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ABSTRACT Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical
and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related
by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We per-
formed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond re-
laxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic
relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new frame-
work includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their
segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited
CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their
frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calcu-
lated relaxation rates scaled as the squared order parameters yielding an apparent kC modulus for bilayer bending. Our results
show a strong correlation with kC values obtained from solid-state NMR studies of bilayers without and with cholesterol as vali-
dated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling
in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid
bilayers.
SIGNIFICANCE The lipid make-up of a bilayer determines its measurable properties, but how the motions of individual
molecules combine to produce these properties remains unclear. By exploiting the synergy between NMR spectroscopy
and molecular dynamics (MD) simulations, we show that the lipid dynamics in a bilayer are collective yet segmental in
nature and contribute directly to bilayer elasticity. Comparison between MD simulations and NMR entails an improved
theoretical framework that allows the two techniques to be directly related. This study provides novel insights into the inner
workings of lipid membranes while delivering a new tool for validating computational approaches against experimental
data.
INTRODUCTION

Lipid membranes are ubiquitous in biology—they exhibit a
large spectrum of physical properties which allows them to
serve a multitude of functions (1,2). As the subjects of both
experimental and theoretical investigations, they are justifi-
ably of great contemporary interest (3–7). Their rich
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behavior is enabled by the large diversity of lipid molecules
and their distinct mixing properties (8–11). The resulting
structural features of the membranes such as bilayer thick-
ness and lipid packing have been studied extensively and
are known to influence membrane permeability, elasticity,
and protein-membrane interactions (12–17). Lipid mole-
cules also undergo constant thermal motions in the form
of orientational fluctuations and segmental dynamics.
Viewed in this context, solid-state NMR is one of the few
experimental techniques that can detect and quantify these
thermal motions at the level of individual lipid molecules
(18–23). It is sensitive to the fluctuations of the lipid acyl
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NMR-based analysis of lipid simulations
chains, in particular the carbon-hydrogen (CH or deuterium)
bonds. By measuring the frequency dependence of bond re-
orientations, i.e., their power spectrum or spectral density,
analysis of the bilayer fluctuations is possible through the
combination of NMR lineshape and relaxation time mea-
surements. The NMR lineshape directly reveals the various
degrees of motional averaging of the molecules and quan-
tifies the order parameters of the carbons along the lipid
chains (24–26). At the same time, measurements of the
rate of nuclear spin relaxation of each carbon provide infor-
mation on correlated CH bond fluctuations over multiple
time scales (27).

Currently an extensive body of NMR data points to col-
lective dynamics of the lipid molecules that are linked to
bilayer mechanical properties (23). However, these results
have been challenged by theoretical arguments stemming
from the convoluted nature of the spectral density obtained
from NMR relaxation measurements. One approach that has
the potential to resolve this dilemma is molecular dynamics
(MD) simulations. Indeed, acyl chain order parameter pro-
files obtained from NMR have been historically used to vali-
date the simulation force-field parameters (7,28–30). These
parameters govern the forces exerted on the atoms in an MD
simulation that drive their dynamics, rendering comparisons
between theory and experiments particularly informative.
While NMR-derived order parameter profiles describe the
time-averaged structural properties of the lipid molecules
(31), the corresponding relaxation measurements hold the
key to understanding the connection between local lipid dy-
namics and bilayer properties (29,32–34). In particular, the
CH bond dynamics show both slow and fast motions, but the
origins of this emerging hierarchy of motions remain hidden
in the data and pose new questions. For example, are they a
result of the reorientations of the individual molecules, as
detailed by a so-called molecular model, or rather the
concerted motions of larger lipid assemblies—in other
words, collective dynamics (23,35)? And if the motions
are indeed collective, do they resemble those of nematic
liquid crystals where the different segments of the lipid
chains reorient collectively, or smectic liquid crystals where
the identity of the lipids is lost in the dynamical modes of a
fluctuating two-dimensional (2D) surface? The answers to
these questions will not only illuminate the relationship be-
tween lipids and bilayer dynamics but also inform the corre-
spondence of NMR observables with various experimental
techniques that measure global bilayer fluctuations, such
as flicker spectroscopy (36). Experimentally validated MD
simulations thus present an ideal platform for replicating
NMR observables and investigating their molecular origins
(29,32,37–39).

Here we use molecular simulations to analyze the nature
of bilayer dynamics, the relationship between the magnitude
of CH bond fluctuations and their relaxation rates, and the
resultant elastic moduli as measured with NMR spectros-
copy. To facilitate comparison with solid-state NMR data,
we first develop a theoretical framework for calculating
spin-lattice relaxation rates from the simulations that
overcomes shortcomings of existing numerical approaches.
The lipid orientational dynamics are considered for in vitro
and in silico systems, together with the inherent anisotropic
motion of the CH bond fluctuations. For validation, we
simulated a set of experimentally well-characterized
model membranes composed of 1,2-dimyristoyl-sn-glyc-
ero-3-phosphocholine (DMPC) and cholesterol (40–42).
Using NMR-based protocols, we calculate the spectral den-
sities of the lipid CH bond fluctuations from the simulation
trajectories and show they can be modeled by a simple
power-law function. Lastly, we evaluate the simulation-
derived carbon-specific order parameters and relaxation
rates, which we find to follow a square-law dependence
related to bilayer elasticity. Our theoretical findings validate
and further clarify interpretations of NMR data while pre-
senting a novel approach for calculating bending moduli
of simulated bilayers. Importantly, the simulations identify
a previously overlooked region of the bilayer where the
two leaflets interdigitate that holds a key to membrane me-
chanics. Our methodology thus opens new avenues for the
validation of lipid force fields in terms of underlying
theoretical concepts of membrane elasticity for liquid-crys-
talline bilayers (5,38,43,44).
MATERIALS AND METHODS

Bilayer construction

Bilayers containingDMPCwith 0, 20, 33, and 50mol% cholesterol were con-

structedwith the CHARMM-GUIweb server (45–49). Each bilayer contained

100 lipids per leaflet and was hydrated with 45 water molecules per lipid with

no added salt. The systems thus ranged from 46,000 to 50,000 atoms.
Simulation protocol

Each system was initially relaxed with the CHARMM-GUI 6-step equil-

ibration protocol using NAMD version 2.12 (50) and the CHARMM36

force field for lipids (29,51). The simulation temperature was set to

317 K (44�C), the same value as used in the cognate experimental

studies (34,41,52). This initial equilibration was proceeded with 1 ns

of simulation following the CHARMM-GUI simulation production pro-

tocol employing a 2-fs time step, 10- to 12-Å Lennard-Jones potential

with the NAMD vdwForceSwitching option enabled, and rigidbonds

set to all. The particle mesh Ewald (PME) method was used for treat-

ment of the electrostatic interactions with a grid spacing of 1 Å, and a

constant temperature (317 K) and pressure (1 atm) were maintained

with a Langevin thermostat and a Nose-Hoover Langevin piston, respec-

tively. The systems were then transferred to the Summit computer cluster

at Oak Ridge National Laboratory, where they were simulated for a total

of 2 ms each with the OpenMM software (53). These production simula-

tions implemented PME for electrostatic interactions and were per-

formed at a temperature of 317 K under an NPT ensemble with semi-

isotropic pressure coupling. The simulation runs utilized a 2-fs time

step and Langevin dynamics with a friction parameter set to 1.0 per pico-

second. Additional parameters included: EwaldErrorTolerance, 0.0005;

rigidwater, True; constraints, HBonds; and ConstraintTolerance,

0.000001. The van der Waals interactions were calculated applying a
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FIGURE 1 Schematic representation of the simulation methodology. (A) Lipid bilayer and structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine

(DMPC). Labels indicate carbons C3, C7, C9, C11, and C14 on the sn-1 chain and all carbons on the sn-2 chain of the lipid. Carbon atoms are shown in

green, hydrogen in white, oxygen in red, and phosphorus in purple. Red dashed arrow shows a representative local director vector spanning carbons C8

and C11 on the sn-2 chain. Yellow shading outlines the part of the lipid chains (in the absence of cholesterol) where the fluctuations of the CH bonds follow

a square-law dependence. Shown also is an example of the angle b between a CH bond vector vCH on the lipid chain and the bilayer normalNB (director axis),

as well as the angle g describing rotation of vCH around NB. (B) Fluctuations of b and g over time are analyzed to obtain (C) their autocorrelation function

averaged across all lipids and time. Fourier transformation of the autocorrelation function gives (D) the spectral density from which (E) the NMR relaxation

rate is obtained. Multiple carbon atoms on the lipid chains are used together with their respective order parameters to calculate the bilayer bending modulus.

See text for details. To see this figure in color, go online.
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cutoff distance of 12 Å and switching the potential from 10 Å. Use of the

Langevin integrator for modulating the temperature in the simulations

can alter the dynamics of the molecules (i.e., decrease the diffusivity)

by introducing friction, which adds artificial thermal noise to the move-

ment of the atoms, as noted in (54). The small 1.0/ps friction used here,

however, is expected to have minimal effects on the fluctuations of the

CH bonds and, consequently, their calculated relaxation rates.
Simulation analysis

All post-processing analysis was performed with VMD (55), MATLAB,

and in-house tcl and MATLAB scripts. Unless otherwise noted, calcula-

tions were done on all trajectory frames totaling more than 50,000 with

an output frequency corresponding to a 40-ps time step. Each bilayer

system was first centered so that in every frame the average position

of the terminal methyl carbons of all lipid acyl tails (carbons C14 on

the sn-1 and sn-2 chains, Fig. 1 A) was set at (x,y,z) ¼ (0,0,0). The

average area per lipid hALi was calculated by dividing the average lateral

area of the simulation box by 100, i.e., the number of lipids in one

leaflet, including cholesterol. The acyl chain order parameter (SCD) at

each carbon, defined as the second-rank Wigner rotation matrix element

D
ð2Þ
00 ðUÞ where U ¼ ða; b;gÞ are the Euler angles (56), was obtained

with the formula

SCD ¼
D
D

ð2Þ
00 ðUÞ

E
¼ 1

2

�
3 cos2 b � 1

�
; (1)

where bh bðtÞ is the time-dependent angle between a CH bond at this car-

bon and the bilayer normal (i.e., the z-dimension of the simulation box).

Likewise, Uh UðtÞ represents the time-dependent Euler angles, and the

angular brackets h,,,i denote an ensemble average over all lipids in the

bilayer and all trajectory frames.
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Calculation of autocorrelation functions from
simulation trajectories

Autocorrelation functions of the lipid CH bond fluctuations were calculated

from the trajectories as follows (Fig. 1, A–C). First, the direction of each

CH
ðn;iÞ
l;s vector in the bilayer was computed as a function of time, where

1% l%NL denotes an individual DMPC lipid, 2% n% 14 is the carbon

number on the sn-1 (s ¼ 1) or sn-2 (s ¼ 2) chain, and i ¼ ð1; 2Þ is the
hydrogen atom. These data were used to calculate three individual time se-

ries for each CH
ðn;iÞ
l;s vector vCH ¼ ðvx;vy;vzÞ, corresponding to the second-

rank Wigner rotation matrix elements D
ð2Þ
0p ðUÞ with p˛ ½0;51;52�; as

defined in (56):

D
ð2Þ
00 ðU; tÞ ¼ 1

2

�
3 cos2 bðtÞ � 1

�
; (2)

ffiffiffi
3

r

D

ð2Þ
01 ðU; tÞ ¼

2
sin bðtÞcos bðtÞe� igðtÞ; (3)

ffiffiffi
3

r

D

ð2Þ
02 ðU; tÞ ¼

8
sin2 bðtÞe� 2igðtÞ : (4)

The other matrix elements are given by the relation D
ð2Þ
0� pðU; tÞ

¼ ð� 1Þp Dð2Þ�
0p ðU; tÞ where the asterisk means the complex conjugate

(Eq. 4.22 of (57)). In Eqs. 2–4, we have that D
ð2Þ
0p ðU; tÞh D

ð2Þ
0p ðUPL; tÞ is

a function of the Euler angles UPL ¼ ðaPL;bPL;gPLÞ describing the trans-

formation from the principal axis system to the laboratory frame (see

Fig. S1). From this point on, the subscript PL will be suppressed but implied

for brevity, unless otherwise noted. Furthermore, the product of D
ð2Þ
0p ðU; tÞ

and its complex conjugate is invariant to the sign of the projection index



NMR-based analysis of lipid simulations
p (i.e., the result is the same regardless of whether the director vectors for

the two leaflets point in the same or opposite directions), and therefore we

consider only the elements with non-negative p values (see Eq. 12 below

and Eq. 4.31 in (57)). The angle bðtÞ is the angle between vCH and the

bilayer normal NB ¼ ð0; 0;51Þ (where þ 1 is for the lipids in the top

leaflet and � 1 for the lipids in the bottom leaflet) at time t, and gðtÞ is

the time-dependent angle describing the rotation of the CH
ðn;iÞ
l;s bond with

respect to the bilayer normal (see Fig. 1 A). Thus, gðtÞ was calculated (in

Cartesian coordinates) as the angle between the normal to the plane defined

by the cross product of vCH and NB, i.e., Np ¼ vCH � NB, and the x-axis of

the simulation box Nx ¼ ð1; 0; 0Þ:

gðtÞ ¼ atan 2
���Np � Nx

��;Np$Nx

�
: (5)

The autocorrelation function of each time series was then obtained as

G
ðn;iÞ
p;l;s ðkÞ ¼

1

NF � k

" XNF � k� 1

t ¼ 0

D
ð2Þ�
0p ðU; tÞDð2Þ

0p ðU; t þ kÞ
#

�
���DDð2Þ

0p ðUÞ
E���2;

(6)

where NF is the total number of frames and 0% k%NF=2 is the lag

time (see also Eq. 13 below). Note that the second term on the right

in Eq. 6, the square of the mean, vanishes for p ¼ ½1; 2� and it is

thus nonzero only for the D
ð2Þ
00 ðUÞ matrix element. Furthermore, for the

special case of lag time k ¼ 0, Eq. 6 becomes the variance of D
ð2Þ
0p ðUÞ,

given by

G
ðn;iÞ
p;l;s ð0Þ ¼

D���Dð2Þ
0p ðUÞ

���2E �
���DDð2Þ

0p ðUÞ
E���2 ¼ var

h
D

ð2Þ
0p ðUÞ

i
:

(7)

For every carbon C
ðnÞ
l;s , the autocorrelation function from Eq. 6 was averaged

over its two covalently bound hydrogen atoms and all DMPC lipids in the

bilayer to yield the autocorrelation function for that carbon atom:

GðnÞ
p;s ðkÞ ¼ 1

2NL

X
l

X
i

G
ðn;iÞ
p;l;s ðkÞ : (8)

Theoretical framework for calculation of NMR
relaxation rates from molecular dynamics
trajectories

The lipid bilayer in the MD simulations corresponds to a membrane

patch whose director axis can be assumed to be the average lamellar

normal, i.e., a vector parallel to the z-dimension of the simulation box.

