Supplemental Tables

Adaptation to spindle assembly checkpoint inhibition through the selection of specific aneuploidies

Manuel Alonso Y Adell^{1*}, Tamara C. Klockner^{1*}, Rudolf Höfler¹, Lea Wallner¹, Julia Schmid¹, Ana Markovic¹, Anastasiia Martyniak¹, Christopher S. Campbell^{1@}

¹Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), A-1030 Vienna, Austria

*: Authors contributed equally @: Corresponding author Email: christopher.campbell@univie.ac.at Phone: +43-1-4277-74418 Fax: +43-1-4277-9562 Address: Dr. Bohr-Gasse 9/5, A-1030 Vienna, Austria

Key words: Aneuploidy Patterns – Chromosomal Instability – Spindle Assembly Checkpoint – Drug Resistance Mechanisms – MPS1

Cell line	Tissue	Phenotype	Sex	Culture Medium	Source
hTERT- RPE1	Retina epithelial	Adherent	Female	DMEM (Sigma-Aldrich) + 2 mmol L-Glutamine (Gibco) + 1mM Natrium- Pyruvate (Sigma-Aldrich)	I. M. Cheeseman (University of California, USA)
hTERT- HME1	Mammary gland epithelial	Adherent	Female	MEBM (Lonza) + 2 mmol L-Glutamine (Gibco) + 1mM Natrium- Pyruvate (Sigma-Aldrich)	Evercyte (Cat#: CHT-044-0236)
DLD1	Colorectal cancer	Adherent	Male	RPMI-1640 (ATCC) (Sigma-Aldrich)	M. Baccarini (Max Perutz Labs, Austria)
HCT116	Colorectal cancer	Adherent	Male	McCoy's 5A (Sigma- Aldrich) + 2 mmol L-Glutamine (Gibco) + 1mM Natrium- Pyruvate (Sigma-Aldrich)	B. Vogelstein (The Johns Hopkins Oncology Center, USA)
diploid HAP1 (dipHAP1)	Chronic myeloid leukemia (CML)	Adherent	Male	IMDM (Sigma-Aldrich)	J.I. Loizou (CeMM, Austria)
EEB	Acute myeloid leukemia (AML)	Suspension	Male	SFEM (STEMCELL Technologies)	Riken (RCB2345)

All culture media were supplemented with 10% FBS and 1% Penicillin-Streptomycin.

Supplemental Table 1. Cell lines used in this study and their culture medium.

Cell line	Karyotype deviations from euploidy
parental RPE1	Segmental chr. 10q gain
RPE1 TP53 KO	Segmental chr. 10q gain
parental HME1	segmental loss of 3p, loss of chr. 4, segmental gain & loss of chr. 7q, chr. 10 isochromosome, chr. 12p gain
HME1 TP53 KO	segmental gain of 3p, loss of chr. 4p, gain of chr. 4q, segmental gain & loss of chr. 7q, chr. 10 isochromosome, chr. 12p gain
parental HAP1	Segmental chr. 15q gain
dipHAP1 TP53 KO	Segmental chr. 15q gain
parental EEB	none
EEB TP53 KO	none
parental DLD1	Segmental chr. 2p gain
DLD1 TP53 KO	Segmental chr. 2p gain
parental HCT116	Segmental gains of chromosomes 8q, 10q 16q and 17q
НСТ116 ТР53 КО	Segmental gains of chromosomes 8q, 10q, 16q and 17q, segmental 4q loss (above 1.6 threshold)

Supplemental Table 2. Karyotype deviations of the parental cell lines used in this study.

Name	Sequence	Reference
Chromosome arm 6p deletion		
sgRNA 6p A	ACGGTTTCATTAGTCATACC	This paper
sgRNA 6p B	GGGACCGTCACCCTAATAGG	This paper
sgRNA 6p C	TGGAATATTGTTCACCTTTA	This paper
Chromosome arm 13q deletion		
sgRNA 13q A	GGGGGAGTGAATGTGAGTGA	This paper
sgRNA 13q B	ATATATGGGGTATACGTATA	This paper
sgRNA 13q C	TGGGTTACTTACCGACCGTG	This paper
sgRNA 13q D	GATAATACGATAGGCCAGTG	This paper

Supplemental Table 3. sgRNAs that were used for the generation of whole or partial chromosome deletions. Further Illustration in Figure S10 B.

Name		Sequence	Reference	
Chromos	some	6p deletions	·	
EXOC2	fw	ATGTCTCGATCACGACAACCC	PrimerBank, ID:	
	rev	GGCCAGTCCCCAGATTTTCT	30581133c1	
DST	fw	CTACCAGCACTCGAACCAGTC	PrimerBank, ID:	
	rev	GCCGAAGCTAATGCAAGAGTTG	291290967c1	
Chromosome 13q deletions Spandidos et al.				
ZMYM5	fw	AGAGTTGACTGAACAGACTCCT	PrimerBank ID:	2010
	rev	GACCAAATGAATCCCCTATGTCC	218083691c1	
GPC5	fw	GGTGTGACTGACAGTTCCCTG	PrimerBank, ID:	
	rev	TGCAGATAGTCTGTGGTGTTGAT	215272348c3	
Control primer				
ALB	fw	TGTTGCATGAGAAAACGCCA	-	
(chr4)	rev	GTCGCCTGTTCAACCAAGGAT	Bremer et al. 2015	

Supplemental Table 4. QPCR primers used to identify whole and partial chromosome deletions. Primer binding sites for chr. 6p and 13q are illustrated in Figure S10 B.

