918	1.14E-04
113	ENSMUSG0000009647	Mcu	1.0584	4.18E-05
114	ENSMUSG00000022978	Mis18a	1.0501	1.56E-04
115	ENSMUSG00000050931	Sgms2	1.2555	4.76E-05
116	ENSMUSG0000098967	Gm27845	1.3739	2.06E-04
117	ENSMUSG0000098088	Gm26916	1.2759	2.68E-04
118	ENSMUSG0000085335	Gm13684	2.6924	4.23E-05

119	ENSMUSG00000026655	Fam107b	1.2538	7.22E-06
120	ENSMUSG0000038463	Olfml2b	2.9473	1.80E-07
121	ENSMUSG00000069170	Adgrv1	3.8219	1.80E-05
122	ENSMUSG0000046808	Atp10d	2.5103	4.69E-07
123	ENSMUSG0000035513	Ntng2	1.6084	7.15E-05
124	ENSMUSG0000073771	Btbd19	1.1988	2.78E-04
125	ENSMUSG0000040663	Clcf1	2.5126	1.61E-04
126	ENSMUSG00000041235	Chd7	1.3795	4.97E-05
127	ENSMUSG0000078485	Plekhn1	3.6458	4.51E-06
128	ENSMUSG0000078485	Plekhn1	3.6458	4.51E-06
129	ENSMUSG00000027091	Zc3h15	0.8187	1.94E-04
130	ENSMUSG0000003228	Grk5	2.4921	4.23E-07
131	ENSMUSG0000023827	Agpat4	2.2848	2.79E-05
132	ENSMUSG0000038608	Dock10	2.4352	3.50E-05
133	ENSMUSG0000085126	Gm12589	2.7792	1.24E-05
134	ENSMUSG0000097636	Mirt1	0.9569	3.07E-04
135	ENSMUSG00000040152	Thbs1	1.9016	3.01E-04
136	ENSMUSG0000006169	Clint1	1.1413	8.09E-05
137	ENSMUSG0000023809	Rps6ka2	2.1616	2.34E-05
138	ENSMUSG00000079442	St6galnac4	1.1564	2.36E-04
139	ENSMUSG0000026470	Stx6	1.6775	3.21E-06
140	ENSMUSG0000040669	Phc1	1.9979	3.26E-05
141	ENSMUSG0000028716	Pdzk1ip1	3.4307	1.85E-04
142	ENSMUSG0000052512	Nav2	1.8364	5.64E-05
143	ENSMUSG0000029715	Pop7	1.1696	1.61E-04
144	ENSMUSG0000000827	Tpd52l2	1.0440	4.86E-05
145	ENSMUSG0000039208	Metrnl	1.4020	1.17E-05
146	ENSMUSG0000034220	Gpc1	1.8550	4.85E-07
147	ENSMUSG0000039844	Rapgef1	1.0648	1.25E-04
148	ENSMUSG0000051413	Plagl2	1.7014	5.39E-06
149	ENSMUSG0000063870	Chd4	0.8733	7.68E-05
150	ENSMUSG0000090394	4930523C07Rik	1.2743	9.57E-06
151	ENSMUSG0000048307	Ankrd46	1.3201	5.75E-06
152	ENSMUSG0000023067	Cdkn1a	1.3094	1.38E-06
153	ENSMUSG0000078812	Eif5a	1.3888	2.68E-05
154	ENSMUSG0000002845	Tmem39a	1.2050	2.83E-04
155	ENSMUSG0000031246	Sh3bgrl	0.9303	2.13E-04
156	ENSMUSG0000019437	Tlcd1	1.9086	2.71E-04
157	ENSMUSG0000035227	Spcs2	0.9468	8.14E-05
158	ENSMUSG0000030082	Sec61a1	0.9115	9.51E-05
159	ENSMUSG00000017405	Nek8	2.2174	1.96E-05
160	ENSMUSG0000041084	Ostc	1.2130	2.55E-05