Hence, the spectral densities of the CH bond fluctuations within this di-

rector frame need to first be transformed into the so-called laboratory

reference system to correspond to the experimental NMR relaxation

rates, which are measured in the presence of a magnetic field (see sup-

porting material and Fig. 4 in (58)). The director-frame spectral density

functions, Jdirp ðuÞ, are Fourier transforms of the correlation functions that

characterize the internal motions within the membrane. In an NMR

experiment, typically one can assume that the relaxation rates are orien-

tationally averaged, because for the case of lipid multilamellar disper-

sions the molecules undergo rapid translational diffusion over all

director orientations of the curved surfaces during the relaxation

(z50–100 ms and longer). Furthermore, if one assumes unrestricted

isotropic motion with a single correlation time (the solution NMR limit),

the relaxation rate R1Z simplifies to
R1Z ¼ 3

20
p2c2

Q ½jðu0Þ þ 4jð2u0Þ� : (9)

Here jðuÞ ¼ 2tC =ð1 þu2t2CÞ is a Lorentzian reduced spectral density

where tC is the correlation time, cQ is the static quadrupolar coupling con-

stant, and u0 ¼ 2pn0 is the Larmor frequency of the NMR measurement

(24,35) (see Eq. S21 and discussion).

However, in a simulation trajectory for a bilayer run with periodic bound-

ary conditions and semi-isotropic pressure coupling, the lamellar normal

(director) remains fixed—the assumption for unrestricted isotropic motion

and, thus, Eq. 9, does not hold. Instead, to compare the simulation results to

the experimental ones, the orientationally averaged but anisotropic spin-lat-

tice relaxation rate needs to be expressed in terms of the director-frame

spectral densities (see discussion and supporting material for details of

the derivation):

R1Z ¼ 3

20
p2c2

Q

n
Jdir0 ðu0Þ þ 4Jdir0 ð2u0Þ þ 2

h
Jdir1 ðu0Þ

þ 4Jdir1 ð2u0Þ
i
þ 2

h
Jdir2 ðu0Þ þ 4Jdir2 ð2u0Þ

io
;

(10)

where

Jdirp ðuÞ ¼ Re

Z N

�N
Gdir

p ðtÞe� iutdt ; (11)

and

Gdir
p ðtÞ ¼

Dh
D

ð2Þ
0p ðUPD; tÞ �

D
D

ð2Þ
0p ðUPDÞ

Ei�
�

h
D

ð2Þ
0p ðUPD; 0Þ �

D
D

ð2Þ
0p ðUPDÞ

EiE
:

(12)

The value of the numerical pre-factor in Eq. 10 is ð3p2 =20Þ
ð1:70� 105 s� 1Þ2 ¼ 4:2785� 1010 s� 2 (see supporting material), and the

spectral density Jdirp ðuÞ is defined as the two-sided Fourier transform of

the correlation function Gdir
p ðtÞ. The latter decays to a zero value because

the fluctuations are expressed relative to the average values of the Wigner

rotation matrix elements. The director-frame correlation functions can

also be written by subtracting the modulus squared of the average value

to read

Gdir
p ðtÞ ¼

D
D

ð2Þ�
0p ðUPD; tÞDð2Þ

0p ðUPD; 0Þ
E
�

���DDð2Þ
0p ðUPDÞ

E���2:
(13)

Note that for a cylindrically symmetric distribution, the last term on

the right becomes
��hDð2Þ

0p ðUPDÞi
��2d0p where d0p is the Kronecker delta

function. For completeness, the orientationally averaged relaxation rates can

also be expressed in terms of the spherical-harmonic correlation functions.

The equivalent results in terms of the spherical-harmonic correlation functions

and spherical-harmonic spectral densities can be found in the supporting

material.
Calculation of relaxation rates from the
simulation trajectories

Eqs. 10–13 provide the essential framework for calculating the relaxation

rates from the simulation trajectories. Note that the autocorrelation function

G
ðnÞ
p;s ðkÞ for the MD simulation trajectories in Eq. 8 is the same as the
Biophysical Journal 122, 984–1002, March 21, 2023 987
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correlation function Gdir
p ðtÞ in Eq. 13. We can thus take its discrete Fourier

transform to arrive at an expression for the spectral density J
ðnÞ
p;s ðuÞ of the

CHðnÞ
s bond fluctuations from the simulations:

JðnÞp;s ðuÞ ¼
XðNF=2Þ � 1

k ¼ 0

GðnÞ
p;s ðkÞcos utkDt : (14)

In Eq. 14 u ¼ 2pn with n being the Larmor frequency (n ¼ n0), Dt is the

sampling time interval, and t ¼ kDt is the time at lag k.
k

Eq. 14 is a one-sided Fourier transform while the continuous Fourier in-

tegral in Eq. 11 goes from ½ �N;þN�. We therefore need to multiply

the former by a factor of two but without overcounting the element at

k ¼ 0, which thus reads

JðnÞp;s ðuÞ ¼ 2

"XNF=2

k ¼ 1

GðnÞ
p;s ðkÞcos utkDt

#
þ GðnÞ

p;s ð0ÞDt : (15)

As mentioned above, the t¼ 0 element of the correlation functionG
ðnÞ
p;s ð0Þ is

the variance of the D
ð2Þ
0p ðUÞmatrix element (Eq. 7). Accordingly, the second

term in Eq. 15 represents a constant equal to {var½Dð2Þ
0p ðUÞ�gDt which is

added to J
ðnÞ
p;s ðuÞ at every frequency. Estimation of the spectral density

from the simulations thus exhibits a strong dependence on the discrete

time step Dt (sampling interval). Normally, Dt could be as small as the

time step with which atomic coordinates are written out during the simula-

tion if every single frame is used for analysis (in our case Dt ¼ 40 ps).

Alternatively, if every nth frame is used instead, then the sampling time in-

terval would be nDt. Note that the simulations are run with a 2-fs time step

which puts a lower bound on Dt, but such frequent output is in general

impractical for microsecond-long simulations.

Having thisDt-dependent constant would result in an unrealistic shift of the

spectral density and, consequently, the relaxation rates. Thus, to remove this

apparent dependence on Dt and recover the analytical result in Eq. 11, which

is in the limit of Dt/0 (see discussion), we first fit G
ðnÞ
p;s ðkÞ to a well-defined
FIGURE 2 Illustration of dynamics of CH bond fluctuations. (A) Example of

J
ð9Þ
0;2 ðuÞ for carbon C9 of the sn-2 chain of DMPC. The results correspond to fl

Simulation data are shown in gray and best power-law fit to the simulation resu

from 0 to 1000 MHz but in a log-log plot. Shown for comparison are sample fun

best fits to the spectral densities J
ðnÞ
0;s ðuÞ for carbons C2–C14 on the sn-1 (red) an

power exponents of all carbons in all simulated bilayers are close to�1/2, consis

44�C. See text for details. To see this figure in color, go online.
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function, and then use the fit to resample the correlation function at a much

smaller Dtfit � Dt. For all CH bonds, the time series of the second-rank

Wigner rotation matrix elements from Eqs. 2–4 follow a power law of the

form: axb þ c (see Figs. 2 A and S2–S4). We therefore fit G
ðnÞ
p;s ðkÞ for kR 1

to a power-law function and use the best fitG
ðnÞ
p;s;fitðkÞ togetherwith thevariance

G
ðnÞ
p;s ð0Þ at k ¼ 0 to resample the correlation function at a smallerDtfit interval

and recover the spectral density:

JðnÞp;s ðuÞ ¼ 2

"XNF;fit

k̂ ¼ 1

G
ðnÞ
p;s;fitðk̂Þcos utk̂Dtfit

#
þ GðnÞ

p;s ð0ÞDtfit :

(16)

Note that Eq. 16 is calculated at u ¼ c02p=T (or, equivalently, n ¼ c0=T)
where 5% c0 %T=ð2DtÞ is an integer and T ¼ DtðNF =2Þ ¼ DtfitNF;fit is

the total sampled time of the autocorrelation function in accord with the

Nyquist-Shannon sampling theorem. The choice of Dtfit is constrained by

the variance of D
ð2Þ
0p ðUÞ which is the first and largest GðnÞ

p;s ðkÞ matrix element.

Therefore, to ensure the smoothness of the reconstructed correlation function,

for each carbon CðnÞ
s we set Dtfit equal to the minimum value Dt0 such that

Dtfit ¼ minðDt0ÞwhereGðnÞ
p;s ð0ÞRG

ðnÞ
p;s ðDt0Þ. Figs. S5 and S6 show the recon-

structed correlation functions and resulting carbon Dtfit values (see

discussion).

Accordingly, the theoretical spectral densities J
ðnÞ
0;s ðuÞ; JðnÞ1;s ðuÞ, and JðnÞ2;s ðuÞ

from Eq. 16 are fit to power-law functions of the axb þ c form. The best

fits are then used to calculate the relaxation rate of carbon CðnÞ
s following

Eq. 10:

R
ðnÞ
1Z;s ¼ 3

20
p2c2

Q

n
J
ðnÞ
0;s ðu0Þ þ 4J

ðnÞ
0;s ð2u0Þ þ 2

h
J
ðnÞ
1;s ðu0Þ

þ 4J
ðnÞ
1;s ð2u0Þ

i
þ 2

h
J
ðnÞ
2;s ðu0Þ þ 4J

ðnÞ
2;s ð2u0Þ

io
:

(17)
(top) autocorrelation function G
ð9Þ
0;2ðtÞ and (bottom) spectral density function

uctuations of the CH bonds as described by the Wigner D
ð2Þ
00 ðUÞ function.

lts in black. Insets show expansion of the data from the highlighted region

ctions of the form ax� 1 (purple) and ax� 1=2 (red). (B) Power exponents of

d sn-2 (blue) chains of DMPC with 0, 20, 33, and 50 mol % cholesterol. The

tent with collective segmental dynamics. All simulations were performed at
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In the above formula cQ ¼ 170 kHz, u0 is the resonance (Larmor) fre-

quency, and all other symbols are previously defined. The theoretical spec-

tral densities J
ðnÞ
p;s ðuÞ refer to the CH fluctuations with respect to the bilayer

normal (director axis) in terms of their mean-square amplitudes (variance)

and reduced values. Relaxation rates are averaged over all director orienta-

tions to correspond to the actual experimental measurements. Importantly,

although the relaxation rates are orientationally averaged, they are not the

same as the isotropic solution NMR results found in textbooks. Use of

the latter is often assumed but is inapplicable to lipid membranes, because

of the underlying assumption that the fluctuations are isotropic, i.e., there is

no order parameter. Rather, the CH bond fluctuations must be expressed

with respect to the bilayer director and occur with restricted amplitude,

as described by their orientational order parameters. Thus, the formula

applicable to MD simulations and to the validation of MD force fields based

on NMR relaxation is given in Eq. 17. This result is based on group theory

principles (35) and is different from that obtained by application of the

spherical-harmonic addition theorem (see discussion). Validation of the

theoretical and experimental results is further discussed below. Note that

the mean-square amplitudes are equal to the area under the spectral density

in the region ½0;N� and they cannot be numerically determined from the in-

tegral of J
ðnÞ
0;s ðuÞ due to the finite sampling. Instead the mean-square ampli-

tudes are thought of as the orientational order parameters in terms of a

Clebsch-Gordon series expansion (35) and can be calculated from the

raw simulation data (i.e., the time series of the Wigner rotation matrix

elements from Eqs. 2–4).
Application of NMR-based approach to extract
apparent bilayer bending rigidity from molecular
dynamics trajectories

An apparent bending modulus kC can be extracted from the slope of the

theoretically predicted square-law dependence between the relaxation

rate R1Z and order parameter SCD of the acyl chain carbons, as derived pre-

viously (35). Following the same NMR-based protocol, we obtain kC of the

simulated bilayers with the formula

D ¼ 3kBT
ffiffiffi
h

p

5pS2S
ffiffiffiffiffiffiffiffi
2K3

p : (18)

In Eq. 18 h ¼ 0:1 Pa$s is the bilayer viscosity, SS ¼ 0:6 is the order

parameter estimated for slow motions, K z kC=tB is an elastic constant

related to kC and the full bilayer thickness tB (see below), and D is a con-

stant in units of s1=2 which is obtained from the relation:

D ¼ 8A
ffiffiffiffi
n0

p
15p2cQ

2
: (19)

Here the constant A is the slope of the dependence of R1Z on jSCDj2;cQ is

the static quadrupolar coupling constant, and n0 ¼ 76:8 MHz is the deute-

rium Larmor frequency. The thickness tB which is used to obtain K in Eq.

