Biophysical Journal, Volume 122

Supplemental information

Activation mechanism of the human Smoothened receptor

Prateek D. Bansal, Soumajit Dutta, and Diwakar Shukla

Manuscript submitted to **Biophysical** *Journal* **Article**

Activation mechanism of the human Smoothened receptor

Prateek D. Bansal¹, Soumajit Dutta¹, and Diwakar Shukla^{1,2,3,4*}

¹Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States

²Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States

- ³Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States
- ⁴Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States

^{*}Correspondence: diwakar@illinois.edu

Bansal et al.

SUPPLEMENTARY FIGURES

Figure S1: Figure 3 reconstructed using CHARMM36m force field. Use of CHARMM36m force field made noted no significant difference to the overall observations made using CHARMM36 force field.

Figure S2: MSM construction for Apo-SMO. (A) VAMP2 score v/s nClusters used to cluster the data, as a function of varying variational cutoffs for choosing the number of tICA (time Independent Component Analysis) components. For final MSM construction, 200 clusters with a 0.95 variational cutoff (corresponding to 42 tICA components) was chosen to construct the MSM. (B) Implied Timescales v/s MSM lag time for the MSM with 200 clusters and 42 tICA components. A lagtime of 30 ns was chosen for construction of the final MSM.

Figure S3: MSM construction for SANT1-SMO. (A) VAMP2 score v/s nClusters used to cluster the data, as a function of varying variational cutoffs for choosing the number of tICA (time Independent Component Analysis) components. For final MSM construction, 100 clusters with a 0.95 variational cutoff (corresponding to 34 tICA components) was chosen to construct the MSM. (B) Implied Timescales v/s MSM lag time for the MSM with 100 clusters and 34 tICA components. A lagtime of 30 ns was chosen for construction of the final MSM.

Figure S4: MSM construction for SAG-SMO. (A) VAMP2 score v/s nClusters used to cluster the data, as a function of varying variational cutoffs for choosing the number of tICA (time Independent Component Analysis) components. For final MSM construction, 100 clusters with a 0.95 variational cutoff (corresponding to 34 tICA components) was chosen to construct the MSM. (B) Implied Timescales v/s MSM lag time for the MSM with 100 clusters and 34 tICA components. A lagtime of 30 ns was chosen for construction of the final MSM.

---- predict --- estimate

Figure S5: MSM validation for Apo-SMO. Chapman-Kolmogorov test performed for 5 macrostates for Apo-SMO. Chapman-Kolmogorov test was implemented using the pyEMMA package.(1)

Figure S6: MSM validation for SANT1-SMO. Chapman-Kolmogorov test performed for 5 macrostates for SANT1-SMO. Chapman-Kolmogorov test was implemented using the pyEMMA package.(1)

---- predict --- estimate

Figure S7: MSM validation for SAG-SMO. Chapman-Kolmogorov test performed for 5 macrostates for SAG-SMO. Chapman-Kolmogorov test was implemented using the pyEMMA package.(1)

Figure S8: Roundwise data collection for adaptive sampling in Apo-SMO. The 2 startpoints and amount of data collected in that round are mentioned on each plot. A total of 7 rounds of sampling was performed.

Figure S9: Apo-SMO tICA plots outlining the slowest processes. (A) Projection of MSM weighted simulation data for Apo-SMO on the tICA space, using the 2 slowest components. The inactive and active starting points are marked. The inactive and active starting points show a free energy difference of $\sim 1 \text{ kcal.mol}^{-1}$. Intermediate states I₁, I₂ and I₃ are as marked. The intermediate states I₁₋₃ were defined based on metastable basins and free energy barriers associated with transitioning from an inactive to an active state. A cutoff of 1.8 kcal/mol was used to separate one basin from another. (B,C) Projection of the data for each starting point shown separately on the tICA landscape. The two islands show overlap, indicating transitions that span the slowest component. Red denotes the data collected from the inactive starting structure, while Blue denotes the data collected from the active starting structure.

