SUPPLEMENTARY INFORMATION

Expansion of Human Megakaryocyte-biased Hematopoietic Stem Cells by Biomimetic Microniche

Yinghui Li et al.

Н

Supplementary Figure 1. Characters of Microniche and *in vitro* **culture data with Microniche. a** Physical parameters of Microniche tablets. *Digested by 3D FloTrix[®] Digest. **b** Appearance and size of Microniche tablets. The diameter and thickness of the tablets were measured using an electronic digital caliper. The graphs represent a mean of three independent mesurements (10 replicates analysed in each). **c** Solubility diagram of Microniche tablets in PBS and cell culture medium. **d** Scanning electron microscope images of Microniche. Scale bar, 500 µm (left) and 200 µm (middle and right). **e** Flow cytometry gating strategies for HSPC and and HSC subpopulations during *in vitro* culture. **f** Representative FACS profiles of CD34⁺ and CD34⁺CD38⁻ populations in UCB CD34⁺ cells before (fresh) and after cultured in control medium or control medium supplemented with SR1 (1µM), UM171 (40nM), PVA (0.1%) or Microniche. Fresh, *n* = 3 technical replicates; Microniche, *n* = 3 biological replicates; Other groups, *n* = 4 biological replicates. **g** Representative FACS profiles of CD34⁺ and CD34⁺CD38⁻ populations in UCB, PB or BM MNCs before (fresh) and after culture in control medium, or control medium supplemented with SR1 (1µM), UM171 (40nM), UM171 (40nM) or Microniche. For BM and PB MNCs, *n* = 3 biological replicates; for UCB MNCs, fresh *n* = 4 technical replicates and other groups *n* = 3 biological replicates; for UCB MNCs, fresh *n* = 4 technical replicates and other groups *n* = 3 biological replicates; for UCB MNCs, fresh *n* = 4 technical replicates and other groups *n* = 3 biological replicates; for UCB MNCs, fresh *n* = 4 technical replicates and other groups *n* = 3 biological replicates. **b** Representative FACS profiles of CD34⁺CD38⁻CD49f⁺ populations derived from AA patient 3 after culture.

hCD41a

Dose (number of initial CD34+ cells)

Supplementary Figure 2. Ex vivo culture data with Microniche. a Schematic representation of the LDA experiment design. NOG mice were transplanted with different day 0 equivalent cell doses of fresh (fresh) UCB CD34⁺ cells or their progeny cultured with or without Microniche for 7 days. b Limit dilution analysis of NOG engraftment at 16 weeks post-transplantation. The table summarizing primary and secondary engraftment and stem cell frequency. If an obvious positive cell cluster was observed, the mice were considered to be successfully engrafted regardless of the portion of hCD45⁺. Stem cell frequency analyzed by Chi-square test. c Representative FACS profiles of the engrafting human CD45⁺ cells in DAPI⁻ cells, human myeloid (hCD33⁺) and B-lymphoid (hCD19⁺) cells in hCD45⁺ cells, human megakaryocytes (hCD41a⁺) in hCD45⁻ cells in PB of primary NOG mice 16 weeks post-transplantation. d Representative FACS profiles of the engrafting human CD45⁺ cells and multilineage reconstitution in BM of primary NOG mice 16 weeks posttransplantation. Human myeloid (hCD33⁺), B-lymphoid (hCD19⁺), T-lymphoid (hCD3⁺), natural killer cells (NK, hCD56⁺), hematopoietic stem (hCD34⁺CD38⁻) and progenitor (hCD34⁺CD38⁺) cells in mCD45⁻hCD45⁺ cells and erythroid lineage (hCD71+CD235a, hCD71+CD235a+, hCD71-CD235a+) in mCD45-hCD45-mTer119mCD71⁻ cells are shown. e Relative distribution of myeloid, B-lymphoid, T-lymphoid and NK cells as a percentage of hCD45⁺ cells in BM of primary engrafted NOG mice. Fresh n = 15, Control n = 5, Microniche n= 16 biologically independent animals. Data are means \pm s.d. and no significant difference between groups. f Representative FACS profiles of the engrafting human CD45⁺ cells and graph of limit dilution analysis of secondary engraftment. Chi-square test. Solid lines indicate best-fit linear model and dashed lines confidence intervals.