18 represents the full bilayer thickness and is calculated from the number

density profile of the bilayer. Specifically, a single number density profile

of all bilayer lipid atoms is calculated with the Density Profile plugin of

VMD (59) for each system. The profile has two peaks corresponding to

the maximum density in the hydrocarbon regions of the two leaflets and de-

creases to 0 at the ends of the headgroup regions where bulk water begins

(see results). The thickness tB used in Eq. 18 is set equal to the distance be-

tween the two tails of the bilayer number density profile where the density

drops below 5% of the maximum (peak) density. Table S1 lists the corre-

sponding thicknesses for all simulated bilayers.

The full range of carbons used for the square-law fits in the simulations

included C4–C13, C6–C13, C8–C13, and C10–C13 for the bilayers with 0,

20, 33, and 50 mol % cholesterol, respectively. Errors for the kC values
obtained from the fits were calculated as the standard deviation of the slopes

resulting from the best fits to the data after excluding the last 0, 1, or 2

carbon atoms with largest order parameters from each chain. Note that

the terminal methyl carbon C14 was also excluded from the fits due to its

different geometry.
Splay-fluctuations-based analysis of bilayer
bending rigidity

The kC modulus can also be obtained in simulations of lipid bilayers from

analysis of the fluctuations in lipid splay angles (see (60) and references

therein). In brief, the procedure involves calculating the probability distri-

bution of splay angles (i.e., the angles between the local director vectors) of

neighboring pairs of lipids within a leaflet and using this distribution to

obtain a potential of mean force (PMF) profile. A quadratic function is

then fit to the PMF in the region of small deviations from the mean, and

the coefficient of the quadratic term is the corresponding splay modulus

for that lipid pair. The splay moduli of all lipid pairs are subsequently

weighted and summed, revealing the leaflet kC value. The bilayer kC is

then the sum of the kC values of the two opposed monolayers. Here, we

used the OpenStructure software and algorithm presented in (61,62) to

calculate kC with an alternative computational method from the splay

moduli of DMPC, cholesterol, and DMPC-cholesterol lipid pairs in the

simulation trajectories.
Analysis of local director fluctuations

Local director (LD) vectors of different lengths were defined at each carbon

along the lipid acyl chains (Fig. 1 A). Each LD vector connects the carbon

of interest C
ðnÞ
l;2 on the sn-2 chain either to another carbon atom C

ðn� iÞ
l;2

further up the chain on the same lipid l toward the lipid headgroup with

1% i% 12, or to the lipid phosphorus atom P (see results). The fluctuations

of the orientations of an LD vector were analyzed in a manner similar to the

calculation of the spectral densities described in Eqs. 8 and 15. The only

differences are that all angles are defined with respect to the LD vector

instead of the CH bond, the denominator in the pre-factor in Eq. 8 is NL

instead of 2NL, and because the autocorrelation functions of the LD vector

fluctuations do not follow a power law or an exponential function, no fitting

and resampling of the correlation was performed. Instead, the spectral den-

sity was calculated with Eq. 15 using the sampling interval corresponding to

the simulation Dt of 40 ps.
Measurement of bending moduli with neutron
spin-echo spectroscopy

To extend the results of the MD simulations and NMR analysis, comple-

mentary neutron spin-echo (NSE) measurements were performed on unila-

mellar vesicles extruded through a polycarbonate filter with 100-nm pore

diameter (see supporting material for more details). The NSE data yielded

the normalized intermediate scattering function, Iðq; tÞ=Iðq;0Þ, for discrete
q values within the accessed q range, where t is the Fourier time. For lipid

membranes, the probed dynamics follow a stretched exponential function

with a stretching exponent of 2/3, such that (63)

Iðq; tÞ � Iðq; 0Þ ¼ exp
h
�ðGðqÞtÞ2=3

i
: (20)

Fits of the intermediate scattering functions using the above equation yield

the decay rate, GðqÞ, at individual q values. Plots of G(q) versus q show the

typical q3 dependence for thermally undulating elastic thin sheets predicted

by Zilman and Granek (63). Using theoretical refinements by Watson and

Brown (64), based on the Seifert-Langer model (65), allows calculation

of a renormalized bending rigidity ~k ¼ k þ 2h2km, where h is the height
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of the neutral surface from the midplane and km is the monolayer area

compressibility modulus. Assuming the neutral plane to be at the interface

between the hydrophilic headgroups and the hydrophobic tails, these refine-

ments result in a modified expression of the Zilman-Granek decay rates,

GðqÞ, given by (66):

GðqÞ ¼ 0:0069
kBT

hsol

ffiffiffiffiffiffiffiffi
kBT

k

r
q3 : (21)

Here, kBT is the thermal energy and hsol is the solvent (i.e., D2O buffer)

viscosity.
RESULTS

Lipid dynamics at length scales smaller than the
membrane thickness resemble nematic liquid
crystals

Membrane lipids are known to diffuse rapidly within the
plane of a fluid bilayer while their chains explore various
rotational degrees of freedom (29,37,67,68). These thermally
excitedmotions are governed by both bonded and nonbonded
interactions and can be rather inhomogeneous along the
lengths of the lipid chains due to the hydrophobic effect hold-
ing the two leaflets together (69). Nuclear spin relaxation
measurements show both fast and slow components of
the CH bond fluctuations at each carbon (34). Still, because
the resulting signal has contributions from all lipids in the
bilayer, the origins of this hierarchy of motions, and conse-
quently the nature of the lipid dynamics, need further inves-
tigation (27,32,38,39,70). To help address this question, we
sought to examine the thermal fluctuations of the CH bonds
along the lipid acyl chains with all-atom MD simulations
(60,67,71). As a test system we chose DMPC bilayers with
increasing amounts of cholesterol that have beenwell charac-
terized experimentally (34,41,52). In the past, CH bond fluc-
tuations from simulation trajectories have been expressed in
terms of spherical harmonics using spherical polar angles
(72,73). However, that representation presents certain chal-
lenges (see discussion), and we sought to derive a theoretical
990 Biophysical Journal 122, 984–1002, March 21, 2023
framework centered around the so-called Wigner rotation
matrix elements instead (35,74,75). The latter represent func-
tions (Eqs. 2–4) of the Euler angles describing the CH bond
orientation within the lipid membrane, where the angle b is
between the CH bond and the bilayer normal and the angle
g is for the rotation of the CH bond about the director (see
Fig. 1 and Eq. 5). The autocorrelation function of the time se-
ries of each of these functions describes a different relaxation
mode of the CH bond fluctuations and was found to follow a
power-law dependence (see Fig. 2 A and materials and
methods). Its Fourier transform yields the spectral density
as a function of frequency that can be directly related to the
relaxation rates measured experimentally by NMR spectros-
copy (Eq. 17).

Importantly, the functional form of the spectral density
contains information about the nature of the bilayer dy-
namics. Each spectral density function calculated from the
simulations was found to follow a power-law dependence
of the form y ¼ axb þ c (Figs. 2 A and S7–S9). This func-
tional form has been shown to correspond to collective dy-
namics of the lipids, and its power-law exponent represents
the dimensionality of the collective lipid interactions formu-
lated in terms of quasi-elastic order-director fluctuations
(ODF) (35). At this level, a continuum of wave-like distur-
bances with an exponent of�1 indicates 2D smectic-like dy-
namic undulations (19,75–78) while an exponent of �1/2
points to three-dimensional (3D) nematic-like fluctuations
(26,35,79). Figs. 2 B and S10 show the exponent b for all car-
bons on the sn-1 and sn-2 chains of the lipids in the simulated
DMPCbilayers. As seen in the plots, the power exponents are
very close to�1/2 throughout both chains in all trajectories.
This result suggests that the dynamics of the lipid hydrocar-
bon acyl tails are collective and yet locallymore segmental in
nature, resembling the behavior of nematic liquid crystals at
distances less than the bilayer thickness (80).

To explore this interpretation further, we compared the
fluctuations of the lipid CH bonds with those of LD vectors
of varying lengths (Fig. 3 A). An LD vector connects a car-
bon either to another carbon at increasing distance further
FIGURE 3 Dynamics of local director (LD) vec-

tors connecting two carbons (or a carbon and the

phosphate) of a lipid. (A) Plotted are the b-exponents

of the best power-law fits to the spectral densities of

LD vectors originating from C7 (yellow), C9 (red),

and C11 (blue) carbons on the sn-2 chain of

DMPC in the cholesterol-free bilayer. The LD vec-

tors are from two (2C) to ten (10C) carbon segments

in length or extend all the way to the phosphorus

atom (P). Shown for comparison are the exponents

of the best power-law fits to the spectral densities

of the CH bonds at C7, C9, and C11 carbons (dashed

lines). (B) Schematic of all analyzed LD vectors. The

CH bond fluctuations correspond most closely to LD

vectors of lengths 3–4 carbons, illustrating the

segmental nature of the CH bond dynamics. See

text for details. To see this figure in color, go online.
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up the chain or to the phosphate atom (red dashed arrow in
Fig. 1 A and arrows in the schematic in Fig. 3 B). The spec-
tral density of the fluctuations of each LD vector again fol-
lowed a power law (Figs. S11–S13), where the fits to the
power-law function yielded the corresponding b-coeffi-
cients. Fig. 3 exemplifies the relationship between these b-
exponents and the lengths of the LD vectors by showing b
versus length of the director vectors originating from car-
bons C7, C9, and C11 on the sn-2 chain of DMPC (Fig. 1
A). As seen from this figure, an increase in the length of
an LD vector results in more smectic-like dynamics as the
power exponent decreases, eventually approaching a value
of approximately �0.7. Yet the motions of the CH bonds
resemble most closely those of an LD vector of length
3–4 carbons (compare where the dashed lines cross the cor-
responding data points in Fig. 3 A), in agreement with a
model of nematic-like dynamics of relaxation rates and
order parameters, as originally proposed (35,80).
Square-law dependence holds for specific carbon
atoms

As mentioned earlier, the spectral densities of the CH bond
fluctuations of a carbon atom on the lipid chains can be
used to calculate the spin-lattice relaxation time R1Z of the
bond fluctuations (Eq. 17 and Fig. 1). Various NMR experi-
ments have shown that often in bilayers R1Z is dependent
on the square of the order parameter, a rule thus termed
the square-law (35,41,81). To understand the molecular
origin of this surprising relationship—and test whether it
holds in simulated bilayers—we analyzed this trend in our
trajectories of DMPC bilayers with increasing amounts of
cholesterol (0, 20, 33, and 50 mol %). As expected, the addi-
tion of cholesterol made the bilayer more ordered and tightly
FIGURE 4 Functional dependence of relaxation rates on CH bond order para

absence of cholesterol (blue) and (B) DMPC containing 50 mol % cholesterol (

rameters (SCD, bottom) are plotted as a function of carbon position along the sn

relaxation rate as a function of the squared SCD order parameter. Best linear fit

C10 through C13 for 50 mol % cholesterol are shown in blue and red, respectivel

Note that the relaxation rates and order parameters exhibit a square-law depend

44�C. See text for further details. To see this figure in color, go online.
packed, decreasing the average area per lipid and increasing
the bilayer thickness (Fig. S14). From this set of simulations,
we calculated the spectral density profiles of the CH bonds
along the two chains of DMPC in each trajectory and used
them to obtain the corresponding relaxation rates at the
NMR deuterium frequency of 76.8 MHz, corresponding to
a magnetic field strength of 11.7 T (Eq. 17). Fig. 4 shows
the relaxation rates R1Z (see materials and methods) and or-
der parameters for all carbons in the simulated bilayers
with 0mol%and 50mol%cholesterol, and how the twovari-
ables are functionally related to each other. From the corre-
sponding log-log plots (Fig. S15) it becomes apparent that
they exhibit a square-law relationship for a subset of the car-
bon atoms in the lower parts of the chains. In particular, car-
bons C4 through C13 in the DMPC bilayer without
cholesterol and carbons within C6, C8, or C10 through C13
in the DMPC/cholesterol bilayers with 20, 33, and 50
mol % cholesterol, respectively (Figs. 4 and S15) clearly
follow the square-law dependence, consistent with the exper-
imental findings (41). The observed behavior is not chain
dependent, as we see the same dependence for the sn-1 and
sn-2 chains of the lipids (Fig. S15). Note that the C14 termi-
nal methyl carbons on both chains have a different geometry
and are therefore excluded from the analysis.