161	ENSMUSG0000039217	1118	1.7053	1.61E-04

162	ENSMUSG0000022686	B3gnt5	1.7613	2.75E-05
163	ENSMUSG0000030659	Nucb2	1.8636	9.57E-06
164	ENSMUSG0000029319	Coq2	2.2298	8.31E-06
165	ENSMUSG0000003134	Tbc1d8	1.5096	4.74E-05
166	ENSMUSG0000034135	Sik3	1.7563	2.67E-05
167	ENSMUSG0000025314	Ptprj	1.7139	1.57E-05
168	ENSMUSG0000045349	Sh2d5	4.6405	9.66E-07
169	ENSMUSG0000028792	Ak2	1.1683	1.56E-04
170	ENSMUSG0000022974	Paxbp1	1.3446	1.54E-04
171	ENSMUSG0000024220	Zfp523	1.9128	8.35E-05
172	ENSMUSG00000017386	Traf4	2.1506	9.41E-05
173	ENSMUSG00000046573	Lyrm4	2.1405	1.25E-05
174	ENSMUSG00000042831	Alkbh6	1.6332	3.65E-06
175	ENSMUSG00000022951	Rcan1	1.6841	1.04E-04
176	ENSMUSG00000042111	Ccdc115	1.3728	8.35E-05
177	ENSMUSG00000046731	Kctd11	1.3486	9.63E-05
178	ENSMUSG00000042992	Borcs5	1.2366	2.12E-04
179	ENSMUSG0000062421	Arf2	1.3545	8.25E-05
180	ENSMUSG0000034187	Nsf	1.3825	2.68E-05
181	ENSMUSG0000031304	Il2rg	1.7614	4.12E-06
182	ENSMUSG0000031278	Acsl4	2.0376	8.45E-07
183	ENSMUSG0000021367	Edn1	3.3442	1.13E-06
184	ENSMUSG0000026670	Uap1	1.7376	1.15E-05
185	ENSMUSG0000040274	Cdk6	1.8915	6.93E-05
186	ENSMUSG0000007458	M6pr	1.5479	8.35E-05
187	ENSMUSG0000031007	Atp6ap2	1.2524	1.56E-04
188	ENSMUSG0000020085	Aifm2	1.6113	3.79E-05
189	ENSMUSG0000003549	Ercc1	1.3024	2.02E-04
190	ENSMUSG0000020275	Rel	1.0570	2.07E-04
191	ENSMUSG0000024981	AcsI5	1.1821	3.21E-05
192	ENSMUSG0000030108	Slc6a13	1.6375	3.00E-04
193	ENSMUSG0000030060	Hmces	1.3722	1.70E-04
194	ENSMUSG0000060216	Arrb2	1.4469	1.74E-05
195	ENSMUSG00000019173	Rab5c	1.1618	8.96E-05
196	ENSMUSG0000097781	9330136K24Rik	1.8468	2.05E-04
197	ENSMUSG0000025757	Hspa4l	2.2008	5.89E-07
198	ENSMUSG0000051978	Erich1	1.1414	1.91E-04
199	ENSMUSG0000033721	Vav3	0.9020	1.93E-04
200	ENSMUSG0000024854	Pold4	1.3800	3.75E-06
201	ENSMUSG0000038855	Itpkb	1.4302	4.12E-06
202	ENSMUSG0000041231	Ublcp1	1.0853	2.85E-04
203	ENSMUSG0000027751	Supt20	0.8793	1.13E-04
204	ENSMUSG0000020225	Tmbim4	0.7851	1.58E-04

-	<u>.</u>		<u>.</u>	-
205	ENSMUSG0000073643	Wdfy1	1.1683	3.17E-04
206	ENSMUSG00000029136	Rbks	1.2343	1.24E-04
207	ENSMUSG0000031176	Dynlt3	1.1321	5.21E-05
208	ENSMUSG0000001833	44811	1.3318	1.72E-06
209	ENSMUSG0000073725	Lmbrd1	1.0455	4.67E-05
