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The figures are as follows: 
Fig. S1  schematic of Euler and polar angles describing the forward and inverse 

transformations to and from the CH bond position 
Fig. S2–S4 correlation functions 𝐺!,#

(%)(𝑡) for all carbons in the simulated bilayers with their  
corresponding best power-law fits 

Fig. S5  actual and resampled correlation functions 𝐺',#
(%)(𝑡) 

Fig. S6  optimal Δ𝑡()* values (in ps) obtained from resampling of 𝐺',+
(%)(𝑡) 

Fig. S7–S9 spectral density functions 𝐽!,#
(%)(𝜔) for all carbons in the simulated bilayers with  

their corresponding best power-law fits 
Fig. S10 b exponents of the best power-law fits to the correlation functions 𝐺!,+

(%)(𝑡) and  
spectral density functions 𝐽!,+

(%)(𝜔) for all carbons in the simulated bilayers 
Fig. S11–S13  the spectral density functions 𝐽',#

(%)(𝜔)  of local director vectors and their  
corresponding best power-law fits 

Fig. S14 bilayer structural properties (order parameters, lipid packing and thickness) as a  
function of cholesterol concentration 

Fig. S15 linear and log-log plots of 𝑅1Z vs |𝑆CD|# for all carbons in the simulated bilayers 
Fig. S16 effect of bilayer viscosity 𝜂 on the bending rigidity 𝜅0 calculated from the square-law 

relationship 
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Table S1. Full bilayer thicknesses calculated from the bilayer number density profile as 
described in Methods. 

Bilayer composition Thickness / Å	
DMPC 51.2 

DMPC/Chol 80/20 55.2 
DMPC/Chol 67/33 56.4 
DMPC/Chol 50/50 55.6 

 
 
Table S2. Reference values for estimates of the bending modulus for DMPC bilayers obtained 
from experiments and simulations. C36 denotes CHARMM36 force field. 

Bending modulus / kBT	 Method Reference 
29.2 ± 1.2 simulations, C36, lipid director fluctuations (1) 
25.1 ± 1.0 X-ray diffuse scattering (2) 
31.1 ± 1.9 Flicker analysis of vesicle fluctuations (3) 
24.8 ± 1.1 simulations, C36, square-law this paper 
33.2 ± 1.0 simulations, C36, splay fluctuations this paper 
18.5 ± 1.0 NMR this paper 
28.1 ± 4.4 NSE this paper 

 
 
 
  



 3 

 
 
Figure S1.  Schematic representation of the angles describing (A) the forward transformation 
from the laboratory frame (LAB) to the principal axis system (PAS) which is defined as the CH 
bond position (green), and (B) the inverse transformation from PAS to LAB.  The Euler angles for 
the forward transformation are ΩLP = (αLP, βLP, γLP)  while the Euler angles for the inverse 
transformation are ΩPL = (αPL, βPL, γPL) = (−γLP, −βLP, −αLP).  The corresponding polar angles 
(θ, 𝜙) are indicated in grey-shaded boxes next to their Euler angle equivalents.  
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Figure S2.  Log-log plot of the correlation function 𝐺',#
(%)(𝑡) , 𝑡 ≥ 1  for each carbon atom Cn 

(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% 
cholesterol (Chol) (blue data points), and corresponding best fit to a power-law function of the 
form 𝑎𝑥3 + 𝑐 (red solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the 
first 100 ns of the correlation function are shown to better illustrate the fit.  All plots have the 
same 𝑥- and 𝑦-axes. 
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Figure S3.  Log-log plot of the correlation function 𝐺4,#
(%)(𝑡) ,𝑡 ≥ 1  for each carbon atom Cn 

(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol 
(blue data points), and corresponding best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 (red 
solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the first 100 ns of the 
correlation function are shown to better illustrate the fit.  All plots have the same 𝑥- and 𝑦-axes. 
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Figure S4.  Log-log plot of the correlation function 𝐺#,#