Interestingly, the square-law in the simulated bilayers
breaks down for carbons further up the chain (Figs. 4 and
S15). These carbons are schematically illustrated in Fig. 1 A
and reside at the top part of the acyl groups. To examine in
more detail the differences between these carbons and the
ones that follow the square-law, we calculated the average po-
sition of the carbon atoms relative to the bilayer midplane
(Fig. 5 A) and compared their number density distributions
(Fig. 5 B). These data show that regardless of the presence
of cholesterol, the carbons that follow the square-law are
meters in simulated bilayers. Data are shown for: (A) DMPC bilayer in the

Chol) (red). Profiles of spin-lattice relaxation rates (R1Z, top) and order pa-

-1 and sn-2 chains of DMPC. (C) Same data but now replotted as the R1Z

s to carbons (on both chains) C4 through C13 for 0 mol % cholesterol and

y. Carbon atoms outside of these ranges deviate from the linear relationship.

ence both with and without cholesterol. All simulations were performed at
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FIGURE 5 Properties of acyl carbons that follow square-law dependence of relaxation rates and order parameters in simulated bilayers. (A) Distance from

the bilayer center as a function of the squared order parameter jSCDj2 for each carbon in the bilayers with 0 mol % and 50 mol % cholesterol. Filled symbols

indicate the carbons used for the square-law fits. (B) Number density profiles including all atoms of the simulated bilayers with 0, 20, 33, and 50 mol %

cholesterol. Color-coded highlighted areas show the regions of the carbon atoms used in the square-law fits for the corresponding bilayers. The carbons

that follow the square-law dependence are within the region where lipid dynamics are influenced by interleaflet interactions. All simulations were performed

at 44�C. To see this figure in color, go online.
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consistently those in the middle of the bilayer, whose average
depthwithin themembrane falls linearlywith their squared or-
der parameters. Stated differently, the relationship between
R1Z and jSCDj2 holds precisely for the CH bonds residing
within the region of the bilayer sufficiently far from the head-
groups where the two leaflets intercalate (Figs. 1 and 5). Thus,
the existence of the square-law dependence uncovers the dif-
ference between interfacial (i.e., closer to the water-hydrocar-
bon interface) and noninterfacial (i.e., closer to the bilayer
midplane) dynamics. While both are modulated by collective
motions, the former are more smectic-like and the latter are
more nematic-like in nature. These observations provide a
possible explanation for the mechanistic origin of the
square-law relationship and why it holds mainly for a subset
of carbon atoms in the lipid acyl chains (see discussion).
Bilayer bending modulus emerges from the
square-law dependence

It has been previously shown that the square-law depen-
dence, i.e., the linear relationship between R1Z and jSCDj2,
is connected to the elastic properties of the bilayer in the
liquid-crystalline state (35). In particular, the authors used
the slope emerging from the fit of the data to estimate an
apparent kC bilayer bending modulus. The calculation
involved three parameters, namely the bilayer viscosity,
the order parameter for slow motions, and a quadrupolar
coupling constant, in addition to the bilayer thickness which
is proportional to kC (see Eqs. 18 and 19). Accordingly, hav-
ing shown that the square-law holds in our atomistic MD
simulations, we followed the same protocol as in (82) to es-
timate kC of the simulated bilayers. Fig. 6 A shows the
calculated values for R1Z and jSCDj2 for DMPC with
0 mol % and 50 mol % cholesterol from the simulations
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(green), as well as NMR data for the identical systems
together with their corresponding best linear fits (black).
There is a very good agreement between theory and exper-
iment, confirming the ability of the simulations to recapitu-
late the properties of the experimental model system.

Using previously estimated values of 0:1 Pa$s for the
bilayer viscosity, �0.6 for the slow order parameter, and
167--170 kHz for the quadrupolar coupling constant (56),
as well as the full bilayer thickness (see materials and
methods and Table S1), we calculated the corresponding
kC values as outlined in materials and methods. The result-
ing bending moduli are shown in Fig. 6 B and for DMPC
show very good agreement with published values
(Table S2). As expected, the apparent bilayer kC from the
simulations increases with increasing cholesterol concentra-
tion, starting at 24.8 (51.1) kBT for the pure DMPC mem-
brane and reaching 79.5 (54.5) kBT at 50 mol %
cholesterol. For comparison, we used an alternative compu-
tational method to obtain kC from the simulation trajec-
tories, namely by analyzing the fluctuations in lipid splay
angles as described in detail in (61,62) and summarized in
materials and methods. As shown in Fig. 6 B, while the ab-
solute values are different, the two computational methods
show almost identical trends with cholesterol concentration
(Fig. 6 C). Plotted in the same figure are also the respective
bending rigidities from NMR calculated from the slopes of
the experimental data (41) with the same parameters (vis-
cosity, slow order parameter, quadrupolar coupling constant,
and thickness) used in the simulations analysis. Not surpris-
ingly, considering the strong agreement of the raw data
(Fig. 6 A), the NMR results are very close to the simulation
ones (Fig. 6 B). To obtain an independent experimental vali-
dation of the bending moduli, we also used NSE spectros-
copy to analyze the thickness fluctuations of extruded



FIGURE 6 Square-law dependence yields an estimate of bilayer bending rigidity. (A) Simulation (green) and NMR (black) data and best square-law fits to

the experimental data for DMPC (squares) and DMPC containing 50 mol % cholesterol (triangles) in the liquid-crystalline state. Experimental data were

taken from (41), and simulation data are shown for carbons C4 through C14 for DMPC and C8 through C14 for DMPC/cholesterol. (B) Comparison between

the apparent bilayer bending modulus kC calculated from the square-law relationship (green) or splay fluctuations (yellow) in the simulations. Shown also are

experimental results for kC obtained from the square-law relationship of NMR data (gray) and from bilayer thickness fluctuations measured with NSE (pur-

ple). All kC values are in units of kBT. (C) Changes in kC in the cholesterol-containing bilayers relative to the bilayers without cholesterol. Plotted is the ratio

between the two for each of the four methods displayed in (B). Errors for the kC values obtained from the experimentally determined slope of the square-law

relationship were calculated as the standard deviation resulting from the best fits to the data after excluding the last 0, 1, and 2 carbon atoms with largest order

parameters. The corresponding errors from the square-law dependence in the simulations were calculated in a similar way (see materials and methods). All

simulations were performed at 44�C. The functional dependence between relaxation rates and order parameters is directly related to the bilayer bending

rigidity as validated for the full range of cholesterol concentrations. To see this figure in color, go online.
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DMPC liposomes with 0, 20, and 33 mol % cholesterol. As
shown previously and summarized in materials and
methods, these thickness fluctuations are related to the
bilayer bending rigidity via the Zilman-Granek theory
(63). The results show a very good overall agreement with
the computational methods, with a clear stiffening effect
of cholesterol (Fig. 6, B and C). The relative increase in
the bending constants estimated for the cholesterol-contain-
ing bilayers from the square-law relationship is slightly
lower than that given by other methods. This may be due
to the assumed constant value for the bilayer viscosity
h ¼ 0:1 Pa$s in Eqs. 18 and 19. However, considering
the possibility that cholesterol can increase h even in unsat-
urated membranes (83) could rectify these differences.
Fig. S16 shows the bending moduli for all simulated bila-
yers for a range of values for h calculated from published
estimates for the bilayer viscosity (83,84). Knowing that
the bending rigidity obtained from the slope of the square-
law relationship is proportional to h, the cholesterol-induced
increase in bilayer viscosity would amplify the trends rela-
tive to those shown in Fig. 6 C. Consequently, the simulated
relative rigidity would be closer to the experimental values,
confirming the ability of the NMR-based approach to
adequately report on the bilayer elasticity.
Frequency dependence of relaxation rates further
informs the collective bilayer dynamics

The square-law relationship between the CH bond order
parameters and relaxation rates is measured at a particular
Larmor frequency (n0) (see materials and methods). To
ascertain whether the trend is dependent on n0, we used
the simulation trajectories to analyze the CH bond fluctua-
tions for a range of Larmor frequencies. Fig. 7 shows the re-
sults calculated at different n0 values for the DMPC bilayer
in the liquid-disordered state. Regardless of the specific
value of n0 the relaxation rates and squared order parameters
are linearly dependent, illustrating that the square-law rela-
tionship holds for all the accessible frequencies, as seen
experimentally (85). At lower frequencies the data are
more spread out, while at higher frequencies the deviation
from the best fit is smaller. There is also a systematic
decrease in the slope with increasing frequency both as ex-
pected theoretically and seen experimentally (85). These re-
sults demonstrate that the trend encoded by these structural
and dynamic aspects of the CH bond fluctuations is not acci-
dental but rather arises from inherent bilayer elastic proper-
ties as they emerge from the collective atomic-level
interactions of the lipids.
DISCUSSION

It is a universally acknowledged fact that the lipid composi-
tion of a membrane affects its structure and function
(9,10,83,86–88). However, considerably less is known about
the level of cooperativity of the fluctuations of individual
lipid molecules that give rise to the emerging bilayer prop-
erties. Despite the availability of an extensive amount of
biophysical and NMR spectral data, interpretations have re-
mained controversial. We were motivated by the unique
Biophysical Journal 122, 984–1002, March 21, 2023 993



FIGURE 7 Frequency dependence of relaxation rates and order parame-

ters for simulated bilayers. Shown are plots of the simulated 2H NMR

relaxation rates of the acyl carbons of DMPC versus the squared order pa-

rameters at different Larmor frequencies (n0). Data are included for carbons

on the sn-2 chain of DMPC in the cholesterol-free bilayer in the fluid state.

Simulated results are depicted as squares, and lines indicate the correspond-

ing best fits. Note that the slope of the square-law increases with decreasing

frequency, consistent with experimental NMR data. The simulation was

performed at 44�C. To see this figure in color, go online.
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atomistic level information regarding both structure and
dynamics offered by the NMR approach, as well as the
ongoing need to continuously validate MD force fields
with experimental data (7,29). To this end, we used MD sim-
ulations to further explore the connection between lipid and
bilayer dynamics, and its relation to NMR observables and
bilayer elastic properties (5,38). Taking the unique features
of the simulations into account, involving the fixed orienta-
tion of the bilayer normal, we derived a formulation that al-
lows the simulation results to be directly compared with
NMR measurements (34) of multilamellar vesicles
(MLVs) as well as small unilamellar vesicles (SUVs) where
the bilayer normal can adopt any angle with respect to the
laboratory frame (magnetic field). Analysis of the simula-
tion trajectories established the nematic-like behavior of
the localized dynamics of the membrane lipids as suggested
by NMR, namely their segmental 3D nature modulated by
collective lipid dynamics. We saw a clear square-law rela-
tionship between the order parameters of the lipid acyl car-
bon atoms and their respective relaxation rates, in excellent
agreement with NMR results (35,85). The atomic resolution
of the simulations allowed us to further identify the region in
the bilayer where the square-law dependence holds,
revealing the importance of interleaflet interactions for the
collective dynamics of the lipids. The apparent bilayer
bending moduli emerging from the application of an
NMR-based formalism to the simulation data are moreover
corroborated by an alternative computational method, as
well as NMR and NSE experiments (83,88). Our MD simu-
lations thus successfully replicate NMR observables and
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validate their interpretation while offering new insights
about their physical origins.
Theoretical framework for comparing molecular
dynamics simulations with NMR measurements

There have been numerous occasions where results from
MD simulations of lipid bilayers have been compared
with NMR observables, such as acyl chain order parameters
of the lipids or relaxation rates due to the underlying fluctu-
ations (7,29,37,39,89). In the case of NMR spectroscopy,
the elementary processes occur with correlation times near
1=n0 z 10 ns, even though the relaxation times are in the
10–100 ms regime (weak collision limit) (34,56). Likewise,
atomistic MD simulations access the same simulation time-
scale even though the actual time needed to perform the
simulation often differs by many orders of magnitude (so-
called wall clock time) (9,60,89). Thus, both NMR spectros-
copy and MD simulations entail measurement times that are
much longer than the actual processes of interest, in this
case the lipid fluctuations, but the results describe the
same underlying dynamics. The order parameters depend
on a well-defined angle between the CH bond and the
bilayer normal, and thus have a straightforward correspon-
dence between the simulations and experiments. Still, the
spin-lattice relaxation rate is challenging to compare be-
tween the two techniques for the following reasons: 1) there
are multiple frame transformations that need to be per-
formed to relate the orientation of a lipid CH bond to the
measured relaxation rate (see Fig. 4 in (58)), and 2) NMR
measurements are often performed on multilamellar lipid
vesicles which have approximately spherical symmetry on
average, so that the bilayer normal can adopt any angle
with respect to the magnetic field axis. These aspects reside
in the liquid-crystalline nature of the membrane lipids and
open up the question of how to encapsulate both the lipid
structure and dynamics in a fully consistent manner.

The assumption of unrestricted isotropic motion circum-
vents the above features, and the resulting expression for the
relaxation rate simplifies to a function dependent only on a
single correlation time tC as shown in Eq. 9 and re-derived
in the supporting material. In fact, the formula in Eq. 9 (and
its equivalent for the carbon-13 relaxation rates) have been
the ones used in comparisons of lipid dynamics between
simulations and NMR in the past (see, e.g., (32,72,73,90)).
In this solution NMR approach a spherical-harmonics repre-
sentation is often employed, where the CH bond fluctuations
are described in terms of changes in their direction over
time. The correlation function is thus written as

CðtÞ ¼ hP2½mð0Þ$mðt�Þi ¼ hP2½cos~bðtÞ�i ; (22)

where P2 is the second-order Legendre polynomial (analo-
gous to SCD in Eq. 1) and ~b is the angle between the unit
(radius) vectors of the initial and final points. The change
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in CH bond orientation is defined by the scalar (dot) product
of the unit vector mð0Þ at time zero and the unit vector mðtÞ
at time t (Fig. 8 A). Fourier transformation of Eq. 22 gives
jðuÞ, and R1Z is subsequently calculated from the solution
NMR result (Eqs. 9, S22, and S23). Note that in the spher-
ical-harmonics representation, the pre-factor in Eq. 9 may
look slightly different (see supporting material and Eqs.
S22 and S23). One should furthermore recall that Eq. 22
corresponds to the spherical-harmonic addition theorem,
i.e., where mð0Þ$mðtÞ ¼ cos ~bðtÞ represents one side of a
spherical triangle (Fig. 8 A) (57). The other sides are the
CH bond orientation qð0Þ (at t ¼ 0) and the bond orientation
qðtÞ (at time t), with jfðtÞ � fð0Þj as the dihedral angle
opposite to the ~bðtÞ angle. Importantly, the angle ~b in Eq.
22 is different from the Euler angle b in Eqs. 2–4 because
~b is a relative angle independent of the laboratory frame
(Fig. 8 A). There is no projection axis (index) for the angular
momentum, and hence Eq. 22 is applicable to solution NMR
spectroscopy. For the case of solution NMR, the isotropic
averaging is readily introduced leading to the well-known
results in textbooks. For multi-axis or composite motions,
the orientational order parameters can then be reintroduced,
leading to the so-called model-free approach for proteins
in solution (91) as the limit of our generalized approach
published concurrently (35). This formulation has been
FIGURE 8 Schematic illustration of angles used in different approaches

for analyzing CH bond fluctuations from MD simulations. (A) Spherical-

harmonic representation of the orientation of the CH bond at t ¼ 0 and

time t described by unit vector mð0Þ and unit vector mðtÞ. The corresponding
spherical polar coordinates are the polar angles ½qð0Þ;fð0Þ� and ½qðtÞ;fðtÞ�,
respectively. The CH bond angle with respect to the bilayer normal NB is

qð0Þ or qðtÞ. However, the angle ~bðtÞ whose fluctuations are analyzed

with the use of the spherical-harmonic addition theorem (cf. Eq. 22) is

different from jqðtÞ � qð0Þj and does not depend on the director axis. (B)

Alternatively, the orientation of the CH bond vCH is described by the Euler

angles ða;b;gÞ. Angles b and g define the orientation of vCH with respect to

the bilayer normal NB (director axis), and their fluctuations are analyzed in

the new theoretical framework (Eq. 17). The schematic in (B) is adapted

from (58). Note that use of the spherical-harmonic addition theorem is

applicable to isotropic liquids with unrestricted motions, while the repre-

sentation in terms of Euler angles includes the director axis (bilayer

normal) and orientational order parameters of the lipids. Analysis of multi-

scale composite motions of liquid-crystalline membranes thus becomes

possible with the latter approach. To see this figure in color, go online.
successfully used to compare NMR relaxation results with
MD simulations for proteins as well as their lipid anchors
(92–95).