Figure S10: Projection of MSM weighted simulation data for (A) SANT1-SMO and (B) SAG-SMO on the tICA space, using the 2 slowest components. (C) The same data as (A) and (B), when projected on the tICA space defined by Apo-SMO. The inactive and active structures are marked as star and diamond, respectively.

Figure S11: TICA Scatterplots show residue-correlated movements with activation on tICA space. Scatterplots showing the correlation of the intracellular residue distances W339-G422 (TM3-TM5), W339-W535 (Ionic Lock) and W339-M449 (TM3 - TM6), projected on the tICA landscape. tIC1 corresponds to SMO activation, hence these distances are integral to SMO activation.

		200	210		220 230	
SMO FZD1 FZD2 FZD3 FZD4 FZD5 FZD6 FZD7 FZD7 FZD8 FZD9 FZD10	QC .AGASERGKFSCP. .GGAPPRYATLEHPFHCP. GAPVAVQRDYGFWCP. .HSVGTNSDQYI .GE.CPAGGPFVCKC KKTEQVQRDIGFWCP. .RGRPAFPFSCP. GKARPPGGAAPCEPGCQC .SGTCENPEKFQ	EVPLVRTRALI RVLI RELI RELI REPFVPILKES RHLI RQLI RAPMVSVSSEI	CONPKSWYED CVPSYLNYHFLGE CVPSYLSYKFLGE CVPSYLSYKFLGE CVPDLGYSFLHC CVPPLGYSFLHC CVPYLGYRFLGE CVPSYLSYKFLGE CVPSYLGE CVPSYLSYKFLGE CVPSY	YEGEGIQCQN CAPCEPTKVY RDCAAPCEPARPD YRDCSPPCPN JENCVLKCGYDA FPNCAVPCYQ CQCAPPCPN RDCGAPCEPGRAN ANCALPCHN SSCAPRCGPGV SASCAPLCTPGV	. PLFTEAEHQDMH GLMYFGPEELRFSR GSMFFSQEETRFAR . MYFRREELSFAR . GL.YSRSAKEFTD . PSFSADERTFAT . MYFKSDELEFAK GLMYFKEEERRFAR . PFFSQDERAFTV . EVFWSRRDKDFAL . DVYWSREDKRFAV	SYIAAFGAVTGLCTLF FWIGIWSVLCCASTLF LWILTWSVLCCASTFF IGLISIICLSATLF IWAQVWSLCFISTAF FWIGLWSVLCFISTAF FWIGLWSVLCFVSTFA VWAQVWSVLCCASTLF FWIGLWSVLCFVSTFA VWAQVWSALCFFSTAF
	250 260	270	280 29	oo 300		
SMO FZD1 FZD2 FZD4 FZD5 FZD6 FZD7 FZD8 FZD9 FZD10	TLATFVADWRNSNRYPAVI TVLTYLVDMRR.FSYPERP TVTTYLVDMQR.FRYPERP TFLTFLIDVTR.FRYPERP TVLTFLIDSR.FSYPERP TVATFLIDMER.FRYPERP TVLTFLIDVRR.FSYPERP TVLTFLIDWRR.FSYPERP TVSTFLIDMER.FSYPERP TVSTFLIDMER.FSYPERP TVLTFLLEPHR.FQYPERP	LFYVNACFFV IIFLSGCYTA IIFLSGCYTM IIFLSGCYM IIFLSACYLC IIFLSACYLC IIFLSGCYFM IIFLSGCYFM IIFLSACYLFV IIFLSMCYNV IIFLSMCYNV	S IGWLAQFMDGA VAVAYIAGFLLEI VSVAYIAGFLLEI VSVAYIAGFLLEI VSUFFIGFLLEI VSLGFLVRLVVGF VSLGFLVRLVVGF VSLGFLVRLVVGF VSVGYLVRLVAGF VSVGYLVRLVAGA VSLAFLIRAVAGA	ARREIVCRADGTMR DRV.VCNDKFAED RV.ACNASIPAQ DRV.ACNASIPAQ ER.ISCDFEEAAE IAS.VACSRE ST.ACNKADEKI DRAVCVERFSDD IEK.VACSGGAPGA AQS.VACDQEAG.A	L	A A G A G A G G P G G R G E Y E
	\wedge					
	310	320	330	340 35	o 360	370 380