(%)(𝑡) , 𝑡 ≥ 1  for each carbon atom Cn 
(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol 
(blue data points), and corresponding best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 (red 
solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the first 100 ns of the 
correlation function are shown to better illustrate the fit.  All plots have the same 𝑥- and 𝑦-axes. 
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Figure S5.  First 200 ps of the correlation function 𝐺',#

(%)(𝑡), 𝑡 ≥ 0 for carbons C4–C14 (indicated 
on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol sampled 
at the original Δ𝑡 = 40 ps (blue shaded squares), and the resampled correlation function from 
the best fits from Fig. S2 sampled at the optimal Δ𝑡567 < Δ𝑡 (red). The initial values 𝐺',#

(%)(0) are 
highlighted in solid blue color. 
 



 8 

 
 
Figure S6.  Optimal Δ𝑡567 values (in ps) obtained from resampling of 𝐺',+

(%)(𝑡) using the best fit (see 
Figure S5) for each carbon on the sn-1 and sn-2 chains of DMPC in the simulated bilayers.  The 
simulation output frequency (and thus, original timestep Δ𝑡) in the trajectories correspond to Δ𝑡 
= 40 ps.  The decrease of Δ𝑡567  further down the chain towards the terminal methyl (C14) is 
consistent with faster rapid motions closer to the bilayer midplane. 
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Figure S7.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and the fits. 
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Figure S8.  Log-log plots of the spectral density 𝐽4,#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and fits. 
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Figure S9.  Log-log plots of the spectral density 𝐽#,#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and fits. 
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Figure S10. Plots of b-exponents of the best fits to the correlation function 𝐺!,+

(%)(𝑡) (top 3 rows) 
and spectral density 𝐽!,+

(%)(𝜔) (bottom 3 rows) for each carbon on the sn-2 (left) and sn-1 (right) 
chains of DMPC in the bilayers with 0 (blue), 20 (red), 33 (yellow), and 50% (purple) cholesterol.  
Note that the 𝑦-axis for the correlation functions ranges from −1.3 to 0, while for the spectral 
densities it is between −1 and 0. 
 
 
 
 
 
 
 
 
 
 



 13 

 
Figure S11.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔) of local director (LD) vectors of lengths 
2–5 carbons.  Each row corresponds to LD vectors originating from the same carbon Cn (indicated 
on the left).  Raw data are shown in blue and best fit to a power-law function of the form 𝑎𝑥3 +
𝑐 is shown in red.  The corresponding power-law coefficients of the best fits are indicated above 
the plots.  
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Figure S12.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔)  of local director (LD) vectors of lengths 
6–9 carbons.  Each row corresponds to LD vectors originating from the same carbon Cn (indicated 
on the left).  Raw data are shown in blue and best fit to a power-law function of the form 𝑎𝑥3 +
𝑐 is shown in red.  The corresponding power-law coefficients of the best fits are indicated above 
the plots. 
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Figure S13.  Linear plots of the spectral density 𝐽',#

(%)(𝜔) of local director (LD) vectors connecting 
each carbon Cn (indicated above each plot) to the phosphate atom of the lipid.  Raw data are 
shown in blue and best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 is shown in red.  The 
corresponding power-law coefficients of the best fits are indicated above the plots. 
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Figure S14.  (Left) Order parameter profiles for the two chains of DMPC, sn-1 (dashed) and sn-2 
(solid), in the simulated bilayers.  (Right) Average area per lipid (blue, left axis) and phosphate-
to-phosphate distance (red, right axis) as a function of cholesterol concentration. 
 
 
 
 
 
 
 
 
 
  