Dose (number of initial CD34⁺ cells)

Supplementary Figure 3. Effect of Microniche on Mk lineage. a Representative FACS profiles of LKS⁺CD34⁻CD150⁺CD48⁻ (LT-HSC) and LKS⁺CD34⁻CD150⁺CD48⁻CD229⁻ (Mk-biased HSC) in cultured (day 7) mice c-Kit⁺ cells. The percentage and the absolute number of LT-HSC and Mk-biased HSC are shown (n = 6 biological replicates). All data represent means ± s.d.; unpaired two-tailed Student's *t*-test. **b** Formation of mouse megakaryocytic colonies (CFU-Mk) in a collagen-based culture system (n = 3 biological replicates). All data represent means ± s.d.; unpaired two-tailed Student's *t*-test. **b** Formation of shown. Scale bars, 100 µm. Colony size: middle (20 to 50 cells), or large (>50 cells). **c** Human CFU-Mk (n = 3 biological replicates). All data represent means ± s.d.; unpaired two-tailed Student's *t*-test. Representative morphology images are also shown. Scale bars, 100 µm. Colony size: middle (20 to 50 cells), or large (>50 cells). **c** Human CFU-Mk (n = 3 biological replicates). All data represent means ± s.d.; unpaired two-tailed Student's *t*-test. Representative morphology images are also shown. Scale bars, 100 µm. **d** Flow cytometry gating strategies for HSC and and Mk subpopulations during long-term culture *in vitro*. **e-f** Graphs and boxplots of Mk-HSC frequencies based on phenotype-defined subpopulations mCD45⁻hCD45⁻mCD41⁻mCD42d⁻mCD61⁻hCD41a⁺hCD61⁺hCD42b⁻ (**e**) and CD45⁻hCD45⁻mCD41⁻mCD42d⁻mCD61⁺hCD42b⁺ (**f**) 16 weeks after transplantation. Fresh n = 43, Control n = 30, Microniche n = 36 biologically independent animals. Chi-square test. Solid lines indicate best-fit linear model and dashed lines confidence intervals. Box plots show the median (middle line) with the 25th and 75th percentiles (box).

→ hCD33

► hCD45

→ hCD41a

→ hCD33

→ hCD3

→ hCD34

➤ hCD235a

→ hCD41a → hCD71

Supplementary Figure 4. Large-scale dynamic culture condition screening. a-c Representative FACS profiles of CD34+, CD34+CD38, CD34+CD38-CD45RA-CD90+, and CD34+CD38-CD45RA-CD90+CD49f+ populations in UCB MNCs before (fresh = day 0, n = 3 technical replicates) and after cultured with the Microniche for different days (n = 3 biological replicates) (**a**), reactor speeds (n = 4 biological replicates) (**b**) and Microniche doses (n = 4 biological replicates) (c) in a dynamic stirred bioreactor. d-f Statistics of fold changes in absolute counts of the indicated cell populations at different time points (d), reactor speeds (e) and Microniche doses (f) compared to fresh. Fresh, n = 3 technical replicates; Microniche, n = 3 or 4 biological replicates. All data represent means ± s.d. g Schematic representation of the LDA experiment design of bulkculture. h Limit dilution analysis of NCG engraftment at 16 weeks post-transplantation. The table summarizing hCD45⁺ and hCD41a⁺ engraftment, and stem cell frequency. If no less than 0.01% mCD45⁺hCD45⁺ cells or no less than 0.01% hCD41a+ cells in mCD45^{-h}CD45^{-m}CD41^{-m}CD42d^{-m}CD62⁻ population were observed, the mice were considered to be successfully engrafted or Mk reconstructed. HSC and Mk-biased HSC frequencies analyzed by Chi-square test. i Representative FACS profiles of the engrafting human CD45⁺ cells in DAPI⁻ mCD45⁻ cells, human myeloid (hCD33⁺) and B-lymphoid (hCD19⁺) cells in mCD45⁻hCD45⁺ cells, human megakaryocytes (hCD41a⁺) in DAPI⁻mCD41⁻ cells in PB of primary NOG mice 8 weeks post-transplantation. j Representative FACS profiles of the multilineage reconstitution in BM of NCG mice 16 weeks posttransplantation. Human myeloid (hCD33⁺), B-lymphoid (hCD19⁺), T-lymphoid (hCD3⁺), natural killer cells (NK, hCD56⁺), hematopoietic stem (hCD34⁺CD38⁻) and progenitor (hCD34⁺CD38⁺) cells in mCD45⁻hCD45⁺ cells and erythroid lineage (hCD71+CD235a-, hCD71+CD235a+, hCD71-CD235a+) in mCD45-hCD45-mTer119mCD71⁻ cells are shown. k Representative FACS profiles of Mk reconstruction in BM mCD45⁻ hCD45⁺hCD34⁺hCD38⁺ cells of NCG mice at 16 weeks post-transplantation.