SMO FZD1 FZD2 FZD4 FZD5 FZD6 FZD7 FZD8 FZD9 FZD10	GEPTSNETLS RTVAQGTKKEG RTVVQGTKKEG KASTVTQGSHNKAG KASTVTQGSHNKAG 	VIIFVIVYYA TILFMMLYFF TILFMMLYFF TMLFMILYFF TIVFLLYYFF TVLFMLLYFF TVLFMLYFF TVVFLLYFF TVVFLLYFF	LMAGVVWFVVLT SMASSIWWVILS SMASSIWWVILS TMAGSVWWVILT GMASSIWWVILT TMAGTVWWVILT GMASSIWWVILS GMASSIWWVILS GMASSLWWVVLT GMASSLWWVVLT	YAWHTSFKALGTT LTWFLAAG.MKWG LTWFLAAG.MKWG LTWFLAAG.MKWG LTWFLAAG.KKWG ITWFLAAG.MKWG LTWFLAAG.MKWG LTWFLAAG.KKWG LTWFLAAG.KKWG	$\begin{array}{l} \mathbb{Y} \bigcirc \mathbb{P} \sqcup \mathbb{S} \subseteq \mathbb{K} \top \mathbb{S} \lor \mathbb{Y} \vdash \mathbb{H} \sqcup \mathbb{L} \\ \mathbb{H} \boxminus \mathbb{E} \land \mathbb{I} \sqsubseteq \mathbb{A} \land \mathbb{S} \bigcirc \mathbb{Y} \vdash \mathbb{H} \bot \mathbb{A} \\ \mathbb{S} \vDash \mathbb{E} \land \mathbb{I} \vDash \mathbb{K} \land \mathbb{L} \sqcup \mathbb{F} \vdash \mathbb{A} \\ \mathbb{S} \vDash \mathbb{E} \land \mathbb{I} \vDash \mathbb{K} \land \mathbb{A} \sqcup \mathbb{L} \vdash \mathbb{F} \vdash \mathbb{A} \\ \mathbb{H} \vDash \mathbb{E} \land \mathbb{I} \sqsubseteq \mathbb{K} \land \mathbb{A} \bigcirc \mathbb{V} \vdash \mathbb{H} \bot \mathbb{A} \\ \mathbb{C} \vDash \mathbb{E} \land \mathbb{E} \oslash \mathbb{K} \land \mathbb{V} \lor \mathbb{F} \vdash \mathbb{L} \\ \mathbb{C} \vDash \mathbb{E} \land \mathbb{E} \supseteq \mathbb{K} \land \mathbb{V} \lor \mathbb{F} \vdash \mathbb{L} \\ \mathbb{H} \vDash \mathbb{E} \land \mathbb{E} \supseteq \mathbb{S} \bigcirc \mathbb{V} \vdash \mathbb{F} \sqcup \mathbb{A} \\ \mathbb{H} \vDash \mathbb{E} \land \mathbb{E} \land \mathbb{G} \subseteq \mathbb{S} \bigcirc \mathbb{V} \vdash \mathbb{H} \\ \mathbb{H} \vDash \mathbb{A} \vDash \mathbb{E} \land \mathbb{H} \subseteq \mathbb{S} \subseteq \mathbb{S} \lor \mathbb{Y} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{A} \vdash \mathbb{E} \land \mathbb{H} \subseteq \mathbb{S} \subseteq \mathbb{S} \lor \mathbb{Y} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{A} \vdash \mathbb{E} \land \mathbb{H} \subseteq \mathbb{S} \subseteq \mathbb{S} \lor \mathbb{S} \lor \mathbb{Y} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{A} \vdash \mathbb{E} \land \mathbb{H} \subseteq \mathbb{S} \subseteq \mathbb{S} \lor \mathbb{S} \lor \mathbb{S} \lor \mathbb{F} \vdash \mathbb{L} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \\ \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} \vdash \mathbb{H} $	WSLPFVLTVAILAVAQ WAVPAIKTITILALGQ WAVPAVKTITILAMGQ WAIPAVKTITILAMGQ WGIPGTLTIILLAMNK WAIPAVKTIVILIMRL WIIPSVKSITALALSS WGTPGFLTVMLLAMNK WAVPAVKTITILAMGQ WLVPSVKSIAVLALSS WGLPALKTIVILTLLVMRR