 17 

 
Figure S15.  Relationship between spin-lattice relaxation rate 𝑅48 and order parameter |𝑆CD| for 
all carbons of DMPC in the simulated bilayers.  Carbons on the sn-2 chain are shown as blue circles 
and on the sn-1 chain as red triangles.  Filled symbols indicate the carbons from each chain that 
follow the square-law relationship as used in subsequent analysis of the apparent bilayer bending 
rigidity.  On the left 𝑅48  is shown as a function of |𝑆CD|#  while on the right the log-log plot 
illustrates the model-free relationship between 𝑅48 and |𝑆CD| values. Also shown for comparison 
on these plots is a sample square-law function of the form 𝑎𝑥% with 𝑛 = 2 in black.  Note that 
the 𝑥- and 𝑦-axes of the plots are purposefully different to better illustrate the spread in the data. 
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Figure S16. Effect of bilayer viscosity 𝜂 on the apparent bending rigidity 𝜅0 calculated from the 
slope of the square-law relationship (Eqs. 18, 19 of main text). The range for 𝜂 was obtained from 
available estimates of 𝜂 from experiments (4) and simulations (5). 
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Extended Methods 
 
Neutron Spin Echo experiments 
 Suspensions of 100-nm unilamellar vesicles were prepared at a lipid concentration of 50 
mg/mL, using standard vesicle extrusion methods (6).  The samples were prepared by mixing 
protiated DMPC and cholesterol in chloroform at the required mole fractions.  This step was 
followed by evaporation of chloroform under an inert gas stream and subsequent drying under 
vacuum overnight at 45 °C.  The dry lipid films were then hydrated with 10 mM deuterated 
sodium phosphate buffer (prepared with D2O instead of H2O) at 45 °C with intermittent vortex 
mixing.  The hydration of the lipid films at elevated temperature facilitates dispersion and 
promotes mixing of DMPC and cholesterol within the formed bilayers.  The suspension was then 
subjected to at least 5 freeze/thaw cycles using a -80 °C freezer and a warm 45 °C water bath.  
The suspension was then extruded using an automated mini-extruder (Avanti Polar Lipids; 
Birmingham, AL) by passing the suspension 31 times through a polycarbonate filter (pore size = 
100 nm).  The extruder setup was heated to 45 °C during all extrusions.  After extrusion, the 
samples were kept in a Peltier box at 45 °C until measured. 
 
 The NSE experiments were conducted on the NG-A NSE spectrometer at the NIST Center for 
Neutron Research (NCNR) over a q-range of 0.04 Å–1 to 0.1 Å–1, where 𝑞 = 4𝜋 sin 𝜃/𝜆 is the 
wavevector transfer defined by the neutron wavelength, 𝜆, and the scattering, 2𝜃, measured 
relative to the incident beam.  Measurements of the instrumental resolution and deuterated 
buffer were performed under the same configuration for data reduction and normalization.  Data 
reduction was performed using the Data Analysis and Visualization Environment (DAVE) software 
developed at NIST (7). 
 
Theoretical background:  nuclear spin relaxation of lipid membranes 
 In general, the NMR spectra and relaxation times are governed by the Hamiltonian for 
coupling of the nuclear spins to the environment of the molecule or material.  The main 
Hamiltonian is due to the Zeeman interaction of the nuclear magnetic moment with the applied 
external (static) magnetic field and will not be further discussed here.  The smaller perturbing 
Hamiltonian contains the information of interest to chemists or physicists.  It is due to the 
chemical shift, the direct (through space) magnetic dipolar interaction, the indirect (through 
bond or electron-mediated, spin-spin) dipolar coupling, and the electric quadrupolar coupling in 
the case of nuclei with a quadrupolar moment describing the non-spherical nuclear charge 
distribution.  The perturbation is typically considered within the quantum-mechanical interaction 
picture. 
 
 Role of average Hamiltonian and correspondence to bilayer average structure.  When 
motion is present, as in the case of liquid crystals, liquids, and even molecular solids, one must 
consider the average value of the perturbation and the fluctuating parts.  The secular (time-
independent part) part governs the lineshape, while the non-secular (time-dependent part) part 
governs the relaxation.  Notably, the fluctuations of the Hamiltonian occur with respect to the 
mean value so that the fluctuating part is given by: 𝐻N9′	 = 	𝐻N9 − 〈𝐻N9〉 , where 𝜆	 = 	Q for the 
quadrupolar interaction in 2H NMR spectroscopy.  The time-independent average Hamiltonian is 
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secular; it commutes with the main Zeeman Hamiltonian and hence governs the NMR lineshape 
in accord with time-independent perturbation theory. Conversely, the averaged value of the 
Hamiltonian is non-zero and it must be subtracted to yield the fluctuating part that governs the 
relaxation.  The fluctuating part is non-secular and affects the energy level transitions as 
considered by time-dependent perturbation theory.   
 