Supplementary Figure 5. Special subpopulation maintained by Microniche. a Representative FACS profiles showing CD49f distribution in UCB CD34⁺ cells and BM MNCs before (fresh) and after culture in Microniche or control generated by gating CD34+CD38-CD45RA-CD90+ cells. b Experimental diagram of xenograft using CD49flow and nonCD49flow cells from CD34+CD38-CD45RA-CD90+. c Upper panel: Representative FACS profiles of Mk reconstitution in BM mCD45 hCD45 mCD41 mCD42d mCD61 cells of NOG mice 16 weeks post-transplantation with sorted CD49flow (CD34+CD38-CD45RA-CD90+CD49flow) or nonCD49flow (CD34+CD38-CD45RA-CD90+CD49fneg&high cells). Lower panel: The proportion of successful reconstitution of Mk lineage based on hCD41a expression in BM mCD45 hCD45 mCD41 mCD42d mCD61 cells of NOG mice. d Platelet (PLT) counts in PB of recipients at week 16 post-transplantation. Fresh-CD49flow n = 7, Fresh-nonCD49f^{low} n = 12, Microniche-CD49f^{low} n = 9, Microniche-nonCD49f^{low} n = 7 biologically independent animals. All data represent the means ± s.d.; unpaired two-tailed Students' t-test. e Pseudotime analysis by Monocle 2 (left). Trajectory analysis combining four cell clusters indicates the developmental path from C2 to C4 (right). f Representative FACS profiles of CD62L⁻CD133⁺ distribution within CD34⁺CD38⁻ CD45RA-CD90+CD49fneg/low/high subpopulations of BM MNCs before (fresh) and after 7 days of culture in control or control medium supplemented with SR1 (1µM), UM171 (40nM) or Microniche. g Representative FACS profiles and fold change of absolute counts of UCB MNC CD34+CD38-CD45RA-CD90+CD49flow and CD34+CD38-CD45RA-CD90+CD49flowCD62L-CD133+ subpopulations before (fresh) and after 3 days of expansion in a Microniche-based bioreactor. Fresh, n = 4 technical replicates; Microniche, n = 4 biological replicates. All data represent means ± s.d.; unpaired two-tailed Students' t-test. h Experimental diagram of xenograft using sorted CD62L⁻CD133⁺ and non-CD62L⁻CD133⁺ (in CD34⁺CD38⁻CD45RA⁻CD90⁺CD49f^{low}) populations derived from cultured UCB MNCs in a Microniche-based bioreactor. CD62L-CD133+ 1000, 500, 100, 50 group n = 15, 14, 15, 10; non-CD62L⁻CD133⁺ 1000, 500, 100, 50 group n = 3, 12, 18, 17 biologically independent animals. i Log percentage level of hCD41a⁺ cells in mCD45 hCD45 mCD41 mCD42d mCD61 population of recipient BM cells. j Percentage level of mCD45⁺hCD45⁺ cells in recipient BM cells. k Platelet (PLT) counts in PB of recipients at week 16 post-transplantation under different doses of transplanted cells. All data represent the means ± s.d.; unpaired two-tailed Students' t-test. NS, not significant.

Supplementary Figure 6. Data of RNA sequencing and 10X Genomic single-cell RNA sequencing. a-d, RNA-seq profiling of Microniche cultured UCB CD34⁺ cells. **a** Volcano plot of differentially expressed genes (DEGs) between Microniche and Control groups. Red, 273 upregulated DEGs; Green, 5 downregulated DEGs. DEGs with the adjusted p-value (padj) <0.05 and |Log₂(FoldChange)| >1. **b** The major GO:MF terms showing enriched expression with padj <0.05 in Microniche-cultured CD34⁺ cells as indicated in Fig. 5a. **c** KEGG pathways enrichment analysis with padj <0.05. Colors represent padj and bubble size encodes the count of DEGs annotated to the KEGG pathway. GeneRatio represents the proportion of proteins (gene products) in the correspondent abundance groups that is found in each category. **d** GSEA enrichment plots of the gene sets enriched in Microniche versus control, as indicated in Fig. 5b. Genes were ranked using Signal-to-Noise ratio statistics according to their correlation. Vertical black lines mark the position of each gene in the data set. Normalized Enrichment Score (NES) and Nominal *P*-value (NOM *P*-val) are shown. **e** Identification of nine cell clusters in control and Microniche cultures visualized by UMAP in 10X genomics single cell RNA-seq profile of CD34⁺ cells sorted after culture. Each dot represents one cell, and colours represent distinct cell clusters (C0-C8). **f** Heatmap showing distinct cell clusters (identified by UMAP) annotated by the expression of feature genes in 10X Genomic single-cell RNA sequencing. Relative to Fig. 5e.