210	ENSMUSG0000074781	Ube2n	0.8450	1.61E-04
211	ENSMUSG0000040747	Cd53	1.1669	5.85E-05
212	ENSMUSG0000026914	Psmd14	1.1911	6.89E-05
213	ENSMUSG00000041355	Ssr2	1.1048	6.80E-05
214	ENSMUSG00000016194	Hsd11b1	1.5003	4.10E-05
215	ENSMUSG00000059119	Nap1l4	1.2910	1.65E-05
216	ENSMUSG00000055639	Dach1	2.4894	4.69E-05
217	ENSMUSG0000078974	Sec61g	1.2934	5.39E-06
218	ENSMUSG0000089683	4930570N18Rik	2.9915	4.97E-05
219	ENSMUSG0000027828	Ssr3	1.0674	2.01E-05
220	ENSMUSG0000029649	Pomp	1.7350	6.75E-07
221	ENSMUSG0000006050	Sra1	1.4147	8.48E-06
222	ENSMUSG0000020077	Srgn	1.3448	1.80E-05
223	ENSMUSG0000027940	Tpm3	1.0540	8.93E-05
224	ENSMUSG00000052270	Fpr2	2.3389	3.08E-06
225	ENSMUSG0000038172	Ttc39b	1.4174	3.35E-05
226	ENSMUSG0000026095	Asnsd1	1.7628	1.70E-04
227	ENSMUSG00000045551	Fpr1	2.0405	8.50E-05
228	ENSMUSG00000019868	Vta1	0.8657	2.87E-04
229	ENSMUSG00000051439	Cd14	1.6505	4.73E-06
230	ENSMUSG0000038527	C1rl	2.1484	7.26E-07
231	ENSMUSG0000030922	Lyrm1	1.1393	1.17E-04
232	ENSMUSG0000053846	Lipg	1.8291	2.54E-05
233	ENSMUSG0000022026	Olfm4	2.1315	4.67E-05
234	ENSMUSG0000060470	Adgrg3	1.6026	2.38E-05
235	ENSMUSG0000027333	Smox	1.6584	2.38E-05
236	ENSMUSG0000021557	Agtpbp1	1.6200	1.49E-05
237	ENSMUSG0000064147	Rab44	1.1557	2.25E-05
238	ENSMUSG0000027776	ll12a	3.2751	1.00E-08
239	ENSMUSG0000054855	Rnd1	2.0343	6.69E-07
240	ENSMUSG0000097113	Gm19705	1.8330	2.96E-05
241	ENSMUSG0000023892	Zfp51	1.0148	1.22E-04
242	ENSMUSG0000050029	Rap2c	0.9288	8.45E-05
243	ENSMUSG0000032602	Slc25a20	1.5760	2.54E-04
244	ENSMUSG0000066363	Serpina3f	2.8380	1.66E-04
245	ENSMUSG0000037965	Zc3h7a	1.2609	9.72E-06
246	ENSMUSG0000075122	Cd80	1.2943	2.43E-06
247	ENSMUSG0000018899	Irf1	1.9823	8.48E-06

-		-		
248	ENSMUSG0000034855	Cxcl10	3.8707	2.88E-06
249	ENSMUSG0000046223	Plaur	1.1505	1.78E-05
250	ENSMUSG0000007589	Tinf2	2.4399	5.57E-06
251	ENSMUSG0000057440	Мрр7	1.9773	1.42E-06
252	ENSMUSG0000029104	Htt	2.0767	2.19E-05
253	ENSMUSG0000074071	Fam169b	4.3966	4.66E-08
254	ENSMUSG0000048787	Dcun1d3	1.4250	8.48E-06
255	ENSMUSG0000024222	Fkbp5	1.7449	5.86E-05
256	ENSMUSG0000040943	Tet2	1.4763	2.38E-05
257	ENSMUSG0000030203	Dusp16	1.5205	1.80E-06
258	ENSMUSG0000015243	Abca1	2.4312	8.01E-08