 Correspondence to experimental relaxation rates in NMR spectroscopy.  Next, we apply 
time-dependent perturbation theory within the Redfield approximation (8). After transforming 
the principal values of the coupling (EFG) tensor from the molecule-fixed principal axis system 
(PAS) within the molecule to the laboratory frame, the irreducible correlation functions directly 
correspond to the Wigner rotation matrix elements.  They read: 
 

𝐺:;<=(𝑡) = 	 〈[𝐷':
(#)	(Ω?@; 𝑡) − 〈𝐷':

(#)	(Ω?@)〉]∗	[𝐷':
(#)	(Ω?@; 0) − 〈𝐷':

(#)	(Ω?@)〉]〉	,	 	 (S1)	
	
where 𝐷':

(#)	(ΩPL) are the second-rank Wigner rotation matrix elements for the transformation 
from the molecule-fixed PAS to the laboratory frame in terms of Euler angles ΩPL ≡	 (0, 𝛽PL, 𝛾PL) 
for transformation form the principal axis system (P) to the laboratory (L) frame (Fig. S1).  The 
corresponding irreducible spectral densities of motion 𝐽:lab(𝜔) are the Fourier transform partners 
of the 𝐺:;<=(𝑡)	correlation functions: 
 

𝐽:lab(𝜔) = 	Re∫ 𝐺:lab(𝑡)𝑒E)F*
G
EG 𝑑𝑡	.        (S2) 

In the above formula 𝐽:lab(𝜔) is a two-sided Fourier transform of the correlation function with 
limits of (−∞,+∞).  For more details the reader is referred to Refs. (9,10).   
 The relaxation rates in NMR spectroscopy correspond to various linear combinations of the 
irreducible spectral densities of motions 𝐽:(𝜔) of the coupling Hamiltonian.  In the case of solid-
state 2H NMR of lipid membranes, the spin-lattice relaxation rate (𝑅4Z) and the quadrupolar order 
relaxation rate (𝑅4Q) are of interest (8).  The spin-lattice relaxation rate is given by: 
 

𝑅1Z =	
I
J
𝜋#𝜒Q#	c𝐽4lab(𝜔') + 	4𝐽#lab(2𝜔')d	,      (S3) 

where 𝜒Q ≡ 𝑒#𝑞𝑄/ℎ = 170 kHz is the static quadrupolar coupling constant (11).  The value of the 
numerical pre-factor is thus (3/4)𝜋#(1.70	𝑥	10K)#  = 2.1392	x	1044	𝑠E# .  The irreducible 
spectral densities of motion 𝐽:lab(𝜔) are the Fourier transform partners of the 𝐺:;<=(𝑡)	correlation 
functions (Eq. S1) and are directly connected to the observable relaxation rates in NMR 
spectroscopy. 
 
 Formulation of spherical-harmonic correlation functions and spectral densities.  
Furthermore, the Wigner rotation matrix elements are related to the well-known spherical 
harmonics by the following expression (derived from Eqs. 4.21, 4.30, and 4.31 from (12)): 
 

𝐷':
(L) 	(𝜒, −𝜃,−𝜙) = 	l

4𝜋
2𝑙 + 1	𝑌L:(𝜃, 𝜙)	, 

(S4) 
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in which l is the rank ( 𝑙 = 2  in the present case) and 𝑚  is the projection of the angular 
momentum onto the axis of quantization. Note that (𝜃, 𝜙) = (𝛽LP, 𝛼LP) = (−𝛽PL, −𝛾PL) where 
the subscripts of the Euler angles denote forward rotation from the lab to the PAS frame (LP), or 
inverse rotation from the PAS to the lab frame, thus the negative angles (PL) (see Fig. S1).  
Accordingly, the correlation functions 𝐺:(𝑡) of the second-rank Wigner rotation matrix elements 
are related to the spherical-harmonic correlation functions 𝐺s:(𝑡)  for 𝑙 = 2  by the relation: 
𝐺:(𝑡) 	= 	 (4𝜋/5)	𝐺s:(𝑡) , where the tilde on the right is to be noted.  Here, the spherical-
harmonic correlation functions read: 
 