Enrichment plot:

G UP

Rank in Ordered Dataset

NES=2.00 NOM P-Val=0

Outside

25,000 30,00

Ranking metric scores

score (ES)

0.05

Inside

6,000

Enrichment profile — Hits

е

NES=1.91 NOM P-Val=0

NES=1.34 NOM P-Val=0.03

NES=1.43 NOM P-Val=0.01

Supplementary Figure 7. Data of FACS profiles and RNA sequencing of cultured cells inside and outside Microniche. **a** The elasticity of different microcarriers based on the Young's modulus data. **b** Representative FACS profiles of CD34⁺ (P1) and CD34⁺CD38 (P2) populations in UCB CD34⁺ cells before (fresh) and after culturing in control medium or control medium supplemented with Cytodex3, Cytopore1, Gelatin, Microcarrier W01, or Microniche. Fresh, n = 3 technical replicates; other groups, n = 3 biological replicates. **c** The major GO:MF terms showing enriched expression with padj <0.05 in cultured cells inside Microniche as indicated in Figure 6g. **d** KEGG pathways enrichment analysis with padj <0.05. Colours represent padj and bubble size represents the count of DEGs annotated to the KEGG pathway. GeneRatio represents the proportion of proteins (gene products) in the correspondent abundance groups that is found in each category. **e** GSEA enrichment plots of the gene sets enriched in cultured cells inside versus outside the Microniche, as indicated in Fig. 6h. Genes were ranked using Signal-to-Noise ratio statistics according to their correlation. Vertical black lines mark the position of each gene in the data set. Normalized Enrichment Score (NES) and Nominal *P*-value (NOM *P*-val) are shown.

Figure S8

0 -

Supplementary Figure 8. The role of CXCR4 in expansion of HSCs by Microniche. a Representative FACS profiles of CD34⁺ (P1), CD34⁺CD38⁻ (P2), CD34⁺CD38⁻CD45RA⁻CD90⁺ (P3), CD34⁺CD38⁻CD45RA⁻CD90⁺CD49f^{low} (P4), and CD34⁺CD38⁻CD45RA⁻CD90⁺CD49f^{low}CD62L⁻CD133⁺ (P5) populations in UCB CD34⁺ cells before (fresh) and after culture in control, control medium supplemented with 1 ng/mL or 10 ng/mL human CXCL12 protein, Microniche. or Microniche supplemented with 0.04 nM or 0.08 nM LY2510924. **b** Percentages and absolute counts of live cells, P1, P2, P3, P4, and P5 populations before (fresh) and after 7 days *in vitro* culture assay of (**a**). Fresh, *n* = 4 technical replicates; other groups, *n* = 4 biological replicates. All data represent the means \pm s.d.; unpaired two-tailed Students' *t*-test. Comparisons with control unless otherwise indicated; **P* < 0.05; ***P* < 0.01; ****P* < 0.001; *****P* < 0.0001; ns = not significant.

Supplementary Table 1. Information on AA patient specimens. Proportion and absolute counts of total, CD34⁺CD38⁻, and CD34⁺CD38⁻CD49f⁺ cells derived from AA patient BM MNCs after 7 days in culture are shown (n = 1 for AA1-5). # denotes absolute counts, % denotes percentage in live cells. For AA6 and AA8, n = 3 mice; For AA7, n = 6 (control) and 4 (Microniche) mice.