	390 400	410	TM5420	430	440 450	
SMO FZD1 FZD2 FZD3 FZD4 FZD5 FZD6 FZD7 FZD8 FZD9 FZD10	VDGDSVSGICFVGYKNYRYR VDGDVLSGVCFVGLNNVDAL IDGDLLSGVCFVGLNSLDPL IEGDNISGVCFVGLNSLDPL VDADELTGLCYVGNQNLDAL VDGDPVAGICYVGNQNLNSL VEGDNISGVCFVGLYDLDAS VDGDLLSGVCYVGLSSVDAL VDGDPVAGICYVGNQSLDNL VAGDELTGLCYVASTDAAAL VAGDELTGLCYVASTDAAAL	AGFVLAPIGLV RGFVLAPLFV RGFVLAPLFV TGFVVAPLFV TGFVVAPLFT RGFVLGPLVL RGFVLAPLFV RGFVLAPLFV TGFVLAPLFV TGFVLAPLV	VLIVGGYFLIRGY XLFIGTSFLLAGI (LFIGTSFLLAGI VVVGVSLLLAG XLVIGTLFILAGI VLVGTLFLLAGI VLVGTSFLLAGI (LFIGTSFLLAGI XLFIGTMFLLAGI XLVIGTSFLLAGI XLVIGTSFILSGI	VMT FSIKSNHPGI VSIFRIRTIMKH ISINVRIEIPI VAIFKIRSNLQK VSIFRIRSVIKQ ISINHVRQVIQH VSIFRIRTIMKH VSIFRIRSVIKQQ VAIFHIRKIMKT VAIFHIRRVMKT	L SEKAASKINETML DGTKTEKLEKLMV DGTKTEKLERLMV EKENQDKLVKFMI OGTKTDKLERLMV GGTKTDKLEKLMV DGTKTEKLEKLMV DGTKTEKLEKLMV DGPTKTHKLEKLMV GGENTEKLEKLMV	RLGIFGFLAFGFVLIT RIGVFSVLYTVPATIV RIGVFSVLYTVPATIV KIGVFSVLYTVPATCV KIGVFSVLYTVPATCV RIGIFTLLYTVPASV RIGVFSVLYTVPATV RIGVFSVLYTVPATV RIGVFSILYTVPATV RIGVFSVLYTVPATCV
						И В С С С С С С С С С С С С С С С С С С
SMO FZD1 FZD2 FZD3 FZD4 FZD5 FZD6 FZD7 FZD7 FZD8 FZD9 FZD9 FZD10	480 FSCHFYDFFNQAEWERSFRD IACYFYEQAFRDQWERSWVA IACYFYEQAFRDHWERSWVA IGCYFYEQAYRGIWETTWIQ IACYFYELSNWALFRYSADD VACYLYEQHYRESWEAALT. LGCYVYEQVNRITWEITWS LACYFYEQAFREHWERTWLL VACYLYEQHRRPRWEATHN. UCYYYEQHRRPRWEATHN. VACYLYEQHRRPRWEATHN. UACYFYEQAFREHWERTWLL VACYYEQHNRPRWEATHN. UACYFYEQHNRPRWEATHN.	YVLCQANVTIC QSCKSYAIPCE QHCKSLAIPCE ERCREYHIPCI CACE DHCRQYHIPCE QTCKSYAVPCI CPCI QPCAAAAGPGC HKCKMNNQT.P	JUPTKQPIPDCEI HLQAGGAPPHE AHYTE YQVTQ GHDTGQE YQAKF PGHFE RDLQPDQ RRDLSLPG	KNRPSLLVEKINL PMSPDFTVFMIKY MSPDFTVFMIKY MSRPDLILFLMKY SAKPEYWVLMLKY KARPELALFMIKY PMSPDFTVFMIKY 2ARRPDYAVFMLKY 3GSVPTVAVFMLKI ASIPAVEIFMVKI	FAMFGTGIAMSTWV FAMFGTGIAMSTWV LMTLIVGITSGFWI LMTLIVGITSGFWI LMALIVGIPSVFWV FMSLLVGITSGVWI LMTLIVGITSGVWI FMCLVVGITSGVWV FMSLVVGITSGVWVI FMLLVVGITSGWVI	WTKATL LIWRRTWCRL WSGKTLNSWRKFYTRL SSKKTCFEWASFFHGR WSAKTLHFWQKCSNRL WSGKTVESWRRFYSRC SSKKTCTEWAGFFKRN WSGKTVESWRRFYBRL WSGKTLQSWRRFYHRL WSGKTLGSWRSLCTRC WSSKTFQTWQSLCYRR