𝐺:(𝑡) = u
4𝜋

2𝑙 + 1v𝐺
s:(𝑡) 

 

= u
4𝜋

2𝑙 + 1v
〈[𝑌L:(𝜃, 𝜙; 𝑡) − 〈𝑌L:(𝜃, 𝜙)〉]∗	[𝑌L:(𝜃, 𝜙; 0) − 〈𝑌L:(𝜃, 𝜙)〉]〉	. 

(S5)	
The spherical-harmonic correlation functions 𝐺s:(𝑡) are often used in the literature (13-15) as an 
alternative to the Wigner rotation matrix correlation functions (9). 
 
 The two-sided spectral densities of the Wigner rotation matrix elements (Eq. S2) are then 
related to the one-sided spherical-harmonic spectral densities 𝐽w:(𝜔)  with limits (0,∞)  by: 
𝐽:(𝜔) = (8𝜋/5)	𝐽w:(𝜔), where the tilde on the right should again be noted. The spin-lattice 
relaxation rate formulated in terms of the spherical-harmonic spectral densities then becomes: 
 

𝑅1Z =	
3
10𝜋	𝜒yQ

#	c𝐽w4lab(𝜔') 	+ 	4𝐽w#lab(2𝜔')d	, 
(S6) 

where 𝜒yQ	 =	𝑒#𝑞𝑄/ℏ	 = 	2𝜋𝜒Q and we have also re-introduced the "lab" superscript.  Note that 
the results using the spherical-harmonic correlation functions and spectral densities are obtained 
by substituting: (3/4)𝜋#𝜒Q# 	→ 	 (3/10)𝜋𝜒yQ# and 𝐽:(𝜔) 	→ 	 𝐽w:(𝜔) where the tilde on the right is 
to be noted. Everything else is the same and it is just bookkeeping. The above formulas 
correspond to results found in the literature (14). 
 
  Use of closure to describe composite motions and multiple coordinate transformations.  
Next, as we have described above, it is necessary to separate the coupling Hamiltonian and 
correspondingly the correlation functions and spectral densities into the time-dependent and 
time-independent parts. The time-dependent part (nonsecular) governs the nuclear spin 
relaxation, while the time-independent part (secular) affects the spectral lineshape.  The time 
dependence is expressed with respect to the director axis (the lamellar normal), while the time-
independent part corresponds to the director orientation versus the laboratory axis system. 
 
  Accordingly, we can now separate the time-dependent and time-independent 
transformations using closure.  We use closure to decompose the overall matrix elements with 
respect to the laboratory axes system into the time-dependent transformation with respect to 
the director frame, and the static or time-independent orientation of the director with respect 
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to the laboratory frame.  Use of closure readily allows us to expand any Wigner rotation matrix 
element into a sequence of intermediate frame transformations, or equivalently to collapse a 
sequence of frame transformations into the appropriate rotation matrix element for the overall, 
i.e. composite, motion. 
 
 In the present case we focus on the separation of the overall transformation from the PAS of 
the molecule to the laboratory frame in two steps: first the transformation to the director frame 
(time-dependent), and second the transformation from the director frame to the laboratory 
system (time-independent).  Because the Wigner rotation matrix elements are members of a 
group, the overall rotation can be expressed in terms of the other members of the group to read: 
 

𝐷':
(#)(ΩPL; 𝑡) =|𝐷'!

(#)(ΩPD; 𝑡)	𝐷!:
(#)(ΩDL)	.

!

 

(S7) 
In the above formula ΩPD(𝑡) are the time-dependent Euler angles for transformation from the 
principal axis system (P) of the molecule to the director (D) frame, and ΩDL are the Euler angles 
for the static transformation from the director (D) to the laboratory (L) axis system. 
 