Disease		Total cells		CD34+CD38-			CD34+CD38-CD49f+						
Specimen	severity at	Control	Microniche	Co	ntrol	Microniche		Control		Microniche		Assay	Additional info.
140.	diagnosis	# (×10 ⁵)	# (×10⁵)	%	# (×10³)	%	# (×10³)	%	# (×10 ³)	%	# (×10 ³)	-	
AA1	AA	1.72	1.56	0.16	0.27	0.82	1.28	0.12	0.20	0.66	1.03		
AA2	AA	0.70	0.92	1.02	0.71	1.50	1.38	0.40	0.28	1.47	1.36	<i>in vitro</i> culture	
AA3	AA	0.90	1.01	0.23	0.21	3.36	3.39	0.11	0.10	3.26	3.30		1×10 ⁵ MNCs/well, 14 days <i>in vitro</i> culture
AA4	NSAA	1.10	1.30	0.11	0.12	0.39	0.51	-	-	-	-		
AA5	NSAA	1.50	1.40	0.14	0.21	0.74	1.04	-	-	-	-	-	
AA6	AA -								2×10 ⁵ MNCs/well, 12 days <i>in</i> <i>vitro</i> culture; i.v. 2×10 ⁵ cultured cells				
AA7	AA					-						NOG transplantation	2×10 ⁵ MNCs/well, 12 days <i>in</i>
AA8	AA					-							5×10 ⁴ cultured cells

Supplementary Table 2. Proportion and absolute counts of mice c-Kit⁺ cells after culture *in vitro*. Values represent mean \pm s.d. (*n* = 6 biological replicates), % denotes percentage in live cells unless otherwise specified, # denotes absolute counts. Comparisons with control, *p < 0.05, ****p < 0.0001 by unpaired two-tailed Student's *t*-test.

	Treatment							
Subpopulations	Co	ntrol	Microniche					
	%	# (×10 ⁴)	%	# (×10 ⁴)				
live cells		118 ± 21		112 ± 18				
Lin	12.90 ± 2.81	15.26 ± 3.33	9.70 ± 1.23*	10.84 ± 1.37*				
Lin ⁻ c-Kit ⁺ Sca-1 ⁻	1.14 ± 0.04	1.35 ± 0.04	1.18 ± 0.23	1.31 ± 0.26				
Lin ⁻ c-Kit ⁺ Sca-1 ⁺	0.75 ± 0.04	0.89 ± 0.05	0.68 ± 0.08	0.76 ± 0.09				
LKS+CD34+Flt3-	0.56 ± 0.04	0.66 ± 0.04	0.16 ± 0.04****	0.18 ± 0.05****				
LKS ⁺ CD34 ⁻ Flt3 ⁻	0.19 ± 0.03	0.22 ± 0.04	0.50 ± 0.07****	0.56 ± 0.08****				
	% in LKS⁺	# (×10²)	% in LKS⁺	# (×10²)				
LKS ⁺ CD34 ⁻ CD150 ⁺ CD48 ⁻	1.13 ± 0.13	1.01 ± 0.11	4.63 ± 1.12****	3.52 ± 0.85****				
LKS+CD34-CD150+CD48-CD229-	1.10 ± 0.13	0.98 ± 0.11	4.31 ± 0.94****	3.28 ± 0.72****				

Supplementary Table 3. Proportion and absolute counts of phenotypically defined cell subsets before and after culture in a bioreactor in different conditions. Values represent mean \pm s.d. (Fresh, n = 3 technical replicates; Microniche, n = 3 or 4 biological replicates), % denotes percentage in live cells, # denotes absolute counts, FC denotes fold change in absolute counts after culture. Comparisons with fresh, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by unpaired two-tailed Student's *t*-test.