Figure S12: Multiple Sequence Alignment of Class F receptor Transmembrane Domains. Residues highlighted in red are conserved across the entire family.

Figure S13: Error in the free-energy plots discussed in Fig 2 of the main text. Errors calculated using bootstrapping - 80% of the data was used in 200 iterations to produce the error.

Figure S14: Qualitative comparison in the structural commonalities between Class A and Class F GPCRs. β_2 -AR (A), a class A GPCR, shows the canonical outward movement of TM6 corresponding to receptor activation (2, 3). SMO (B) also shows the corresponding outward movement. (C,D) Intracellular view of the D-R-Y (C) and W-G-M (D) motifs.

Figure S15: Difference in the polarity of residues between the CRD (top) vs TMD (bottom). Residues colored in red-blue are polar, while green-white residues show the hydrophobic residues.

Figure S16: Rearrangement of the salt-bridges on the CRD-TMD interface. Inset shows the particular salt bridges involved in SMO activation.

		60	70	80	90	100	110	120	
SMO	A VTGPP	.PPLSHC	G R A A P <mark>C</mark> E P I	RYNVCLGSVI	PYGATSTLLAG	DSD <mark>SQ</mark> E <mark>EA</mark> HO	GKLVLWSGLRI	IAPR <mark>C</mark> WAVIQPL <mark>LO</mark>	A
FZD1	QSGQQYNGERGI.	SV	P	SIPLCTDIAY	NQTIMPNLLGH	TNQEDAGI	LEVHQFYPLV	. KVQ <mark>C</mark> SAELKFF <mark>LO</mark>	S
FZD2	AGPAQFHGEKGI.	SI	P D H G F <mark>C</mark> Q P 1	SIPLCTDIAY	NQTIMPNLLGH	TNQEDAGI	LEVHQFYPLV	. KVQ <mark>C</mark> SPELRFFLC	S
FZD3	VFMGH1	•••••GG	HSLFSCEPI	TLRMCQDLPY	NTTFMPNLLNH	. YDQQTAAI	LAMEPFHPMV	NLDCSRDFRPFLO	Α
FZD4	QLLLLLGPARGFG	•••••D	EEERRCDPJ SKADVGOFJ	RISMCQNLGY	NVTKMPNLVGH		LQLTTFTPLI	QYGCSSQLQFFLC	S
F2D5 F7D6	TELDIT.	PC			NUTRPNOTNE	VDOGTAA			D V
FZD7	AGAOPYHGEKGT.		PDHGFCOPI	STPLCTDIAY	NOTTLPNLLGH	. TNOEDAGI	LEVHOFYPLV	KVOCSPELREELO	S
FZD8	ALLORSSG.AAA.	AS	AKELACÕEI	TVPLCKGIGY	NYTYMPNOFNH	DTODEAG	LEVHOFWPLV	EIOCSPDLKFFLO	s
FZD9	QLLÃAGGAALEIG	RFDPERG	RGAAPCÕAV	EIPMCRGIGY	NLTRMPNLLGH	TSOGEAA	AELAEFAPLV	. QYGCHSHLRFFLC	s
FZD10	LVLQVMGSCAAIS	SMDMER.	P G D G K <mark>C</mark> Q P I	E I P M C K D I G Y	NMTRMPNLMGH	E N Q R E A A	IQLHEFAPLV	. EYG <mark>C</mark> HGHLRFFLO	s