 Director-frame spectral densities versus laboratory-frame spectral densities.  To make a 
comparison of the NMR relaxation times and order parameters to the results of MD simulations, 
we need to recognize that the time-dependent lipid fluctuations occur with respect to the frame 
of the director. This introduces a dependence on both the second-rank order parameter 〈𝑃#〉 and 
the fourth-rank order parameter 〈𝑃J〉 (9).  Hence to compare the experimental NMR relaxation 
rates to the MD calculated values, we need to specify the director orientation with respect to the 
laboratory frame.   
 
 By applying closure (see above Eq. S7) to the overall correlation functions, and following the 
development through to the laboratory frame, we find that: 
 

𝐺:lab(𝑡) = ∑ �𝐷0!	
(#)(ΩDL)�

#
𝐺!dir(𝑡)Q  ,       (S8) 

 
where 

𝐺!dir(𝑡) = 〈[𝐷'!
(#)(Ω?R; 𝑡) − 〈𝐷'!

(#)(Ω?R)〉]∗	[𝐷'!
(#)(Ω?R; 0) − 〈𝐷'!

(#)	(Ω?R)〉]〉 . (S9) 
 
The director-frame correlation functions can also be written by subtracting the modulus-squared 
of the average value: 
 

𝐺!dir(𝑡) = 〈𝐷'!
(#)∗(Ω?R; 𝑡)𝐷'!

(#)(Ω?R; 0)〉 − |〈𝐷'!
(#)	(Ω?R)〉|#	. 

(S10) 
 
 Similarly, for the laboratory-frame spectral densities, upon Fourier transformation we find 
that: 
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𝐽:lab(𝜔) =|�𝐷0!	
(#)(ΩDL)�

#
𝐽!dir(𝜔)

Q

	, 

(S11) 
where:  

𝐽!dir(𝑡) = Re �⟨[𝐷'!
(#)(Ω?R; 𝑡) − 〈𝐷'!

(#)(Ω?R)〉]∗	[𝐷'!
(#)(Ω?R; 0) − 〈𝐷'!

(#)	(Ω?R)〉]	⟩𝑒E)F*𝑑𝑡	.
G

EG

 

(S12) 
In the above formulas the values of the Wigner rotation matrix elements 𝐷0!	

(#)(ΩPD) can be found 
from the geometry of the system.  The expressions for the Wigner rotation matrix elements are 
listed, e.g., in the Appendix of Ref. (11). 
 
 Orientational averaging of relaxation rates.  In randomly oriented lipid membrane 
dispersions (so-called multilamellar vesicles or MLVs), the orientations where the director axis is 
perpendicular to the main magnetic field are most probable (because they correspond to the 
equator of the orientational probability distribution, where the area element is maximal).  For 
non-oriented (powder-type) samples, in solid-state NMR spectroscopy, the 𝜃 = 90∘  spectral 
edges (where 𝜃 ≡ 𝛽DL) correspond to weak singularities (integrable) in the spectral orientational 
distribution function.  They are the most prominent spectral features for which the relaxation 
rates are measured.  However, because of lateral diffusion of the lipids in non-oriented powder-
type distributions, i.e., multilamellar dispersions or MLVs, during the relaxation times (tens of 
milliseconds) the relaxation rates are averaged over all director orientations.  Hence, the 
orientation dependence of the relaxation is suppressed, or averaged (16), and one can thus 
assume the orientationally averaged limit. 
 
 When the director changes its orientation rapidly compared to the relaxation times, the 
Wigner rotation matrix elements for the director–laboratory frame transformation are averaged 
over the various possible values.  Orientational averaging of the director with respect to the 
laboratory frame is defined with respect to the spin-lattice relaxation times, which are typically 
in the range of ~50–100 ms or longer (17). In this case, the mean-square Wigner rotation matrix 
elements for the frame transformation are averaged to their isotropic values, leading to: 
⟨|𝐷'!