On the other hand, lipid membranes are uniaxial liquid
crystals in which the fluctuations are expressed in terms
of orientational order parameters with respect to the bilayer
normal, as shown in Fig. 8 B (see also Fig. 1 A) (35).
Hence, it is incorrect to apply the solution NMR limit to
lipids in SUVs, MLVs, or planar supported bilayers. In
an NMR experiment with liposomes, the bilayer normal
can adopt all orientations with respect to the magnetic field
and the CH bond fluctuations consequently might appear
unrestricted. However, the CH bond fluctuations are not
isotropic but rather anisotropic because of their inherent
ordering with respect to the bilayer normal (i.e., their order
parameters). That is why the analysis of solid-state NMR
data assumes orientational averaging (the bilayer director
can adopt all angles) but still retains information about
the underlying ordering of the bonds (see supporting mate-
rial). In simulations of bilayer patches, the bilayer normal
is fixed but the CH bond dynamics are analogous to those
in the liposomes measured experimentally with NMR spec-
troscopy. To connect the two approaches, we therefore
derived an expression for the orientationally averaged
relaxation rates, but in terms of the director frame, i.e.,
with respect to the local frame described by the bilayer
normal (Eqs. 10 and 17). Stated differently, we take the
simulation relaxation rates and then orientationally average
them to compare them directly with the experimental ones.
Note that Eq. 10 for the orientationally averaged relaxation
rate has an equivalent formulation in terms of spherical-
harmonic spectral densities (see Eq. S17). Importantly,
the formulas presented here account for both the fixed
bilayer normal in the simulations and the restricted aniso-
tropic motion of the CH bond fluctuations described by
segmental order parameters. They should thus be used
instead of the solution NMR limit to compare simulation
data with experimental NMR results.

To explicitly demonstrate the differences between
the two theoretical approaches, i.e., using the spherical-
harmonic addition theorem with Eq. 22 versus the
Wigner rotation matrix elements and Eqs. 16 and 17, we
followed (72) to calculate the 2H NMR relaxation rates
corresponding to the commonly used solution NMR limit.
In particular, the spectral densities ~JðuÞhh~JmðuÞi were
obtained from the discrete one-sided Fourier transform
of the correlation function using Eq. 22, which gives

~JðuÞ ¼
Z N

0

hCðtÞicos utdt ¼
XðNF=2Þ � 1

t ¼ 0

hCðtÞicos utDt ;

(23)

where hCðtÞi is the orientational average of Eq. 22, i.e., the
correlation function averaged over all bilayer orientations

with respect to the laboratory frame. The relaxation rates
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were then calculated with Eq. 2.5 of (72) (also re-derived as
Eq. S21 in supporting material):

R1Z ¼ 3

40
~c2
Q ½~jðu0Þ þ 4~jð2u0Þ� ; (24)
where the pre-factor in Eq. 24 is ð3=40Þ~cQ ¼ ð3=40Þ
ð2pc Þ2 ¼ ð3=40Þð4p2Þð1:70 � 105 s� 1Þ2 ¼ 8:5570 �
2

Q

1010 s� 2. Accordingly, Fig. 9 shows the results from
Eq. 24, noted as solution NMR, together with the results
from Eq. 17, designated as solid-state NMR and the exper-
imental data (cf. Fig. 6 A). The solution NMR relaxation
rates (solid red symbols) clearly deviate from the solid-state
NMR data (solid green symbols), and the deviation is larger
for the more ordered bilayer with 50% cholesterol. This
result illustrates the underlying assumption behind Eq. 24
that the fluctuations are isotropic, so that there is no order
in the system, which is incorrect. Thus, when the order
parameter is lower the two approaches are more alike, but
when the order parameters are larger the differences become
more pronounced.

What is more, Fig. 9 shows also how the solution NMR
approach suffers from the same sampling problem due to the
discrete Fourier transformation as the solid-state NMR
approach (see below). At t ¼ 0 the correlation function
from Eq. 22 is Cð0Þ ¼ 1 and when the integral in Eq. 23
goes from 0 to N, this results in a large shift in the spectral
density and, correspondingly, the relaxation rates (open red
symbols). If instead the element at t ¼ 0 is ignored, and the
integral in Eq. 23 is evaluated from t ¼ Dt toN, the relaxa-
FIGURE 9 Comparison of relaxation rates from MD simulations calcu-

lated with different approaches. Shown are results from the solution

NMR limit (Eqs. 22–24) (red), the new framework (Eq. 17) (green), and ex-

periments (black). Open and solid red symbols correspond to the relaxation

rates calculated from the discrete Fourier transform of the correlation func-

tion CðtÞ by integrating either from 0/N or from Dt/N, respectively

(Eq. 23). All simulations of DMPC with 0 mol % and 50 mol % cholesterol

(Chol) were performed at 44�C. Quantitative agreement between the simu-

lation and experimental relaxation rates requires consideration of both the

sampling interval and whether the solution NMR or solid-state NMR limit

is used. See text for details. To see this figure in color, go online.
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tion rates are closer in absolute value to the experiment. Note
that the shift due to the Cð0ÞDt term in Eq. 23 at t ¼ 0 in-
creases the magnitude of the relaxation rates but does not
affect the slope of the square-law relationship, because
Cð0Þ ¼ 1 for all carbons on the lipid chains. In contrast, in
Eq. 15 G

ðnÞ
p;s ð0Þ is the mean-square amplitude or variance of

the Wigner rotation matrix elements, which is different for
the various carbon atoms due to their inequivalent order pa-
rameters (Fig. S14). Consequently, ignoring the element at
lag time tk ¼ kDt ¼ 0 in Eq. 15 would change not only the
magnitude of the R1Z values but also the slope of the square-
law relationship.This aspectmust be recognized in any valida-
tions of MD simulations or their force fields versus actual
experimental NMR data.
The nature of lipid dynamics in biomembranes

The spectral densities of the acyl chain CH bond fluctuations
hold the key to the types ofmotions that the lipids exhibitwhile
interactingwith other lipids in a bilayer. It was recently shown
that these spectral densities (calculated using the NMR solu-
tion limit described above) can be fit to a large sum of expo-
nential functions (68). While the respective fits are very
good, likely due to the large number of fitting parameters,
the results point to an extensive hierarchy of motions with un-
clear origins, i.e., very fast dynamics modulated by slightly
slower dynamics, modulated by yet slower dynamics, and so
on. Alternatively, it is shown here that the spectral densities
corresponding to the NMR measurements can instead be
adequately fit to a simple power-law function that has a clear
physical interpretation pertaining to the nature of the underly-
ingmotions.Thevalueof the single relevant parameter, the po-
wer exponent, indicates the degree of cooperativity of the lipid
motions. For all carbons on all chains of the bilayers in the pre-
sent study, we find the exponent to be around�1/2 (Figs. 2 B
and S7–S9) consistent with collective segmental dynamics.
This observation is further confirmed by comparison of the
respective power exponents to those of LD vectors of varying
lengths, whose orientations with respect to the bilayer normal
fluctuate due to the thermal energy (Figs. 3 and S10). Regard-
less of which carbon the LD vectors originate from, their ex-
ponents decrease in an almost identical way with increasing
vector length, illustrating the physical interpretation of the or-
igins of this exponent: nematic-like motions at a value around
�1/2, and smectic-like dynamics at a value approaching�1 as
the limit.Our results therefore are a directmanifestation ofOc-
cam’s razor and show how the seemingly complex interplay
between the lipid bond fluctuations is governed by a simple
principle of segmental cooperativity.
Quantum-mechanical view of the square-law
dependence

Our simulations confirm the existence of the square-law
dependence in simulated bilayers, in excellent agreement
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with NMR results for in vitro model lipid membranes.
While we can distinguish two distinct regions of the lipid
chains where this relationship holds and where it breaks
(Figs. 4, 5, and S15), the question remains as to the ori-
gins of this initially surprising functional correspondence
between the order parameters and relaxation rates (35).
Notably, the fluctuations of the CH bonds of a lipid reflect
the changes in the energy of the atomic nuclei due to their
magnetic or electric coupling to their surroundings. Such
energy fluctuations result in transitions between different
nuclear spin energy levels. The main energy levels of a
nucleus in an NMR experiment are determined by the
applied magnetic field (Zeeman effect), where transitions
between these main energy levels (whose rate is quantified
by R1Z) are enabled by additional energy perturbations
due to the interactions of the nucleus with its surround-
ings. Weak coupling to the surroundings results in slower
and less efficient relaxation, while strong coupling gives
rise to much faster relaxation rates. Thus, the rate of the
relaxation depends on the strength of the energy perturba-
tions near the resonance n0 frequency. The transition prob-
ability between two main energy states is found to be
proportional to the product of the squared matrix element
of the perturbation and the density of states, according to
Fermi’s golden rule. In the case of the fluctuating CH
bonds, the matrix element is analogous to the mean-
squared amplitude of the fluctuations, i.e., corresponding
to the square of the segmental order parameter. Together
with the square-law dependence, the NMR data show an
additional dependence on inverse frequency in the form
of a n

� 1=2
0 factor that multiplies or scales the squared order

parameter (which is why this term appears in Eq. 19).
Because the latter is analogous to the density of states
in the original formulation, the square-law relationship
becomes a direct manifestation of time-dependent pertur-
bation theory and Fermi’s golden rule in spectroscopy.
FIGURE 10 Comparison of DMPC order profiles obtained from simula-

tions and NMR spectroscopy. Acyl chain order parameters are shown for

DMPC bilayers containing (A) 0 mol %, (B) 20 mol %, (C) 33 mol %,

and (D) 50 mol % cholesterol. The results are plotted as a function of

sort index (i.e., in descending order) either calculated from simulations

(red) or reported from NMR (gray). Simulation data are average from the

two chains. Experimental data were taken from (34) with the 0 mol %

cholesterol values interpolated from the data at 30�C, 50�C, and 60�C.
All simulations were performed at 44�C. Validation of lipid force fields

with NMR data requires consideration of both order parameters and relax-

ation rates. See text for details. To see this figure in color, go online.
Bilayer elastic properties emerging from the
region of interleaflet contact

The presence of the square-law dependence shows clearly
that the motional rates of lipid bond fluctuations are func-
tionally related to their mean-squared amplitudes. Here
we demonstrate that the relationship yields an estimate
of the bilayer bending modulus (Fig. 6 and Table S2).
The derivation relies on a single elastic constant approxi-
mation, i.e., there is no special treatment of specific defor-
mation modes (e.g., splay, tilt, twist) as they are all
approximated with a single parameter. While this formu-
lation cannot distinguish the contribution of particular
molecular motions to the membrane deformation, it is
simple and general—the fact that it successfully captures
both the values and trends in the bending constants makes
it an advantageous descriptor of the inherent bilayer
elasticity.
Notably, we find from our MD simulations that the col-
lective nematic-like dynamics at the region of direct con-
tact between the two leaflets are closely related to the
bilayer bending elasticity, while outside of this region
they are not (Fig. 6). This finding is unlikely to arise
from simulation artifacts because: 1) available NMR data
for the square-law dependence do not clearly resolve car-
bon atoms in the upper segments of the lipids (plateau re-
gion of order profile), and therefore it is unclear whether
the bonds of these atoms follow the same dependence as
in vitro systems; and 2) there is no difference in the agree-
ment between order parameters for the upper and lower
lipid chain segments obtained from NMR and the MD sim-
ulations (e.g., Fig. 10). Instead, this intriguing observation
complements the relation between local thickness fluctua-
tions in this same mid-bilayer region and the local mono-
layer area compressibility modulus recently reported (71).
The height fluctuations of the carbon atoms inside the re-
gion of leaflet-leaflet contact were found to be decoupled
from the interfacial dynamics, and the thickness fluctua-
tions of that particular bilayer slab separately yielded the
apparent area compressibility moduli of the two leaflets
(71). Moreover, outside of this mid-bilayer region, exten-
sive analysis of a large set of simulated lipid bilayers has
likewise revealed a strong correlation in the height fluctu-
ations of all carbon atoms, suggesting a direct influence
of interfacial tension (occurring at the water-hydrocarbon
interface) on their dynamics (Fig. 1 in (71)).
Biophysical Journal 122, 984–1002, March 21, 2023 997
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The existence of two functionally decoupled bilayer re-
gions can then be explained by variations in the conforma-
tional dynamics of the lipid chains along the bilayer normal.
In particular, since the chains are effectively tethered to the
aqueous interface, their extent (travel) along the bilayer
normal (director) depends on the numbers of gauche versus
trans isomers. The more gauche isomers, the shorter the
chain extension along the director and vice versa. However,
the 3D volume must still be occupied, and hence the shorter
chain extensions must be compensated by greater disorder
of the surrounding chains (96) to fill the volume at liquid hy-
drocarbon density (80). Accordingly, we propose that the
bilayer can be subdivided into two regions (Fig. 1 A). The
outermost bilayer region corresponds to the so-called
plateau of the NMR order parameter profiles (56), coming
from the top part of the chains where backfolding and inter-
leaflet penetration are minimal. In contrast, the innermost or
mid-bilayer region is where the chain terminations become
appreciable and the segmental disorder reaches a maximum
(71,96). To a first approximation, we can then consider the
outer and mid-bilayer regions separately for the analysis
of bilayer mechanics.