									_
	140 150		160	170	180	190			
SMO	. RVELPSRTLCQAT		ERERGW		PEGCT.NEVQN	IKFNSSG			
F2D1 F7D2	FOATPPCRSLCERF	ROGODAL	MNKFGFOW	PERLECE H	PUNGA. GELC	VGONHSEDG	A PA	ΓΜΊ··SΝΡΟΠΟΟΟ Τ.Τ.Τ. ΤΑΡΡΡΟΙΟ	с. р
FZD2	GRVTLPCRBLCOR	VSECSKI	MEMEGVPW	PEDMECS	PDCDE PYPRI	VDLNLAGE	• • • • • • • • • • • •	шшт ткгггөш <u>ү</u> .	E •
FZD4	NIPIGPCGGMCLS	/ KRRCEPV	LKEFGFAW	PESLNCS.K	FPPON.DHNHMC	MEGPGDEEV	P	L	РH
FZD5	HKPLPPCRSVCER	KAG <mark>C</mark> SPI	MRQYGFAW	PERMSCDR	L <mark>P</mark> VLGRDAEVLC	MDYNRSEAT	.TAPPRPF	.PAKPTLPGPP	••
FZD6	IHVVPPCRKLCEK	7 Y S D <mark>C</mark> KKI	IDTFGIRW	PEELECDRI	LQYCDE.TVP <mark>V</mark> T	FDPHTEFL.			
FZD7	DQAIPPCRSLCER#	ARQG <mark>C</mark> EAL	MNKFGFQ <mark>W</mark>	PERLRCENI	PVHGAGE <mark>IC</mark>	VGQNTSDGS	.GGP.GGGPT	AYPTAPYLPDL	Ρ.
FZD8	K K P L P P C R S V C E R F	AKAG <mark>C</mark> API	MRQYGFAW	PDRMRCDRI	L <mark>P</mark> EQGN.PDT <mark>LC</mark>	MDYNRTDLT	. TAAPSPPRR	LPPPPPGEQPPSG	s.
FZD9	STPIPACRPMCEQ#	ARLRCAPI	MEQFNFGW	PDSLDCAR	PTRN.DPHALC	MEAPENATA	GPAEPHKGLG	MLPVAPRPARPPG	•••
FZD10	STPIPACRVMCEQF	ARLKCSPI	MEQFNFKW	DSLDCR.K	L <mark>P</mark> NKN.DPNYLC	MEAPNNG	.SDEPTRGSG	LFPPLFRPQRPHS	AQ
						20	o.	210	
SMO	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •			.QCEVPLVR	TDNP	K S W Y E D V E G <mark>C</mark> G I Q	CQ
FZD1	HRG <mark>G</mark>	FPC	3	GAGA	SERGK <mark>F</mark> S	CP	.RALKVPSYL	NYHFLGEKD <mark>C</mark> GAP	CE
FZD2	GAGGTP <mark>G</mark>	GPC	3	GGGA	P P R Y A T L E H P <mark>F</mark> H	CP	.RVLKVPSYL	SYKFLGERD <mark>C</mark> AAP	CE
FZD3	PTE	•••••	•••••	••••••••••••••••••••••••••••••••••••••	APVAVQRDYG F W	CP	.RELKIDPDL	GYSFLHVRDCSPP	CP
FZD4	KTPIQPG	••••	•••••	EECHSV	GINSDQYI	•••••	••••••••••	· · WVKRSLNCVLK	GG
FZD5	CPO		•••••	GE.	CPAGGPFV	CREREPEVP	TEVESHEPTIN	CVKFLCTDOCAPP	μ
FZD6 F7D7	•••••G.	AST)	G RG	RPAFPFS	СР	. ROLKVPPVI	GYRFLGERDCGAP	CE
F2D7 F2D8	GHGRPPGARPPHR	GGGRGGGG	GDAAAPPA	RGGGGGGKAR	PPGGGAAPCEPG	COCRAPMVS	VSSERHPLYN	RVKTGOIANCALP	Сн
FZD9	••• DLGP <mark>G</mark> •••••			AGGSGT	CENPEK <mark>F</mark> Q			YVEKSRSCAPR	CG
FZD10	E H P L K D <mark>G</mark>	• • • • • • • •	•••••	GPGRGG	CDNPGK <mark>F</mark> H			HVEKSAS <mark>C</mark> APL	СT