259	ENSMUSG0000028163	Nfkb1	1.5622	5.19E-07
260	ENSMUSG0000029084	Cd38	3.6195	1.00E-08
261	ENSMUSG0000015850	Adamtsl4	2.1024	5.56E-07
262	ENSMUSG0000028108	Ecm1	2.8335	1.92E-08
263	ENSMUSG0000098708	Gm27252	3.5984	5.54E-07
264	ENSMUSG0000026096	Osgepl1	2.2155	3.19E-07
265	ENSMUSG0000025130	P4hb	2.1940	1.01E-08
266	ENSMUSG0000006736	Tspan31	0.9060	2.02E-04
267	ENSMUSG0000022221	Ripk3	1.3748	9.72E-06
268	ENSMUSG0000040809	Chil3	2.9305	3.35E-05
269	ENSMUSG0000063779	Chil4	2.7987	9.37E-06
270	ENSMUSG0000057280	Musk	3.8976	1.37E-04
271	ENSMUSG0000002658	Gtf2f1	1.2727	7.15E-06
272	ENSMUSG0000023087	Noct	1.6912	2.18E-06
273	ENSMUSG0000002233	Rhoc	1.7596	1.01E-06
274	ENSMUSG0000067931	Zfp948	2.8143	3.86E-06
275	ENSMUSG0000027777	Schip1	2.7223	6.99E-07
276	ENSMUSG0000026074	Map4k4	1.3942	1.00E-04
277	ENSMUSG0000079652	Fam71f2	2.5314	1.65E-05
278	ENSMUSG0000029304	Spp1	3.7934	2.54E-05
279	ENSMUSG0000018882	Mrpl45	1.2024	1.59E-04
280	ENSMUSG0000064145	Arih2	1.0463	1.55E-04
281	ENSMUSG0000048327	Ckap2l	1.3793	2.85E-04
282	ENSMUSG0000040374	Pex2	1.0277	1.61E-04
283	ENSMUSG0000001473	Tubb6	2.2595	9.28E-06
284	ENSMUSG0000024539	Ptpn2	0.8766	2.07E-04
285	ENSMUSG0000029552	Tes	2.2789	5.56E-07
286	ENSMUSG0000031245	Hmgn5	1.5858	1.31E-04
287	ENSMUSG0000020644	Id2	1.5054	1.33E-04
288	ENSMUSG0000002699	Lcp2	1.0280	5.86E-06
289	ENSMUSG0000031901	Dus2	2.0591	7.48E-06
290	ENSMUSG0000029204	Rhoh	2.7543	1.00E-08

-	<u>.</u>	-	-	
291	ENSMUSG0000031762	Mt2	2.2518	6.54E-06
292	ENSMUSG0000020484	Xbp1	1.2538	2.50E-05
293	ENSMUSG0000030595	Nfkbib	1.2056	5.94E-05
294	ENSMUSG0000038067	Csf3	2.3685	2.39E-06
295	ENSMUSG0000006818	Sod2	1.2896	1.78E-04
296	ENSMUSG0000021668	Polk	1.6298	8.50E-05
297	ENSMUSG0000026984	II1f6	3.5503	1.15E-04
298	ENSMUSG0000094845	Tmem95	2.2391	8.00E-05
299	ENSMUSG0000020205	Phlda1	1.2193	1.22E-04
300	ENSMUSG0000026097	Ormdl1	1.4987	1.19E-05
301	ENSMUSG0000002847	Pla1a	2.1596	4.23E-05
302	ENSMUSG0000001999	Blvra	1.5655	6.96E-05
303	ENSMUSG0000029484	Anxa3	1.2123	1.56E-04
304	ENSMUSG0000026029	Casp8	1.6041	5.26E-06
305	ENSMUSG0000029379	Cxcl3	3.1600	4.43E-08
306	ENSMUSG0000028128	F3	1.5989	1.51E-05
307	ENSMUSG0000013846	St3gal1	1.4984	3.50E-05