(#)(Ω?R)|#⟩ = 1/5. It follows that the dependence on the projection index (m) in the lab 
frame is lost due to the overall spherical symmetry.  However, that does not imply the absence 
of a projection index (p) in the director frame.  Quite to the contrary, the fluctuations are of 
limited amplitude with respect to the director as characterized by the orientational order 
parameters 〈𝑃T(𝛽PD)〉  where j = 2, 4 in the case of NMR spectroscopy. 
 
 Hence, in the orientationally averaged case (16), the spectral densities are: 
 

𝐽:;<=(𝜔) = 	 〈𝐽:;<=(𝜔)〉 ≡ 	𝐽(𝜔) =
1
5 c𝐽'

dir(𝜔) + 2𝐽4dir(𝜔) + 2𝐽#dir(𝜔)d	, 
        (S13) 
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where the dependence on the projection index (m) in the laboratory frame vanishes due to the 
spherical symmetry.  The spin-lattice relaxation rates are thus: 
 

𝑅1Z =
I
J
𝜋#𝜒Q#	[𝐽(𝜔') 	+ 	4𝐽(2𝜔')]	.    (S14) 

 
 
 Correspondence to molecular dynamics (MD) simulations.  The director-frame spectral 
density functions 𝐽!dir(𝜔) describe the internal motions within the membrane and afford a direct 
correspondence to the results of molecular dynamics (MD) simulations. Typically, one can 
assume that the NMR relaxation rates are orientationally averaged as described above (for either 
SUVs or MLVs).  The final result appropriate to molecular dynamics (MD) simulations can then be 
written explicitly as: 

𝑅1Z =
3
20𝜋

#𝜒Q#	{𝐽'dir(𝜔') + 4𝐽'dir(2𝜔') 

            +2[𝐽4dir(𝜔') + 4𝐽4dir(2𝜔')]  

            +2[𝐽#dir(𝜔') + 4𝐽#dir(2𝜔')]}	, 
(S15) 

where: 

𝐽!dir(𝜔) = Re � 𝐺!dir(𝑡)𝑒E)F*
G

EG

𝑑𝑡	, 

(S16) 
and 𝐺!dir(𝑡)  is given by Eq. S9.  The value of the numerical pre-factor is (3/
20)𝜋#(1.70	𝑥	10K	sE4)# = 4.2785	𝑥	104'	sE#. 
 
 The above correlation function decays to a zero value because the fluctuations occur about 
to the average values of the Winger rotation matrix elements.  The director-frame correlation 
functions can also be written by subtracting the modulus-squared of the average value in which 
case 𝐺!dir(𝑡) reads as in Eq. S10. For a cylindrically symmetric distribution the last term on the 
right of Eq. S10 becomes: |〈𝐷'!

(#)	(Ω?R)〉|#𝛿'! where 𝛿'! is the Kronecker delta function.  In the 

correlation function the term on the left decays to a non-zero value as given by |〈𝐷'!
(#)	(Ω?R)〉|#, 

which is then subtracted.  These formulas lend themselves directly to molecular dynamics (MD) 
simulations. 
 
 Orientationally averaged relaxation rates in terms of spherical-harmonic spectral densities.  
For completeness, the results for the orientationally averaged relaxation rates can also be 
expressed in terms of the spherical-harmonic correlation functions (see above). Here we have 
the substitutions (see above): (3/4)𝜋#𝜒Q# 	→ 	 (3/10)𝜋𝜒yQ#  and 𝐽:(𝜔) 	→ 	 𝐽w:(𝜔) to obtain the 
equivalent results in terms of the spherical-harmonic correlation functions and spherical-
harmonic spectral densities (indicated by the tilde on the right that is to be noted).  Everything 
else is the same.  The result is: 
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𝑅1Z =
3
50𝜋𝜒yQ

#	{𝐽w'dir(𝜔') + 4𝐽w'dir(2𝜔') 

           +2[𝐽w4dir(𝜔') + 4𝐽w4dir(2𝜔')]  

           +2[𝐽w#dir(𝜔') + 4𝐽w#dir(2𝜔')]}	, 
(S17) 

where the tildes on the right are to be noted. The spherical harmonic-correlation functions are 
given by: 
 