Figure S17: Multiple Sequence Alignment for the CRD of Class F receptors. The alignment was perfomed using ESPript3 web server(4, 5)

Figure S18: Rotation of CRD on activation. (Pink-Inactive SMO; Green-Active SMO) CRD undergoes a reorientation during SMO activation, which is characterized by the outward movement of TM6.

Figure S19: Hydrophobic tunnel inside SMO. The tunnel inside SMO consists of primarily hydrophobic residues, lining the tunnel from the extracellular end (top) to the intracellular end (bottom)

Figure S20: Pathway to the CRD for proposed cholesterol transport. Various residues line the pathway between the entry-point of cholesterol from the membrane to the binding site, in the CRD. These consist of residues close to the extracellular binding site in the ECD, in the linker domain (LD) which connects the CRD to the TMD, and in the core TM domain. The residues were determined based on the proximity of the sterol in multiple sterol-bound resolved structures of SMO (PDB ID 6XBL, 6XBM(6) and 5L7D(7).

Figure S21: Lateral movement of SANT1 center of mass. Simulations show a minimal lateral movement of SANT1 across the hydrophobic tunnel, suggesting that SANT1 operates as an antagonist by sterically blocking the tunnel.

Figure S22: Observed cholesterol densities in the membrane during Apo-SMO simulations. The plots show the distribution of the cholesterol in the membrane, with the white space in the middle occupied by SMO. (A-C) Cholesterol shows a uniform distribution in the Lower leaflet regardless of the conformation, as well as the upper leaflet in the active state. (D) Cholesterol, however, does show a propensity to cluster outside the area between TM2 and TM3 in the upper leaflet, showing a conformational dependence on the cholesterol distribution. The black lines show the average position of the helix in the membrane as seen from above, looking directly into the core of the protein.

Figure S23: Free energy difference between the various plots shown in Fig 5. Z-coordinate vs tunnel diameter free energy differences were plotted between (A) - Apo-SMO and SAG bound SMO, (B) Apo-SMO and SANT1 bound SMO, and (C) SAG-bound SMO and SANT1-bound SMO.

Figure S24: (A) Probability density of Z-coordinate of tunnel opening. Simulations show that the tunnel opens in the upper leaflet of the membrane, $z \sim -22$. (B) The Y v/s X coordinate (Z = -23) of tunnel opening in SAG-SMO. A cluster is centered around the interface of TM2 and TM3, circled in red. The various helical boundaries are shown using black lines.

Figure S25: Helical displacement of TM6 by SANT1. This helical displacement causes the shift in the allosteric network of SMO, precluding the transition to active state.

Simulation Round	Amount of Apo-SMO-Data
Round 1	22µs
Round 2	23µs
Round 3	53µs
Round 4	46µs
Round 5	43µs
Round 6	$40\mu s$
Round 7	$24\mu s$
Total	251 µs

Table S1: Round wise data collection for Apo-SMO.

Simulation Round	Amount of SAG-SMO-Data	Amount of SANT1-SMO-Data
Round 1	10µs	10µs
Round 2	$12\mu s$	$14\mu s$
Round 3	$14 \mu s$	18µs
Total	36 µs	42µs

Table S2: Round wise data collection for SAG-SMO and SANT1-SMO

Modelled Residues in 5L7D-inac-Apo-SMO	Constraints	Location
I429	None	ICL3
K430	None	ICL3
S431	None	ICL3
N432	None	ICL3
H433	None	ICL3
P434	None	ICL3
G435	None	ICL3
L436	None	ICL3
L437	None	ICL3
S438	None	ICL3
E439	None	ICL3
K440	α -helical	TM6
A441	α -helical	TM6
A442	α -helical	TM6
S443	α -helical	TM6
K444	α -helical	TM6
I445	α -helical	TM6

Table S3: Modelled residues in 5L7D-inactive-Apo-SMO starting structure. The helical content of K440-I445 was modelled based on the structure of SANT1-bound SMO (PDB: 4N4W) (8)

Lipid	Upper Leaflet	Lower Leaflet
Cholesterol	21	21
POPC	76	76
Sphingomyelin	4	4
Total	101	101

Table S4: Membrane composition used for simulations.