308	ENSMUSG00000026558	Uck2	2.1082	4.97E-05
309	ENSMUSG00000058022	Adtrp	1.8497	2.36E-04
310	ENSMUSG00000022534	Mefv	1.2502	5.94E-05
311	ENSMUSG0000031506	Ptpn7	1.4176	9.17E-05
312	ENSMUSG0000000628	Hk2	1.0309	2.70E-04
313	ENSMUSG0000087066	Gm15518	3.0447	2.00E-04
314	ENSMUSG0000079037	Prnp	2.5228	3.65E-06
315	ENSMUSG0000021871	Gm49342	0.9152	1.53E-04
316	ENSMUSG0000043008	Klhl6	2.2070	2.55E-05
317	ENSMUSG0000024235	Map3k8	0.8677	2.11E-04
318	ENSMUSG0000043421	Hilpda	1.7581	4.67E-05
319	ENSMUSG0000045664	Cdc42ep2	1.0624	3.15E-05
320	ENSMUSG0000071180	Smim15	0.8665	1.93E-04
321	ENSMUSG0000030469	Zfp719	1.0797	2.23E-05
322	ENSMUSG0000072620	Slfn2	0.9963	1.70E-05
323	ENSMUSG0000003206	Ebi3	1.1838	6.93E-05
324	ENSMUSG0000020451	Limk2	0.9760	2.01E-04
325	ENSMUSG0000040822	1700123020Rik	1.0248	7.21E-05
326	ENSMUSG0000096140	Ankrd66	2.3706	6.75E-06
327	ENSMUSG0000069873	4930438A08Rik	2.8284	8.65E-06
328	ENSMUSG0000080316	Spaca6	1.6544	2.85E-04
329	ENSMUSG0000033066	Gas7	1.1991	1.22E-04
330	ENSMUSG0000039934	Gsap	0.9597	2.03E-04
331	ENSMUSG0000022102	Dok2	1.9305	4.22E-05
332	ENSMUSG0000018500	Adora2b	2.0856	8.93E-05
333	ENSMUSG0000026031	Cflar	1.1802	1.52E-04

334	ENSMUSG0000021895	Arhgef3	0.9044	2.25E-04
335	ENSMUSG0000027381	Bcl2l11	1.1343	4.97E-05
336	ENSMUSG0000037759	Ptger2	1.1457	3.11E-04
337	ENSMUSG0000003847	Nfat5	1.0715	1.45E-04
338	ENSMUSG00000020227	Irak3	2.5264	1.01E-08
339	ENSMUSG0000033499	Larp4b	1.4814	1.19E-05
340	ENSMUSG0000031781	Ciapin1	1.5719	1.16E-06
341	ENSMUSG0000092526	Gm17907	2.4975	2.50E-05
342	ENSMUSG00000051341	Zfp52	2.1590	5.08E-06
343	ENSMUSG00000044719	E230025N22Rik	3.8868	5.99E-06
344	ENSMUSG0000030447	Cyfip1	2.1082	3.13E-07
345	ENSMUSG00000079477	Rab7	1.0887	4.97E-05
346	ENSMUSG00000019210	Atp6v1e1	1.0638	4.68E-05
347	ENSMUSG00000053012	Krcc1	0.9755	2.13E-05
348	ENSMUSG0000094870	Zfp131	1.0834	1.55E-04
349	ENSMUSG0000021699	Pde4d	1.5536	4.73E-06
350	ENSMUSG0000024778	Fas	1.0873	2.38E-05
351	ENSMUSG0000026177	Slc11a1	1.2763	1.16E-06
352	ENSMUSG0000005615	Pcyt1a	-0.9281	1.33E-04
353	ENSMUSG0000027698	Nceh1	-1.9551	1.03E-04
354	ENSMUSG0000087141	Plcxd2	-2.6109	2.14E-05
355	ENSMUSG0000073700	Klhl21	-2.3086	7.71E-05
356	ENSMUSG00000030161	Gabarapl1	-1.2949	1.32E-04