Name	Seq	uence	Reference	
p53	fw	CACCGACTTCCTGAAAACAACGTTC	Ciacomolli et al. 2018	
	rev	AAACGAACGTTGTTTTCAGGAAGTC	Giacomeni et al. 2018	
p21	fw	CACCGCCGCGACTGTGATGCGCTAA	McKinley and Cheeseman	
	rev	AAACTTAGCGCATCACAGTCGCGGC	2017	
p31 ^{comet}	fw	CACCGACTTGAGACAAGCTCTACGC	Thu et al. 2018	
	rev	AAACGCGTAGAGCTTGTCTCAAGTC		
CDC16	fw	CACCGCTCTAGATAACCGAACCC	This paper	
	rev	AAACGGGTTCGGTTATCTAGAGC	This paper	

Supplemental Table 5. SgRNAs used in this study for the generation of heterozygous and homozygous knockout cell lines. Underlined sequence represents added overhangs for the creation of dsDNA oligos that can be cloned into the gRNA/Cas9 plasmid, see Methods.

Name	Sequence			
p53	fw	TTATAGGGAGGTCAAATAAGCAGCA		
	rev	ATCTACAAGCAGTCACAGCACAT		
n 21	fw	GCCCGGCCAGGTAACATAGTG		
pzi	rev	GTGACAGGTCCACATGGTCTTC		
n 24 comet	fw	GCGTATGTCGGAGTGCCTGC		
p3100	rev	GTGCTTAAGCTGTTCATAGG		
CDC16	fw	CTATGATCGCACCACTGAACTC		
	rev	TGTCAGCATGTGATGTGATGTT		

Supplemental Table 6. Genotyping primers used for the identification and analysis of generated knockout cell lines.

Name	Sequence
Scrambled	Scramble siRNA (Dharmacon/smartpool format - D-001810-10-05)
MAD2	siMAD2 (Dharmacon/smartpool format – L-003271-00- 0005)

Supplemental Table 7. SiRNA used in this study for the depletion of MAD2.

Name	gRNA Sequence	Reference	
	GCGTCGCCGCAGTGTGGGGG	This paper, gRNAs were selected using CHOPCHOP,	
p31 ^{comet}	GCGCGGGCCCCGTGCTCAAG	(https://chopchop.cbu.uib.no, (Labun et al. 2019))	
	GTAACCTAGCGTAGTCACAGT		
CDC16	GTGGGCTTCTGGTTGCCTTG	Horlbeck et al. 2016	

Supplemental Table 8. gRNAs used for the overexpression of $p31^{comet}$ and CDC16 via CRISPRa, see Fig. S15A.

Name	Sequence		
O Acomet	fw	GAGAAGTCCGAAGAAACTCACG	
psr	rev	CCGAAGCGTTGAGAGGTTCC	
00046	fw	TCCTGTGTCTTGGTTTGCAG	
CDC10	rev	CAGAGCTTGGCTGAAGAACC	
GAPDH	fw	TTGACCTCAACTACATGGTTTAC	
	rev	AGGAGGCATTGCTGATGATC	

Supplemental Table 9. RT-qPCR primers used for the identification of the fold change of p31comet and CDC16 in the dCas9-VPR-mCherry WT cell line, see Fig. S15C.

References

Bremer S, Fløisand Y, Brinch L, Gedde-Dahl T, Bergan S. 2015. Glutathione Transferase Gene Variants Influence Busulfan Pharmacokinetics and Outcome After Myeloablative Conditioning: *Therapeutic Drug Monitoring* **37**: 493–500.

Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, et al. 2018. Mutational processes shape the landscape of TP53 mutations in human cancer. *Nat Genet* **50**: 1381–1387.

Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, et al. 2016. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. *eLife* **5**: e19760.

Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. 2019. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. *Nucleic Acids Research* **47**: W171–W174.

McKinley KL, Cheeseman IM. 2017. Large-Scale Analysis of CRISPR/Cas9 Cell-Cycle Knockouts Reveals the Diversity of p53-Dependent Responses to Cell-Cycle Defects. *Developmental Cell* **40**: 405-420.e2.

Spandidos A, Wang X, Wang H, Seed B. 2010. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. *Nucleic Acids Research* **38**: D792–D799.

Thu KL, Silvester J, Elliott MJ, Ba-alawi W, Duncan MH, Elia AC, Mer AS, Smirnov P, Safikhani Z, Haibe-Kains B, et al. 2018. Disruption of the anaphase-promoting complex confers resistance to TTK inhibitors in triple-negative breast cancer. *Proc Natl Acad Sci USA* **115**: E1570-E1577.