Emerging within the mid-bilayer region, the thickness
and lipid chain CH bond fluctuations have a hitherto unrec-
ognized connection to the elastic moduli of the membrane.
An intricate relationship exists for both bending and
compressibility between the noninterfacial segmental dy-
namics modulated by interleaflet coupling and the energy
to locally bend or stretch the bilayer. These mechanical con-
stants have been traditionally obtained from global bilayer
properties (e.g., thermal vesicle shape fluctuations or
response to induced out-of-equilibrium deformations,
flicker spectroscopy) in terms of underlying theoretical con-
cepts of membrane elasticity (5,38,43,44,97). This analysis
treats the membrane as a 2D flexible surface (a thin sheet)
that exhibits smectic-like dynamics at longer length scales.
In addition, our results point to an alternative contribution
from the more localized nematic-like lipid dynamics at the
bilayer midplane, which appear to have a major role in the
observed elastic behavior at shorter length scales. Both ap-
proaches at the global and more local scales have been
shown to yield similar results for some bilayers (e.g., satu-
rated lipids with and without cholesterol) but contradictory
results for other types of bilayers (e.g., di-unsaturated lipids
with cholesterol (83)). The sources of these discrepancies
may lie in the timescales and length scales of the underlying
dynamics (83,88) and are the subject of ongoing debate.
Validation of molecular dynamics simulations
with experimental NMR data

As discussed above, the proper comparison between relaxa-
tion rates obtained from NMR and calculated from MD sim-
ulations requires special considerations which are included
in the theoretical framework presented here. The new
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formulation allows us to comment on a few key points per-
taining to theoretical MD simulations and experimental
NMR relaxation studies. Here we recall that the simulation
data are always discrete in nature; that is, the atomic coor-
dinates are collected at some fixed time sampling interval
(Dt > 0). As a result, calculation of the spectral densities is
inevitably done via a discrete (one-sided) Fourier transform
of the correlation function (Eq. 15). This discrete transfor-
mation as illustrated in Eq. 15 produces a constant equal
to the product of the autocorrelation at zero lag time (which

is the variance of the data, var½Dð2Þ
0p ðUÞ� from Eq. 7) and the

Dt sampling interval. This constant is added to the spectral
density at every frequency, and consequently it shifts the
calculated relaxation rates in a Dt-dependent manner as an
inevitable result of the discrete Fourier transform. Theoret-
ically, the spectral density goes to infinite frequency, and its

integral is equal to var½Dð2Þ
0p ðUÞ� as can also be obtained from

the second- and fourth-order Legendre polynomials (CP2D
and CP4D) via a Clebsch-Gordan series expansion (see
Table V in (75)). Analytically, in the Fourier time domain,

the correlation function goes to zero Dt and var½Dð2Þ
0p ðUÞ�

equals the initial value. However, that limit is impossible
to reach either in simulations or experiments—therefore,
we can only access a small window or bandwidth of the
spectral density in the Fourier space.

Even then, we managed to alleviate the dependence on
the discrete sampling interval Dt by taking advantage of
the fact that the correlation functions of the CH bond fluctu-
ations, expressed in terms of the second-rank Wigner rota-
tion matrix elements, follow a power-law relation. As
explained in materials and methods, this approach allowed
us to fit the correlation functions and use the best fits to re-
sample them at smaller time intervals. Correspondingly, we
found the smallest Dtfit that preserved the smoothness of the
correlation function for each carbon, as shown in Fig. S6.
These Dtfit values correspond to the fastest rotations of the
CH bonds that contribute to the spectral density and are in
the range of 0.5–30 ps. The results are in excellent agree-
ment with the 5- to 20-ps correlation times predicted to arise
from the bilayer microviscosity and account for the apparent
enhancement in relaxation of lipid bilayers versus hydrocar-
bon fluids as measured with NMR spectroscopy (23,80). If a
larger sampling time step were used (such as 40 ps due to the
output frequency in our simulations), it would effectively
mask these rapid bond rotations, while an output frequency
corresponding to the femtosecond regime would be imprac-
tical for long MD simulations. Mathematical tricks for re-
sampling of the correlation functions are thus necessary to
help bridge the gap between the discrete and continuum rep-
resentations, although an exact correspondence can never be
achieved.

Another important observation from our analysis is that
the square-law dependence can be used in a model-free
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way, as illustrated by Fig. 6 A, to validate lipid force fields
against NMR relaxation data. While the order parameters
contain information about the average structure of the lipid
chains—and therefore provide a static picture of their con-
formations—the spin-lattice relaxation rates describe the
CH bond dynamics that produce these conformations, thus
complementing the structural data. To substantiate this
point, Fig. 10, A–D shows a comparison between the theo-
retically simulated and experimental order parameter pro-
files for DMPC with various mole fractions of cholesterol.
Although the DMPC lipids in the presence of 0, 20, and
33 mol % cholesterol in the simulations are more ordered
than in the experiment, both theory and experiment are in
remarkable agreement in that we see smaller slopes of their
square-law dependences corresponding to higher effective
bending rigidities of the simulated bilayers (Fig. 6 B).
This feature is expected from the known dependence of kC
on lipid packing (and, consequently, order): the more disor-
dered the lipids the lower the kC value (60,83). Interestingly,
the simulated bilayer with 50 mol % cholesterol has slightly
lower order parameters than the NMR measurements, and
its square-law slope matches closely the experimental one
for carbons C10 through C14 (cf. Fig. 6 A). Therefore, while
the overall trends in the deviations from experimental data
are similar across the order parameters and relaxation rates,
there may be differences from the ability of the force fields
to capture the elasticity of the bilayer or its average struc-
ture, thus highlighting a path forward toward their improve-
ments. For this to occur, the validation of lipid dynamics in
the form of CH bond relaxation rates, as measured with
NMR, becomes critical.

Lastly, it is worth noting that simulations are often vali-
dated against experimental data where differences in the
types of samples and analysis for the various techniques
may produce seemingly contradictory structural and/or
dynamical features. One example is the recently reported
problem in the lack of correspondence between the order pa-
rameters of sphingomyelin bilayers obtained from NMR and
the bilayer structural properties (area per lipid and thick-
ness) obtained from small-angle scattering techniques (6).
Because the analysis of any experimental data adds another
set of variables to its interpretation, a model-free compari-
son of the raw data is always optimal for a bias-free compar-
ison. However, whenever there is a mismatch in the
structure resolved by two approaches, the simulated system
will inevitably fail to reproduce certain experimental
observables.
CONCLUSIONS

Experimentally observed relationships between the relax-
ation rates of CH bond fluctuations and their order param-
eters or the frequency at which they are measured have
raised questions about the cooperativity of lipid motions
in a bilayer and their link to membrane elasticity. We
have shown here that the local movements of the lipid
acyl chains in the region of interleaflet contact are
captured by MD simulations that are indicative of collec-
tive segmental motions analogous to nematic liquid crys-
tals. For this, we developed a new theoretical framework
that allows direct comparison of the relaxation rates
calculated from the simulations with those measured
with NMR experiments by accounting for the inherent dif-
ferences between the two approaches. Following an
NMR-based formalism for liquid-crystalline bilayers, we
found that the square-law dependence between the rate
and amplitude of the lipid CH bond fluctuations yields a
frequency-independent estimate of an apparent bilayer
bending modulus, which for DMPC bilayers follows the
expected trends with addition of cholesterol. Our results
are fully in line with NMR observables and their interpre-
tation and offer an alternative protocol for extracting me-
chanical properties of the simulated membranes. In the
future, it will be interesting to explore whether our anal-
ysis is applicable to bilayers with mono- and polyunsatu-
rated lipids, as well as more complex lipid mixtures in
terms of establishing the universality of bilayer functional
properties.
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The document includes 2 tables, 16 figures and extended methods. 
 
The figures are as follows: 
Fig. S1  schematic of Euler and polar angles describing the forward and inverse 

transformations to and from the CH bond position 
Fig. S2–S4 correlation functions 𝐺!,#

(%)(𝑡) for all carbons in the simulated bilayers with their  
corresponding best power-law fits 

Fig. S5  actual and resampled correlation functions 𝐺',#
(%)(𝑡) 

Fig. S6  optimal Δ𝑡()* values (in ps) obtained from resampling of 𝐺',+
(%)(𝑡) 

Fig. S7–S9 spectral density functions 𝐽!,#
(%)(𝜔) for all carbons in the simulated bilayers with  

their corresponding best power-law fits 
Fig. S10 b exponents of the best power-law fits to the correlation functions 𝐺!,+

(%)(𝑡) and  
spectral density functions 𝐽!,+

(%)(𝜔) for all carbons in the simulated bilayers 
Fig. S11–S13  the spectral density functions 𝐽',#

(%)(𝜔)  of local director vectors and their  
corresponding best power-law fits 

Fig. S14 bilayer structural properties (order parameters, lipid packing and thickness) as a  
function of cholesterol concentration 

Fig. S15 linear and log-log plots of 𝑅1Z vs |𝑆CD|# for all carbons in the simulated bilayers 
Fig. S16 effect of bilayer viscosity 𝜂 on the bending rigidity 𝜅0 calculated from the square-law 

relationship 
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Table S1. Full bilayer thicknesses calculated from the bilayer number density profile as 
described in Methods. 

Bilayer composition Thickness / Å	
DMPC 51.2 

DMPC/Chol 80/20 55.2 
DMPC/Chol 67/33 56.4 
DMPC/Chol 50/50 55.6 

 
 
Table S2. Reference values for estimates of the bending modulus for DMPC bilayers obtained 
from experiments and simulations. C36 denotes CHARMM36 force field. 

Bending modulus / kBT	 Method Reference 
29.2 ± 1.2 simulations, C36, lipid director fluctuations (1) 
25.1 ± 1.0 X-ray diffuse scattering (2) 
31.1 ± 1.9 Flicker analysis of vesicle fluctuations (3) 
24.8 ± 1.1 simulations, C36, square-law this paper 
33.2 ± 1.0 simulations, C36, splay fluctuations this paper 
18.5 ± 1.0 NMR this paper 
28.1 ± 4.4 NSE this paper 
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Figure S1.  Schematic representation of the angles describing (A) the forward transformation 
from the laboratory frame (LAB) to the principal axis system (PAS) which is defined as the CH 
bond position (green), and (B) the inverse transformation from PAS to LAB.  The Euler angles for 
the forward transformation are ΩLP = (αLP, βLP, γLP)  while the Euler angles for the inverse 
transformation are ΩPL = (αPL, βPL, γPL) = (−γLP, −βLP, −αLP).  The corresponding polar angles 
(θ, 𝜙) are indicated in grey-shaded boxes next to their Euler angle equivalents.  
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Figure S2.  Log-log plot of the correlation function 𝐺',#
(%)(𝑡) , 𝑡 ≥ 1  for each carbon atom Cn 

(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% 
cholesterol (Chol) (blue data points), and corresponding best fit to a power-law function of the 
form 𝑎𝑥3 + 𝑐 (red solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the 
first 100 ns of the correlation function are shown to better illustrate the fit.  All plots have the 
same 𝑥- and 𝑦-axes. 
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Figure S3.  Log-log plot of the correlation function 𝐺4,#
(%)(𝑡) ,𝑡 ≥ 1  for each carbon atom Cn 

(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol 
(blue data points), and corresponding best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 (red 
solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the first 100 ns of the 
correlation function are shown to better illustrate the fit.  All plots have the same 𝑥- and 𝑦-axes. 
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Figure S4.  Log-log plot of the correlation function 𝐺#,#

(%)(𝑡) , 𝑡 ≥ 1  for each carbon atom Cn 
(indicated on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol 
(blue data points), and corresponding best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 (red 
solid line).  Shown above each plot is the 𝑏-exponent of the best fit.  Only the first 100 ns of the 
correlation function are shown to better illustrate the fit.  All plots have the same 𝑥- and 𝑦-axes. 
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Figure S5.  First 200 ps of the correlation function 𝐺',#

(%)(𝑡), 𝑡 ≥ 0 for carbons C4–C14 (indicated 
on the left) on the sn-2 chain of DMPC in the bilayers with 0%, 20%, 33%, and 50% Chol sampled 
at the original Δ𝑡 = 40 ps (blue shaded squares), and the resampled correlation function from 
the best fits from Fig. S2 sampled at the optimal Δ𝑡567 < Δ𝑡 (red). The initial values 𝐺',#