357	ENSMUSG0000028378	Ptgr1	-2.4777	4.67E-05
358	ENSMUSG0000094530	Gm21399	-2.7834	1.11E-06
359	ENSMUSG0000028691	Prdx1	-2.8073	1.00E-08
360	ENSMUSG00000048164	Gm7204	-2.8353	2.19E-05
361	ENSMUSG0000005413	Hmox1	-1.5139	8.14E-05
362	ENSMUSG0000028124	Gclm	-2.3165	2.54E-05
363	ENSMUSG0000003849	Nqo1	-2.8906	3.21E-06
364	ENSMUSG0000074063	Osgin1	-1.4111	4.69E-05
365	ENSMUSG0000025591	Tma16	-2.4073	1.08E-04
366	ENSMUSG0000004099	Dnmt1	-1.9736	2.04E-04
367	ENSMUSG0000038508	Gdf15	-3.6870	8.35E-05
368	ENSMUSG0000042870	Tom1	-0.9438	2.85E-04
369	ENSMUSG00000049103	Ccr2	-1.8920	2.70E-04
370	ENSMUSG0000005667	Mthfd2	-1.1792	2.55E-04
371	ENSMUSG0000068220	Lgals1	-1.4796	7.45E-05
372	ENSMUSG0000040552	C3ar1	-1.7091	3.25E-04
373	ENSMUSG00000019838	Slc16a10	-1.2940	2.26E-04
374	ENSMUSG0000051906	Cd209f	-3.8818	1.68E-04
375	ENSMUSG0000025950	Idh1	-1.2209	3.14E-04
376	ENSMUSG00000021775	Nr1d2	-1.9724	2.95E-04

377	ENSMUSG0000086491	Gm13291	-6.7006	1.37E-04
378	ENSMUSG0000033105	Lss	-2.2697	2.85E-04
379	ENSMUSG0000006800	Sulf2	-1.7658	7.38E-05
380	ENSMUSG0000022769	Sdf2l1	-2.1207	8.00E-05
381	ENSMUSG0000021190	Lgmn	-1.5640	2.01E-04
382	ENSMUSG0000024397	Aif1	-1.6017	2.88E-04
383	ENSMUSG0000029416	Slc15a4	-1.6552	3.16E-04
384	ENSMUSG0000057137	Tmem140	-1.6655	2.66E-04
385	ENSMUSG0000040713	Creg1	-2.5146	1.90E-07
386	ENSMUSG00000040466	Blvrb	-2.7573	7.05E-08
387	ENSMUSG0000023132	Gzma	-2.4369	2.85E-04
388	ENSMUSG00000048249	Crebrf	-0.9926	4.97E-05
389	ENSMUSG00000049091	Sephs2	-1.2698	3.34E-05
390	ENSMUSG00000047412	Zbtb44	-1.3330	2.50E-05
391	ENSMUSG0000021250	Fos	-1.0379	2.25E-04
392	ENSMUSG0000026986	Hnmt	-0.8434	4.18E-05
393	ENSMUSG00000054008	Ndst1	-0.8921	9.51E-05
394	ENSMUSG0000026393	Nek7	-1.0325	2.36E-04
395	ENSMUSG0000032841	Prr5l	-1.7286	2.89E-05
396	ENSMUSG00000029863	Casp2	-1.1909	1.75E-04
397	ENSMUSG0000031453	Rasa3	-1.4927	9.39E-06
398	ENSMUSG0000037185	Krt80	-1.4975	1.11E-06
399	ENSMUSG0000028861	Mrps15	-1.1872	2.19E-05
400	ENSMUSG00000090665	Gad1-ps	-1.4841	2.33E-06
401	ENSMUSG00000050022	Amz1	-2.0357	1.11E-05
402	ENSMUSG00000028550	Atg4c	-1.9227	2.29E-05
403	ENSMUSG0000027009	Itga4	-1.6312	1.13E-05
404	ENSMUSG0000032254	Kif23	-1.1854	1.87E-04