ſ	P58	P59	R66	R173	Y85	K133
	L106	Y130	L108	W109	W109	L126
	R113	W119	A115	E211	R117	W206
	R117	G212	W119	Q123	Q123	F187
	R151	W163	W163	R168	C169	F174
	N202	W206	W206	E211	W206	G212
	Y207	E208	Y207	D209	F222	L515
	H231	F285	H231	R290	L246	F275
	F252	S259	F252	F268	W256	F268
	Y262	L353	Q284	R290	G288	E292
	R290	R291	F332	A459	L335	W339
	W339	G422	W339	M449	W339	G453
	W339	W535	F343	M449	L346	I445
	L353	F360	K356	F360	Q380	Y399
	V381	V392	Y397	F474	Y397	Q477
	L419	F457	H433	P434	H433	G435
	G435	L436	S443	N446	H470	F474
	W480	P513	Y487	Q491	Y487	I509
	Q502	I504	L516	K519	T534	W537

Table S5: Adaptive Sampling metrics used for clustering in Apo-SMO, SANT1-SMO and SAG-SMO. Double lines separate pairs of residues.

REFERENCES

- Scherer, M. K., B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann, N. Plattner, C. Wehmeyer, J.-H. Prinz, and F. Noé, 2015. PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. *J. Chem. Theory Comput.* 11:5525–5542. doi:10.1021/acs.jctc.5b00743.
- Cherezov, V., D. M. Rosenbaum, M. A. Hanson, S. G. F. Rasmussen, F. S. Thian, T. S. Kobilka, H.-J. Choi, P. Kuhn, W. I. Weis, B. K. Kobilka, and R. C. Stevens, 2007. High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor. *Science* 318:1258–1265. doi:10.1126/science.1150577.
- Rasmussen, S. G. F., H.-J. Choi, J. J. Fung, E. Pardon, P. Casarosa, P. S. Chae, B. T. DeVree, D. M. Rosenbaum, F. S. Thian, T. S. Kobilka, A. Schnapp, I. Konetzki, R. K. Sunahara, S. H. Gellman, A. Pautsch, J. Steyaert, W. I. Weis, and B. K. Kobilka, 2011. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. *Nature* 469:175–180. doi:10.1038/nature09648.
- Robert, X., and P. Gouet, 2014. Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res.* 42:W320–W324. doi:10.1093/nar/gku316.
- 5. ESPript. 2022. January 15 2022. https://espript.ibcp.fr/ESPript/ESPript/index.php.
- 6. Qi, X., L. Friedberg, R. D. Bose-Boyd, T. Long, and X. Li, 2020. Sterols in an intramolecular channel of Smoothened mediate Hedgehog signaling. *Nat. Chem. Biol.* 16:1368–1375. doi:10.1038/s41589-020-0646-2.
- Byrne, E. F. X., R. Sircar, P. S. Miller, G. Hedger, G. Luchetti, S. Nachtergaele, M. D. Tully, L. Mydock-McGrane, D. F. Covey, R. P. Rambo, M. S. P. Sansom, S. Newstead, R. Rohatgi, and C. Siebold, 2016. Structural basis of Smoothened regulation by its extracellular domains. *Nature* 535:517–522. doi:10.1038/nature18934.
- Wang, C., H. Wu, T. Evron, E. Vardy, G. W. Han, X.-P. Huang, S. J. Hufeisen, T. J. Mangano, D. J. Urban, V. Katritch, V. Cherezov, M. G. Caron, B. L. Roth, and R. C. Stevens, 2014. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. *Nat. Commun.* 5:4355. doi:10.1038/ncomms5355.