Treatment \		live cells			CD34 ⁺ CD34 ⁺ CD38 ⁻			CD34 ⁺ CD38 ⁻ CD45RA ⁻ CD90 ⁺			CD34*CD38 ⁻ CD45RA ⁻ CD90*CD49f*				
Subpop	ulations	# (×10 ⁸)	FC	%	# (×10 ⁶)	FC	%	# (×10 ⁶)	FC	%	# (×10⁵)	FC	%	# (×10⁴)	FC
Fresh	day0	1.50 ± 0.00		2.47 ± 0.15	3.70 ± 0.23		0.74 ± 0.06	1.11 ± 0.09		0.06 ± 0.02	0.92 ± 0.29		0.01 ± 0.01	1.60 ± 0.76	
	day1	0.94 ± 0.01	0.63	2.28 ± 0.23	2.14 ± 0.22 **	0.58	1.77 ± 0.20 **	1.66 ± 0.19 **	1.51	0.15 ± 0.01 **	1.45 ± 0.06 *	1.57	0.01 ± 0.00	1.32 ± 0.09	0.82
Microniche	day3	0.60 ± 0.04	0.40	3.28 ± 1.58	1.96 ± 0.94 *	0.53	2.74 ± 0.28 ***	1.64 ± 0.17 **	1.48	0.45 ± 0.01	2.71 ± 0.03 ***	2.93	0.05 ± 0.01 **	2.85 ± 0.50	1.78
	day5	0.55 ± 0.01	0.36	4.82 ± 0.018	2.63 ± 0.04 **	0.71	2.27 ± 0.06 ****	1.24 ± 0.03	1.12	1.17 ± 0.00	6.37 ± 0.02 ****	6.89	0.05 ± 0.01 ***	2.86 ± 0.32	1.79
Fresh		0.66 ± 0.00		3.09 ± 0.09	2.04 ± 0.06		6.27 ± 0.13	4.14 ± 0.08		0.11 ± 0.02	0.72 ± 0.12		0.10 ± 0.02	6.87 ± 1.30	
	20 rpm	0.09 ± 0.00	0.13	16.33 ± 0.67	1.40 ± 0.06	0.68	12.63 ± 0.22	1.08 ± 0.02	0.26	2.23 ± 0.04	1.91 ± 0.03 ****	2.66	1.13 ± 0.05	9.67 ± 0.40 **	1.41
Microniche	40 rpm	0.16 ± 0.00	0.24	16.78 ± 0.10	2.62 ± 0.01	1.28	13.43 ± 0.30	2.09 ± 0.05	0.51	2.73 ± 0.12	4.26 ± 0.18 ****	5.96	1.58 ± 0.08	24.60 ± 1.21	3.58
	80 rpm	0.13 ± 0.01	0.20	14.80 ± 0.33	1.94 ± 0.04 *	0.95	11.10 ± 0.29	1.45 ± 0.04	0.35	2.53 ± 0.06	3.32 ± 0.08 ****	4.64	1.57 ± 0.02	20.50 ± 0.25	2.99
Fresh		1.00 ± 0.00		1.47 ± 0.08	1.47 ± 0.08		1.02 ± 0.06	1.02 ± 0.06		0.04 ± 0.00	0.42 ± 0.03		0.003 ± 0.00	0.35 ± 0.07	
	50 mg	0.28 ± 0.00	0.28	32.95 ± 1.29	9.14 ± 0.36	6.24	23.80 ± 0.42	6.60 ± 0.12	6.47	3.15 ± 0.29	8.74 ± 0.80 ****	20.77	2.26 ± 0.20	62.75 ± 5.59	179.29
Microniche	100 mg	0.18 ± 0.02	0.18	32.80 ± 0.78	6.04 ± 0.14	4.12	22.70 ± 0.44	4.18 ± 0.08	4.10	2.47 ± 0.06	4.54 ± 0.11 ****	10.80	1.76 ± 0.06	32.41 ± 1.06	92.61
	200 mg	0.17 ± 0.00	0.17	31.30 ± 0.80	5.43 ± 0.14	3.71	20.93 ± 0.64	3.63 ± 0.11	3.56	3.23 ± 0.23	5.60 ± 0.39 ****	13.30	2.51 ± 0.10	43.55 ± 1.69	124.44

Supplementary Table 4. Absolute counts of phenotypically defined cell subsets before (fresh) and after 3 days of culture in a bioreactor. Values represent mean \pm s.d. (Fresh, n = 4 technical replicates; Microniche, n = 4 biological replicates), # denotes absolute counts. Comparisons with fresh, ****p < 0.0001 by unpaired two-tailed Student's *t*-test.

	Treatment				
Subpopulations	Fresh	Microni	che		
	# (×10 ⁴)	# (×10⁵)	Fold change		
live cells	1000 ± 0.00	277.4 ± 4.07 ****	0.28		
CD34+	14.65 ± 0.45	91.40 ± 3.57 ****	6.24		
CD34+CD38-	10.20 ± 0.56	66.02 ± 1.18 ****	6.47		
CD34+CD38-CD45RA-CD90+	0.42 ± 0.03	8.74 ± 0.80 ****	20.77		
CD34+CD38-CD45RA-CD90+CD49f+	0.03 ± 0.01	6.28 ± 0.56 ****	179.29		
CD34+CD38-CD45RA-CD90+CD49flow	0.03 ± 0.01	6.21 ± 0.54 ****	179.18		
CD34+CD38-CD45RA-CD90+CD49flowCD62L-CD133+	0.03 ± 0.01	3.81 ± 0.32 ****	123.23		

Supplementary Table 5. Quantification of the expression of 20 cytokine-cytokine receptor genes after culture with Microniche (*n* = 4 biological replicates).