405	ENSMUSG00000076617	lghm	-1.6763	4.12E-06
406	ENSMUSG0000023915	Tnfrsf21	-0.8445	2.20E-04
407	ENSMUSG0000004105	Angptl2	-1.2248	1.92E-04
408	ENSMUSG0000033910	Gucy1a1	-1.1284	2.65E-04
409	ENSMUSG0000068196	Col8a1	-1.8323	3.01E-04
410	ENSMUSG0000027015	Cybrd1	-2.2941	1.18E-04
411	ENSMUSG0000027574	Nkain4	-2.0756	4.18E-05
412	ENSMUSG0000024781	Lipa	-1.6981	8.65E-06
413	ENSMUSG0000021189	Atxn3	-0.9921	2.02E-04
414	ENSMUSG0000025232	Неха	-1.1423	1.92E-04
415	ENSMUSG0000015340	Cybb	-2.6505	1.00E-08
416	ENSMUSG0000024782	Ak3	-1.0907	1.89E-04
417	ENSMUSG0000053716	Dusp7	-1.3529	3.11E-04
418	ENSMUSG0000019849	Prep	-2.6126	1.69E-06
419	ENSMUSG0000030357	Fkbp4	-1.7413	6.96E-05

-	<u>.</u>	<u>.</u>	-	-
420	ENSMUSG0000033059	Pygb	-1.7370	2.63E-04
421	ENSMUSG00000017760	Ctsa	-1.2253	1.37E-04
422	ENSMUSG00000048440	Cyp4f16	-2.2622	6.75E-07
423	ENSMUSG0000024013	Fgd2	-1.5073	5.50E-05
424	ENSMUSG0000000903	Vpreb3	-5.7178	5.99E-06
425	ENSMUSG0000028944	Prkag2	-1.7293	1.43E-04
426	ENSMUSG0000035064	Eef2k	-2.6956	2.58E-06
427	ENSMUSG00000048824	Gm568	-1.7044	6.72E-05
428	ENSMUSG0000020898	Ctc1	-1.8078	4.02E-05
429	ENSMUSG00000029270	Fam69a	-1.4415	2.38E-05
430	ENSMUSG00000058799	Nap1l1	-1.0943	9.24E-06
431	ENSMUSG00000043664	Tmem221	-5.2109	3.07E-04
432	ENSMUSG0000005540	Fcer2a	-6.0130	6.93E-05
433	ENSMUSG0000053044	Cd8b1	-4.6769	2.68E-04
434	ENSMUSG0000086763	Plxna4os1	-3.6646	1.30E-04
435	ENSMUSG00000020653	Klf11	-1.4061	8.23E-05
436	ENSMUSG0000054517	Trim65	-1.7359	2.61E-04
437	ENSMUSG0000030223	Ptpro	-3.1822	3.45E-05
438	ENSMUSG0000024673	Ms4a1	-3.4041	1.08E-04
439	ENSMUSG0000014846	Тррр3	-2.3603	4.22E-07
440	ENSMUSG0000000740	Rpl13	-0.8107	2.53E-04
441	ENSMUSG0000037548	H2-DMb2	-1.6140	1.30E-04
442	ENSMUSG0000003379	Cd79a	-2.4439	6.86E-06
443	ENSMUSG0000040592	Cd79b	-2.7475	4.10E-05
444	ENSMUSG0000034634	Ly6d	-3.9070	1.65E-05
445	ENSMUSG0000076937	lglc2	-4.4570	5.39E-06
446	ENSMUSG0000030724	Cd19	-3.0227	1.00E-05
447	ENSMUSG0000076609	Igkc	-3.4391	1.12E-06
448	ENSMUSG0000076934	lglv1	-4.8920	1.58E-04
449	ENSMUSG0000094797	lgkv6-15	-4.8615	4.88E-05
450	ENSMUSG0000048498	Cd300e	-3.5672	8.09E-05
451	ENSMUSG0000032915	Adgre4	-3.1951	7.20E-05