(%)(0) are 
highlighted in solid blue color. 
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Figure S6.  Optimal Δ𝑡567 values (in ps) obtained from resampling of 𝐺',+

(%)(𝑡) using the best fit (see 
Figure S5) for each carbon on the sn-1 and sn-2 chains of DMPC in the simulated bilayers.  The 
simulation output frequency (and thus, original timestep Δ𝑡) in the trajectories correspond to Δ𝑡 
= 40 ps.  The decrease of Δ𝑡567  further down the chain towards the terminal methyl (C14) is 
consistent with faster rapid motions closer to the bilayer midplane. 
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Figure S7.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and the fits. 
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Figure S8.  Log-log plots of the spectral density 𝐽4,#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and fits. 
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Figure S9.  Log-log plots of the spectral density 𝐽#,#

(%)(𝜔) (blue) for each carbon Cn (indicated on 
the left) on the sn-2 chain of DMPC in the simulated bilayers, and its corresponding best fit to a 
power-law function of the form 𝑎𝑥3 + 𝑐 (red solid line).  Indicated above each plot is the 𝑏-
exponent of the best fit.  For visual comparison, a black line following a power-law with an 
exponent of −0.5 is shown below the data and fits. 
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Figure S10. Plots of b-exponents of the best fits to the correlation function 𝐺!,+

(%)(𝑡) (top 3 rows) 
and spectral density 𝐽!,+

(%)(𝜔) (bottom 3 rows) for each carbon on the sn-2 (left) and sn-1 (right) 
chains of DMPC in the bilayers with 0 (blue), 20 (red), 33 (yellow), and 50% (purple) cholesterol.  
Note that the 𝑦-axis for the correlation functions ranges from −1.3 to 0, while for the spectral 
densities it is between −1 and 0. 
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Figure S11.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔) of local director (LD) vectors of lengths 
2–5 carbons.  Each row corresponds to LD vectors originating from the same carbon Cn (indicated 
on the left).  Raw data are shown in blue and best fit to a power-law function of the form 𝑎𝑥3 +
𝑐 is shown in red.  The corresponding power-law coefficients of the best fits are indicated above 
the plots.  
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Figure S12.  Log-log plots of the spectral density 𝐽',#

(%)(𝜔)  of local director (LD) vectors of lengths 
6–9 carbons.  Each row corresponds to LD vectors originating from the same carbon Cn (indicated 
on the left).  Raw data are shown in blue and best fit to a power-law function of the form 𝑎𝑥3 +
𝑐 is shown in red.  The corresponding power-law coefficients of the best fits are indicated above 
the plots. 
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Figure S13.  Linear plots of the spectral density 𝐽',#

(%)(𝜔) of local director (LD) vectors connecting 
each carbon Cn (indicated above each plot) to the phosphate atom of the lipid.  Raw data are 
shown in blue and best fit to a power-law function of the form 𝑎𝑥3 + 𝑐 is shown in red.  The 
corresponding power-law coefficients of the best fits are indicated above the plots. 
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Figure S14.  (Left) Order parameter profiles for the two chains of DMPC, sn-1 (dashed) and sn-2 
(solid), in the simulated bilayers.  (Right) Average area per lipid (blue, left axis) and phosphate-
to-phosphate distance (red, right axis) as a function of cholesterol concentration. 
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Figure S15.  Relationship between spin-lattice relaxation rate 𝑅48 and order parameter |𝑆CD| for 
all carbons of DMPC in the simulated bilayers.  Carbons on the sn-2 chain are shown as blue circles 
and on the sn-1 chain as red triangles.  Filled symbols indicate the carbons from each chain that 
follow the square-law relationship as used in subsequent analysis of the apparent bilayer bending 
rigidity.  On the left 𝑅48  is shown as a function of |𝑆CD|#  while on the right the log-log plot 
illustrates the model-free relationship between 𝑅48 and |𝑆CD| values. Also shown for comparison 
on these plots is a sample square-law function of the form 𝑎𝑥% with 𝑛 = 2 in black.  Note that 
the 𝑥- and 𝑦-axes of the plots are purposefully different to better illustrate the spread in the data. 
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Figure S16. Effect of bilayer viscosity 𝜂 on the apparent bending rigidity 𝜅0 calculated from the 
slope of the square-law relationship (Eqs. 18, 19 of main text). The range for 𝜂 was obtained from 
available estimates of 𝜂 from experiments (4) and simulations (5). 
 
 
  



 19 

Extended Methods 
 
Neutron Spin Echo experiments 
 Suspensions of 100-nm unilamellar vesicles were prepared at a lipid concentration of 50 
mg/mL, using standard vesicle extrusion methods (6).  The samples were prepared by mixing 
protiated DMPC and cholesterol in chloroform at the required mole fractions.  This step was 
followed by evaporation of chloroform under an inert gas stream and subsequent drying under 
vacuum overnight at 45 °C.  The dry lipid films were then hydrated with 10 mM deuterated 
sodium phosphate buffer (prepared with D2O instead of H2O) at 45 °C with intermittent vortex 
mixing.  The hydration of the lipid films at elevated temperature facilitates dispersion and 
promotes mixing of DMPC and cholesterol within the formed bilayers.  The suspension was then 
subjected to at least 5 freeze/thaw cycles using a -80 °C freezer and a warm 45 °C water bath.  
The suspension was then extruded using an automated mini-extruder (Avanti Polar Lipids; 
Birmingham, AL) by passing the suspension 31 times through a polycarbonate filter (pore size = 
100 nm).  The extruder setup was heated to 45 °C during all extrusions.  After extrusion, the 
samples were kept in a Peltier box at 45 °C until measured. 
 
 The NSE experiments were conducted on the NG-A NSE spectrometer at the NIST Center for 
Neutron Research (NCNR) over a q-range of 0.04 Å–1 to 0.1 Å–1, where 𝑞 = 4𝜋 sin 𝜃/𝜆 is the 
wavevector transfer defined by the neutron wavelength, 𝜆, and the scattering, 2𝜃, measured 
relative to the incident beam.  Measurements of the instrumental resolution and deuterated 
buffer were performed under the same configuration for data reduction and normalization.  Data 
reduction was performed using the Data Analysis and Visualization Environment (DAVE) software 
developed at NIST (7). 
 
Theoretical background:  nuclear spin relaxation of lipid membranes 
 In general, the NMR spectra and relaxation times are governed by the Hamiltonian for 
coupling of the nuclear spins to the environment of the molecule or material.  The main 
Hamiltonian is due to the Zeeman interaction of the nuclear magnetic moment with the applied 
external (static) magnetic field and will not be further discussed here.  The smaller perturbing 
Hamiltonian contains the information of interest to chemists or physicists.  It is due to the 
chemical shift, the direct (through space) magnetic dipolar interaction, the indirect (through 
bond or electron-mediated, spin-spin) dipolar coupling, and the electric quadrupolar coupling in 
the case of nuclei with a quadrupolar moment describing the non-spherical nuclear charge 
distribution.  The perturbation is typically considered within the quantum-mechanical interaction 
picture. 
 
 Role of average Hamiltonian and correspondence to bilayer average structure.  When 
motion is present, as in the case of liquid crystals, liquids, and even molecular solids, one must 
consider the average value of the perturbation and the fluctuating parts.  The secular (time-
independent part) part governs the lineshape, while the non-secular (time-dependent part) part 
governs the relaxation.  Notably, the fluctuations of the Hamiltonian occur with respect to the 
mean value so that the fluctuating part is given by: 𝐻N9′	 = 	𝐻N9 − 〈𝐻N9〉 , where 𝜆	 = 	Q for the 
quadrupolar interaction in 2H NMR spectroscopy.  The time-independent average Hamiltonian is 
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secular; it commutes with the main Zeeman Hamiltonian and hence governs the NMR lineshape 
in accord with time-independent perturbation theory. Conversely, the averaged value of the 
Hamiltonian is non-zero and it must be subtracted to yield the fluctuating part that governs the 
relaxation.  The fluctuating part is non-secular and affects the energy level transitions as 
considered by time-dependent perturbation theory.   
 
 Correspondence to experimental relaxation rates in NMR spectroscopy.  Next, we apply 
time-dependent perturbation theory within the Redfield approximation (8). After transforming 
the principal values of the coupling (EFG) tensor from the molecule-fixed principal axis system 
(PAS) within the molecule to the laboratory frame, the irreducible correlation functions directly 
correspond to the Wigner rotation matrix elements.  They read: 
 

𝐺:;<=(𝑡) = 	 〈[𝐷':
(#)	(Ω?@; 𝑡) − 〈𝐷':

(#)	(Ω?@)〉]∗	[𝐷':
(#)	(Ω?@; 0) − 〈𝐷':

(#)	(Ω?@)〉]〉	,	 	 (S1)	
	
where 𝐷':

(#)	(ΩPL) are the second-rank Wigner rotation matrix elements for the transformation 
from the molecule-fixed PAS to the laboratory frame in terms of Euler angles ΩPL ≡	 (0, 𝛽PL, 𝛾PL) 
for transformation form the principal axis system (P) to the laboratory (L) frame (Fig. S1).  The 
corresponding irreducible spectral densities of motion 𝐽:lab(𝜔) are the Fourier transform partners 
of the 𝐺:;<=(𝑡)	correlation functions: 
 

𝐽:lab(𝜔) = 	Re∫ 𝐺:lab(𝑡)𝑒E)F*
G
EG 𝑑𝑡	.        (S2) 

In the above formula 𝐽:lab(𝜔) is a two-sided Fourier transform of the correlation function with 
limits of (−∞,+∞).  For more details the reader is referred to Refs. (9,10).   
 The relaxation rates in NMR spectroscopy correspond to various linear combinations of the 
irreducible spectral densities of motions 𝐽:(𝜔) of the coupling Hamiltonian.  In the case of solid-
state 2H NMR of lipid membranes, the spin-lattice relaxation rate (𝑅4Z) and the quadrupolar order 
relaxation rate (𝑅4Q) are of interest (8).  The spin-lattice relaxation rate is given by: 
 

𝑅1Z =	
I
J
𝜋#𝜒Q#	c𝐽4lab(𝜔') + 	4𝐽#lab(2𝜔')d	,      (S3) 

where 𝜒Q ≡ 𝑒#𝑞𝑄/ℎ = 170 kHz is the static quadrupolar coupling constant (11).  The value of the 
numerical pre-factor is thus (3/4)𝜋#(1.70	𝑥	10K)#  = 2.1392	x	1044	𝑠E# .  The irreducible 
spectral densities of motion 𝐽:lab(𝜔) are the Fourier transform partners of the 𝐺:;<=(𝑡)	correlation 
functions (Eq. S1) and are directly connected to the observable relaxation rates in NMR 
spectroscopy. 
 
 Formulation of spherical-harmonic correlation functions and spectral densities.  
Furthermore, the Wigner rotation matrix elements are related to the well-known spherical 
harmonics by the following expression (derived from Eqs. 4.21, 4.30, and 4.31 from (12)): 
 

𝐷':
(L) 	(𝜒, −𝜃,−𝜙) = 	l

4𝜋
2𝑙 + 1	𝑌L:(𝜃, 𝜙)	, 

(S4) 
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in which l is the rank ( 𝑙 = 2  in the present case) and 𝑚  is the projection of the angular 
momentum onto the axis of quantization. Note that (𝜃, 𝜙) = (𝛽LP, 𝛼LP) = (−𝛽PL, −𝛾PL) where 
the subscripts of the Euler angles denote forward rotation from the lab to the PAS frame (LP), or 
inverse rotation from the PAS to the lab frame, thus the negative angles (PL) (see Fig. S1).  
Accordingly, the correlation functions 𝐺:(𝑡) of the second-rank Wigner rotation matrix elements 
are related to the spherical-harmonic correlation functions 𝐺s:(𝑡)  for 𝑙 = 2  by the relation: 
𝐺:(𝑡) 	= 	 (4𝜋/5)	𝐺s:(𝑡) , where the tilde on the right is to be noted.  Here, the spherical-
harmonic correlation functions read: 
 

𝐺:(𝑡) = u
4𝜋

2𝑙 + 1v𝐺
s:(𝑡) 

 

= u
4𝜋

2𝑙 + 1v
〈[𝑌L:(𝜃, 𝜙; 𝑡) − 〈𝑌L:(𝜃, 𝜙)〉]∗	[𝑌L:(𝜃, 𝜙; 0) − 〈𝑌L:(𝜃, 𝜙)〉]〉	. 

(S5)	
The spherical-harmonic correlation functions 𝐺s:(𝑡) are often used in the literature (13-15) as an 
alternative to the Wigner rotation matrix correlation functions (9). 
 
 The two-sided spectral densities of the Wigner rotation matrix elements (Eq. S2) are then 
related to the one-sided spherical-harmonic spectral densities 𝐽w:(𝜔)  with limits (0,∞)  by: 
𝐽:(𝜔) = (8𝜋/5)	𝐽w:(𝜔), where the tilde on the right should again be noted. The spin-lattice 
relaxation rate formulated in terms of the spherical-harmonic spectral densities then becomes: 
 

𝑅1Z =	
3
10𝜋	𝜒yQ

#	c𝐽w4lab(𝜔') 	+ 	4𝐽w#lab(2𝜔')d	, 
(S6) 

where 𝜒yQ	 =	𝑒#𝑞𝑄/ℏ	 = 	2𝜋𝜒Q and we have also re-introduced the "lab" superscript.  Note that 
the results using the spherical-harmonic correlation functions and spectral densities are obtained 
by substituting: (3/4)𝜋#𝜒Q# 	→ 	 (3/10)𝜋𝜒yQ# and 𝐽:(𝜔) 	→ 	 𝐽w:(𝜔) where the tilde on the right is 
to be noted. Everything else is the same and it is just bookkeeping. The above formulas 
correspond to results found in the literature (14). 
 