𝐺s!dir(𝑡) = ⟨[𝑌#!(Ω?R; 𝑡) − 〈𝑌#!(Ω?R)〉]∗	[𝑌#!(Ω?R; 0) − 〈𝑌#!(Ω?R)〉]⟩	. 
.(S18) 

In the above formula ΩPD = (0, 𝛽PD, 𝛾PD)  = (−𝜃,−𝜙)  are now the angles (either Euler or 
spherical polar) for the transformation from the PAS to director frame which are isomorphous to 
those in Fig. S1.  The director-frame correlation functions can also be written by subtracting the 
modulus-squared of the average value: 
 

𝐺s!dir(𝑡) = 〈𝑌#!∗ (Ω?R; 𝑡)𝑌#!(Ω?R; 0)〉 − |〈𝑌#!(Ω?R)〉|#	. 
(S19) 

where for a cylindrically symmetric distribution, the last term on the right becomes 
|〈𝑌#!(Ω?R)〉|#𝛿'!  where 𝛿'!  is the Kronecker delta function.  Note that Eqs. S20 and S21 are 
distinctly different from the correlation function obtained by application of the spherical-
harmonic addition theorem (Eq. 22 in main text) which ignores the dependence on a director axis 
as illustrated in Fig. 8 A in the main text. 
 
 The results above (Eqs. S9, S15, and S16) should be used to compare MD simulations to the 
experimental NMR relaxation rates.  In the case of MD simulations, the lipid bilayer exists as a 
patch while for experimental NMR studies it is the entire membrane.  The lipid fluctuations are 
considered relative to the frame of the membrane patch, which we can assume is defined by the 
lamellar normal.  The correlation functions correspond to the Wigner rotation matrix elements, 
which are listed in Ref. (11).  To compare to the experimental NMR relaxation rates, the director-
frame correlation functions are used together with the orientationally averaged results for the 
NMR spin-lattice relaxation rate, given above. 
 
 Notably, the correlation functions 𝐺!dir(𝑡) and the spectral densities 𝐽!dir(𝜔) in closed form 
can be factored into their mean-square amplitudes and reduced values as already indicated 
above.  The reduced correlation functions can correspond to an exponential decay, power law, 
or stretched exponential decay as mentioned above, and correspondingly in the Fourier 
frequency domain for the reduced spectral densities.  However, in the case of MD simulations 
the correlation functions and spectral densities are evaluated numerically.  They can then be fit 
or tested against the simple analytical forms, both for validation and as a test of the closed-form 
theory. 
 
 Reduction to the isotropic solution NMR limit.  Lastly, if one assumes unrestricted isotropic 
motion with a single correlation time, then the dependence on the projection index (p) due to 
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the molecular principal axis vanishes because of the spherical symmetry. Summing over all the 
reduced spectral densities leads to the well-known isotropic solution NMR result, which reads: 
 

𝑅1Z =
3
20𝜋

#𝜒Q#	[𝑗(𝜔') + 4𝑗(2𝜔')]	. 
(S20) 

Here 𝑗(𝜔) = 2𝜏C/(1 + 𝜔#𝜏C#) is a Lorentzian reduced spectral density for the molecular motions 
with 𝜏C  as the single correlation time.  Equivalently, the above result can be expressed using 
angular frequency units for the coupling constant and one-sided Lorentzian spectral densities, 
giving: 

𝑅1Z =
3
40𝜒yQ

#	[𝚥̃(𝜔') + 4𝚥̃(2𝜔')]. 
(S21) 

where 𝚥(̃𝜔) = 	 (1/2)𝑗(𝜔) = 𝜏C/(1 + 𝜔#𝜏C#) and where the invisible tilde is again to be noted.  
The numerical value of the prefactor is (3/40)(4𝜋#)(1.70	𝑥	10K	sE4)# = 8.5570	𝑥	104'	sE# as 
stated in Ref. (14).  Note that compared to solid-state NMR results (see above), the solution NMR 
formulas consider unrestricted rotations of the molecule, i.e., in the absence of a director axis or 
orientational order parameters. 
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