452	ENSMUSG0000060600	Eno3	-2.8514	1.95E-04
453	ENSMUSG0000048058	Ldlrad3	-2.2551	2.62E-04
454	ENSMUSG0000033033	Calhm2	-3.2794	4.38E-05
455	ENSMUSG0000033316	Galnt9	-4.8469	1.98E-04
456	ENSMUSG0000043832	Clec4a3	-1.9993	4.23E-05
457	ENSMUSG0000021880	Rnase6	-3.1097	1.58E-05
458	ENSMUSG0000006611	Hfe	-2.2874	1.75E-05
459	ENSMUSG0000040616	Tmem51	-2.8551	1.87E-04
460	ENSMUSG0000044229	Nxpe4	-3.5886	1.70E-04
461	ENSMUSG0000052160	Pld4	-3.2424	3.81E-06
462	ENSMUSG00000049625	Tifab	-2.4829	1.14E-04

463	ENSMUSG0000040964	Arhgef10l	-2.8170	2.95E-04
464	ENSMUSG0000030091	Nup210	-2.6074	1.66E-04
465	ENSMUSG0000005583	Mef2c	-1.7006	7.68E-05
466	ENSMUSG0000061132	Blnk	-2.7789	2.85E-04
467	ENSMUSG0000037944	Ccr7	-2.4069	4.67E-05
468	ENSMUSG0000022336	Eif3e	-1.0129	9.73E-05
469	ENSMUSG0000048371	Pdp2	-1.2387	3.14E-04
470	ENSMUSG0000022817	ltgb5	-1.2995	2.00E-04
471	ENSMUSG0000001270	Ckb	-1.6943	1.56E-05
472	ENSMUSG0000058558	RpI5	-0.7793	1.83E-04
473	ENSMUSG0000008668	Rps18	-0.8795	1.93E-04
474	ENSMUSG0000057841	Rpl32	-0.8495	1.59E-04
475	ENSMUSG0000022982	Sod1	-0.9732	1.56E-04
476	ENSMUSG0000038127	Ccdc50	-2.0746	3.35E-05
477	ENSMUSG0000036606	Plxnb2	-2.5239	3.08E-06
478	ENSMUSG0000021262	Evl	-3.4342	8.10E-05
479	ENSMUSG0000026170	Cyp27a1	-3.7573	2.88E-04
480	ENSMUSG0000027994	Mcub	-2.5517	5.86E-05
481	ENSMUSG0000004707	Ly9	-2.6331	2.33E-04
482	ENSMUSG0000000278	Scpep1	-1.6366	5.45E-05
483	ENSMUSG0000070873	Lilra5	-2.1285	6.89E-05
484	ENSMUSG0000024677	Ms4a6b	-1.9612	1.56E-04
485	ENSMUSG0000079419	Ms4a6c	-1.9223	1.09E-04
486	ENSMUSG0000027187	Cat	-2.0793	4.23E-07
487	ENSMUSG0000006360	Crip1	-1.9810	1.69E-06
488	ENSMUSG0000026317	Cln8	-2.6608	5.39E-06
489	ENSMUSG0000021423	Ly86	-3.0909	9.72E-06
490	ENSMUSG0000015355	Cd48	-1.9564	6.62E-05
491	ENSMUSG0000026496	Parp1	-2.8185	1.00E-04
492	ENSMUSG0000039497	Dse	-2.1337	3.26E-05
493	ENSMUSG0000072596	Ear2	-2.1674	2.05E-05
494	ENSMUSG0000006281	Tep1	-1.7102	2.80E-04
495	ENSMUSG0000028085	Gatb	-2.2965	1.41E-04
496	ENSMUSG0000027863	Cd2	-2.5162	8.83E-05
497	ENSMUSG0000001642	Akr1b3	-1.5627	2.08E-05
498	ENSMUSG0000003420	Fcgrt	-1.4152	6.09E-05
499	ENSMUSG0000026548	Slamf9	-2.4612	3.16E-04
500	ENSMUSG00000025203	Scd2	-1.7970	2.63E-04