Gene name	Fold change of gene expression
CXCL8	8.23 ± 0.36
CSF2RA	2.71 ± 0.28
CCL4L2	8.24 ± 0.41
CSF1R	3.38 ± 0.16
CX3CR1	5.55 ± 0.21
CCL4L1	7.25 ± 0.15
CXCL16	5.15 ± 0.29
CCL3L1	4.72 ± 0.30
CD40	2.89 ± 0.25
IL10RA	9.16 ± 0.67
CCL3L3	4.00 ± 0.30
CCL24	3.79 ± 0.28
CCL4	5.43 ± 1.05
CCL22	4.07 ± 0.27
IL21R	13.94 ± 1.45
FLT1	3.34 ± 0.68
IL13RA	4.43 ± 0.50
IL1R1	5.08 ± 1.20
IL1R2	9.66 ± 1.31
PDGFA	14.41 ± 2.84

Supplementary Table 6. Quantification of 40 chemokines from liquid suspension after culture with the control or Microniche (n = 3 biological replicates).

Chamakinaa	Observed conce	Fold	
Chemokines	Control	Microniche	change
6Ckine (also known as CCL21)	96.80 ± 7.40	160.53 ± 11.24	1.66
BCA-1 (also known as CXCL13)	2.98 ± 0.52	55.03 ± 12.43	18.49
CTACK (also known as CCL27)	2.37 ± 0.87	10.20 ± 1.32	4.30
ENA-78 (also known as CXCL5)	381.26 ± 23.80	917.48 ± 207.27	2.41
Eotaxin (also known as CCL11)	8.92 ± 0.48	15.25 ± 1.40	1.71
Eotaxin-2 (also known as CCL24)	35.96 ± 14.93	273.86 ± 17.30	7.62
Eotaxin-3 (also known as CCL26)	4.19 ± 0.00	11.83 ± 1.87	2.82
Fractalkine (also known as CX3CL1)	14.44 ± 0.94	52.62 ± 6.52	3.64
GCP-2 (also known as CXCL6)	8.02 ± 1.12	16.61 ± 0.80	2.07
GM-CSF	42.18 ± 2.66	67.20 ± 6.13	1.59
Gro-alpha (also known as CXCL1)	55.33 ± 5.20	222.79 ± 39.74	4.03
Gro-beta (also known as CXCL2)	21.15 ± 3.40	87.20 ± 21.45	4.12
I-309 (also known as CCL1)	199.17 ± 16.24	911.63 ± 149.67	4.58
IFN-gamma	20.16 ± 0.81	46.04 ± 4.07	2.28
IL-1 beta	3.24 ± 0.22	8.73 ± 1.30	2.69
IL-2	2.97 ± 0.26	7.63 ± 0.68	2.57
IL-4	12.97 ± 0.46	24.98 ± 0.90	1.93
IL-6	37.01 ± 2.06	287.35 ± 166.53	7.76
IL-8 (also known as CXCL8)	809.44 ± 187.45	7051.01 ± 2227.65	8.71
IL-10	8.46 ± 0.91	19.19 ± 1.44	2.27
IL-16	35.41 ± 4.67	79.15 ± 12.14	2.24
IP-10 (also known as CXCL10)	96.98 ± 7.18	58.36 ± 1.55	0.60
I-TAC (also known as CXCL11)	0.51 ± 0.03	0.95 ± 0.12	1.87
MCP-1 (also known as CCL2)	6.70 ± 1.28	68.99 ± 12.32	10.30
MCP-2 (also known as CCL8)	0.97 ± 0.05	4.24 ± 0.20	4.37
MCP-3 (also known as CCL7)	42.61 ± 2.82	97.95 ± 8.64	2.30
MCP-4 (also known as CCL13)	7.49 ± 0.99	21.03 ± 1.55	2.81
MDC (also known as CCL22)	595.55 ± 84.36	1809.55 ± 539.01	3.04
MIF	8097.93 ± 378.42	17017.71 ± 2056.31	2.10
MIG (also known as CXCL9)	18.94 ± 1.31	39.61 ± 3.86	2.09
MIP-1 alpha (also known as CCL3)	10.77 ± 1.19	31.28 ± 1.57	2.90
MIP-1 delta (also known as CCL15)	6.41 ± 0.69	12.02 ± 1.70	1.87
MIP-3 alpha (also known as CCL20)	4.39 ± 0.10	16.02 ± 2.56	3.65
MIP-3 beta (also known as CCL19)	30.21 ± 4.90	66.22 ± 3.31	2.19
MPIF-1 (also known as CCL23)	112.87 ± 3.68	99.83 ± 0.70	0.88
SCYB16 (also known as CXCL16)	104.12 ± 1.02	182.05 ± 13.20	1.75
SDF-1 alpha+beta (also known as CXCL12)	79.84 ± 3.58	167.06 ± 12.53	2.09
TARC (also known as CCL17)	3.68 ± 0.54	13.07 ± 4.00	3.55
TECK (also known as CCL25)	74.74 ± 3.32	178.71 ± 20.68	2.39
TNF-alpha	17.30 ± 0.61	35.19 ± 5.46	2.03