  Use of closure to describe composite motions and multiple coordinate transformations.  
Next, as we have described above, it is necessary to separate the coupling Hamiltonian and 
correspondingly the correlation functions and spectral densities into the time-dependent and 
time-independent parts. The time-dependent part (nonsecular) governs the nuclear spin 
relaxation, while the time-independent part (secular) affects the spectral lineshape.  The time 
dependence is expressed with respect to the director axis (the lamellar normal), while the time-
independent part corresponds to the director orientation versus the laboratory axis system. 
 
  Accordingly, we can now separate the time-dependent and time-independent 
transformations using closure.  We use closure to decompose the overall matrix elements with 
respect to the laboratory axes system into the time-dependent transformation with respect to 
the director frame, and the static or time-independent orientation of the director with respect 
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to the laboratory frame.  Use of closure readily allows us to expand any Wigner rotation matrix 
element into a sequence of intermediate frame transformations, or equivalently to collapse a 
sequence of frame transformations into the appropriate rotation matrix element for the overall, 
i.e. composite, motion. 
 
 In the present case we focus on the separation of the overall transformation from the PAS of 
the molecule to the laboratory frame in two steps: first the transformation to the director frame 
(time-dependent), and second the transformation from the director frame to the laboratory 
system (time-independent).  Because the Wigner rotation matrix elements are members of a 
group, the overall rotation can be expressed in terms of the other members of the group to read: 
 

𝐷':
(#)(ΩPL; 𝑡) =|𝐷'!

(#)(ΩPD; 𝑡)	𝐷!:
(#)(ΩDL)	.

!

 

(S7) 
In the above formula ΩPD(𝑡) are the time-dependent Euler angles for transformation from the 
principal axis system (P) of the molecule to the director (D) frame, and ΩDL are the Euler angles 
for the static transformation from the director (D) to the laboratory (L) axis system. 
 
 Director-frame spectral densities versus laboratory-frame spectral densities.  To make a 
comparison of the NMR relaxation times and order parameters to the results of MD simulations, 
we need to recognize that the time-dependent lipid fluctuations occur with respect to the frame 
of the director. This introduces a dependence on both the second-rank order parameter 〈𝑃#〉 and 
the fourth-rank order parameter 〈𝑃J〉 (9).  Hence to compare the experimental NMR relaxation 
rates to the MD calculated values, we need to specify the director orientation with respect to the 
laboratory frame.   
 
 By applying closure (see above Eq. S7) to the overall correlation functions, and following the 
development through to the laboratory frame, we find that: 
 

𝐺:lab(𝑡) = ∑ �𝐷0!	
(#)(ΩDL)�

#
𝐺!dir(𝑡)Q  ,       (S8) 

 
where 

𝐺!dir(𝑡) = 〈[𝐷'!
(#)(Ω?R; 𝑡) − 〈𝐷'!

(#)(Ω?R)〉]∗	[𝐷'!
(#)(Ω?R; 0) − 〈𝐷'!

(#)	(Ω?R)〉]〉 . (S9) 
 
The director-frame correlation functions can also be written by subtracting the modulus-squared 
of the average value: 
 

𝐺!dir(𝑡) = 〈𝐷'!
(#)∗(Ω?R; 𝑡)𝐷'!

(#)(Ω?R; 0)〉 − |〈𝐷'!
(#)	(Ω?R)〉|#	. 

(S10) 
 
 Similarly, for the laboratory-frame spectral densities, upon Fourier transformation we find 
that: 
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𝐽:lab(𝜔) =|�𝐷0!	
(#)(ΩDL)�

#
𝐽!dir(𝜔)

Q

	, 

(S11) 
where:  

𝐽!dir(𝑡) = Re �⟨[𝐷'!
(#)(Ω?R; 𝑡) − 〈𝐷'!

(#)(Ω?R)〉]∗	[𝐷'!
(#)(Ω?R; 0) − 〈𝐷'!

(#)	(Ω?R)〉]	⟩𝑒E)F*𝑑𝑡	.
G

EG

 

(S12) 
In the above formulas the values of the Wigner rotation matrix elements 𝐷0!	

(#)(ΩPD) can be found 
from the geometry of the system.  The expressions for the Wigner rotation matrix elements are 
listed, e.g., in the Appendix of Ref. (11). 
 
 Orientational averaging of relaxation rates.  In randomly oriented lipid membrane 
dispersions (so-called multilamellar vesicles or MLVs), the orientations where the director axis is 
perpendicular to the main magnetic field are most probable (because they correspond to the 
equator of the orientational probability distribution, where the area element is maximal).  For 
non-oriented (powder-type) samples, in solid-state NMR spectroscopy, the 𝜃 = 90∘  spectral 
edges (where 𝜃 ≡ 𝛽DL) correspond to weak singularities (integrable) in the spectral orientational 
distribution function.  They are the most prominent spectral features for which the relaxation 
rates are measured.  However, because of lateral diffusion of the lipids in non-oriented powder-
type distributions, i.e., multilamellar dispersions or MLVs, during the relaxation times (tens of 
milliseconds) the relaxation rates are averaged over all director orientations.  Hence, the 
orientation dependence of the relaxation is suppressed, or averaged (16), and one can thus 
assume the orientationally averaged limit. 
 
 When the director changes its orientation rapidly compared to the relaxation times, the 
Wigner rotation matrix elements for the director–laboratory frame transformation are averaged 
over the various possible values.  Orientational averaging of the director with respect to the 
laboratory frame is defined with respect to the spin-lattice relaxation times, which are typically 
in the range of ~50–100 ms or longer (17). In this case, the mean-square Wigner rotation matrix 
elements for the frame transformation are averaged to their isotropic values, leading to: 
⟨|𝐷'!

(#)(Ω?R)|#⟩ = 1/5. It follows that the dependence on the projection index (m) in the lab 
frame is lost due to the overall spherical symmetry.  However, that does not imply the absence 
of a projection index (p) in the director frame.  Quite to the contrary, the fluctuations are of 
limited amplitude with respect to the director as characterized by the orientational order 
parameters 〈𝑃T(𝛽PD)〉  where j = 2, 4 in the case of NMR spectroscopy. 
 
 Hence, in the orientationally averaged case (16), the spectral densities are: 
 

𝐽:;<=(𝜔) = 	 〈𝐽:;<=(𝜔)〉 ≡ 	𝐽(𝜔) =
1
5 c𝐽'

dir(𝜔) + 2𝐽4dir(𝜔) + 2𝐽#dir(𝜔)d	, 
        (S13) 
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where the dependence on the projection index (m) in the laboratory frame vanishes due to the 
spherical symmetry.  The spin-lattice relaxation rates are thus: 
 

𝑅1Z =
I
J
𝜋#𝜒Q#	[𝐽(𝜔') 	+ 	4𝐽(2𝜔')]	.    (S14) 

 
 
 Correspondence to molecular dynamics (MD) simulations.  The director-frame spectral 
density functions 𝐽!dir(𝜔) describe the internal motions within the membrane and afford a direct 
correspondence to the results of molecular dynamics (MD) simulations. Typically, one can 
assume that the NMR relaxation rates are orientationally averaged as described above (for either 
SUVs or MLVs).  The final result appropriate to molecular dynamics (MD) simulations can then be 
written explicitly as: 

𝑅1Z =
3
20𝜋

#𝜒Q#	{𝐽'dir(𝜔') + 4𝐽'dir(2𝜔') 

            +2[𝐽4dir(𝜔') + 4𝐽4dir(2𝜔')]  

            +2[𝐽#dir(𝜔') + 4𝐽#dir(2𝜔')]}	, 
(S15) 

where: 

𝐽!dir(𝜔) = Re � 𝐺!dir(𝑡)𝑒E)F*
G

EG

𝑑𝑡	, 

(S16) 
and 𝐺!dir(𝑡)  is given by Eq. S9.  The value of the numerical pre-factor is (3/
20)𝜋#(1.70	𝑥	10K	sE4)# = 4.2785	𝑥	104'	sE#. 
 
 The above correlation function decays to a zero value because the fluctuations occur about 
to the average values of the Winger rotation matrix elements.  The director-frame correlation 
functions can also be written by subtracting the modulus-squared of the average value in which 
case 𝐺!dir(𝑡) reads as in Eq. S10. For a cylindrically symmetric distribution the last term on the 
right of Eq. S10 becomes: |〈𝐷'!

(#)	(Ω?R)〉|#𝛿'! where 𝛿'! is the Kronecker delta function.  In the 

correlation function the term on the left decays to a non-zero value as given by |〈𝐷'!
(#)	(Ω?R)〉|#, 

which is then subtracted.  These formulas lend themselves directly to molecular dynamics (MD) 
simulations. 
 
 Orientationally averaged relaxation rates in terms of spherical-harmonic spectral densities.  
For completeness, the results for the orientationally averaged relaxation rates can also be 
expressed in terms of the spherical-harmonic correlation functions (see above). Here we have 
the substitutions (see above): (3/4)𝜋#𝜒Q# 	→ 	 (3/10)𝜋𝜒yQ#  and 𝐽:(𝜔) 	→ 	 𝐽w:(𝜔) to obtain the 
equivalent results in terms of the spherical-harmonic correlation functions and spherical-
harmonic spectral densities (indicated by the tilde on the right that is to be noted).  Everything 
else is the same.  The result is: 
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𝑅1Z =
3
50𝜋𝜒yQ

#	{𝐽w'dir(𝜔') + 4𝐽w'dir(2𝜔') 

           +2[𝐽w4dir(𝜔') + 4𝐽w4dir(2𝜔')]  

           +2[𝐽w#dir(𝜔') + 4𝐽w#dir(2𝜔')]}	, 
(S17) 

where the tildes on the right are to be noted. The spherical harmonic-correlation functions are 
given by: 
 

𝐺s!dir(𝑡) = ⟨[𝑌#!(Ω?R; 𝑡) − 〈𝑌#!(Ω?R)〉]∗	[𝑌#!(Ω?R; 0) − 〈𝑌#!(Ω?R)〉]⟩	. 
.(S18) 

In the above formula ΩPD = (0, 𝛽PD, 𝛾PD)  = (−𝜃,−𝜙)  are now the angles (either Euler or 
spherical polar) for the transformation from the PAS to director frame which are isomorphous to 
those in Fig. S1.  The director-frame correlation functions can also be written by subtracting the 
modulus-squared of the average value: 
 

𝐺s!dir(𝑡) = 〈𝑌#!∗ (Ω?R; 𝑡)𝑌#!(Ω?R; 0)〉 − |〈𝑌#!(Ω?R)〉|#	. 
(S19) 

where for a cylindrically symmetric distribution, the last term on the right becomes 
|〈𝑌#!(Ω?R)〉|#𝛿'!  where 𝛿'!  is the Kronecker delta function.  Note that Eqs. S20 and S21 are 
distinctly different from the correlation function obtained by application of the spherical-
harmonic addition theorem (Eq. 22 in main text) which ignores the dependence on a director axis 
as illustrated in Fig. 8 A in the main text. 
 
 The results above (Eqs. S9, S15, and S16) should be used to compare MD simulations to the 
experimental NMR relaxation rates.  In the case of MD simulations, the lipid bilayer exists as a 
patch while for experimental NMR studies it is the entire membrane.  The lipid fluctuations are 
considered relative to the frame of the membrane patch, which we can assume is defined by the 
lamellar normal.  The correlation functions correspond to the Wigner rotation matrix elements, 
which are listed in Ref. (11).  To compare to the experimental NMR relaxation rates, the director-
frame correlation functions are used together with the orientationally averaged results for the 
NMR spin-lattice relaxation rate, given above. 
 
 Notably, the correlation functions 𝐺!dir(𝑡) and the spectral densities 𝐽!dir(𝜔) in closed form 
can be factored into their mean-square amplitudes and reduced values as already indicated 
above.  The reduced correlation functions can correspond to an exponential decay, power law, 
or stretched exponential decay as mentioned above, and correspondingly in the Fourier 
frequency domain for the reduced spectral densities.  However, in the case of MD simulations 
the correlation functions and spectral densities are evaluated numerically.  They can then be fit 
or tested against the simple analytical forms, both for validation and as a test of the closed-form 
theory. 
 
 Reduction to the isotropic solution NMR limit.  Lastly, if one assumes unrestricted isotropic 
motion with a single correlation time, then the dependence on the projection index (p) due to 



 26 

the molecular principal axis vanishes because of the spherical symmetry. Summing over all the 
reduced spectral densities leads to the well-known isotropic solution NMR result, which reads: 
 

𝑅1Z =
3
20𝜋

#𝜒Q#	[𝑗(𝜔') + 4𝑗(2𝜔')]	. 
(S20) 

Here 𝑗(𝜔) = 2𝜏C/(1 + 𝜔#𝜏C#) is a Lorentzian reduced spectral density for the molecular motions 
with 𝜏C  as the single correlation time.  Equivalently, the above result can be expressed using 
angular frequency units for the coupling constant and one-sided Lorentzian spectral densities, 
giving: 

𝑅1Z =
3
40𝜒yQ

#	[𝚥̃(𝜔') + 4𝚥̃(2𝜔')]. 
(S21) 

where 𝚥(̃𝜔) = 	 (1/2)𝑗(𝜔) = 𝜏C/(1 + 𝜔#𝜏C#) and where the invisible tilde is again to be noted.  
The numerical value of the prefactor is (3/40)(4𝜋#)(1.70	𝑥	10K	sE4)# = 8.5570	𝑥	104'	sE# as 
stated in Ref. (14).  Note that compared to solid-state NMR results (see above), the solution NMR 
formulas consider unrestricted rotations of the molecule, i.e., in the absence of a director axis or 
orientational order parameters. 
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