Supplementary Table 7. Proportion and absolute counts of phenotypically defined cell subsets before and after culture with or without cytokines. Values represent mean \pm s.d. (fresh *n* = 3 technical replicates; control and cytokines *n* = 4 biological replicates), % denotes percentage in live cells, # denotes absolute counts. Comparisons with fresh, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 by unpaired two-tailed Student's *t*-test.

	Treatment							
Subpopulations	Fresh		Cor	ntrol	Cytokines			
	%	# (×10³)	%	# (×10³)	%	# (×10³)		
live cells		200 ± 0.00		1601 ± 87****		1756 ± 134****		
CD34+	83.17 ± 0.49	166 ± 0.99	61.20 ± 2.64****	980 ± 42****	57.50 ± 3.04****	1013 ± 53****		
CD34+CD38-	3.82 ± 0.27	7.63 ± 0.54	10.98 ± 1.03****	176 ± 16.49****	12.78 ± 0.30****	224 ± 5.24****		
CD34+CD38-CD45RA-CD90+	0.72 ± 0.16	1.43 ± 0.32	1.02 ± 0.14*	16.38 ± 2.22****	1.06 ± 0.07*	18.63 ± 1.30****		
CD34+CD38-CD45RA-CD49f+	0.02 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.42 ± 0.10**	0.10 ± 0.04*	1.79 ± 0.70**		
CD34 ⁺ CD38 ⁻ CD45RA ⁻ CD49f ^{low}	0.02 ± 0.01	0.03 ± 0.01	0.02 ± 0.01	$0.40 \pm 0.09^{***}$	$0.09 \pm 0.04^*$	1.63 ± 0.66**		
CD34+CD38-CD45RA-CD49flowCD62L-CD133+	0.01 ± 0.00	0.02 ± 0.00	$0.00 \pm 0.00^{**}$	0.03 ± 0.01	0.01 ± 0.01	0.21 ± 0.18		

Supplementary Table 8. List of antibodies and viability dye used in flow cytometry.

Application	Antibody or viability dye	Conjugate	Clone	Company	Catalog number
	CD34	APC	581	BD	555824
	CD34	FITC	561	BioLegend	343604
	CD38	PE-Cy7	HIT2	BD	560677
	CD45RA	APC-H7	HI100	BD	560674
Analysis and cell sorting	CD90	PerCP-Cy5.5	5E10	BD	561557
of human HSPCs	CD90	APC	5E10	BD	559869
expansion in vitro	CD49f	PE	GoH3	BD	555736
	CD49f	BV510	GoH3	BD	563271
	CD133	APC	W6B3C1	BD	566596
	CD62L	PE	DREG-56	BioLegend	304806
	DAPI	n/a	n/a	Sigma	MBD0015
	CD34	APC	581	BD	555824
	CD38	PE-Cy7	HIT2	BD	560677
	CD45RA	APC-H7	HI100	BD	560674
Analysis of long-term	CD90	PerCP-Cy5.5	5E10	BD	561557
culture of human UCB	CD49f	PE	GoH3	BD	555736
CD34 ⁺ cells in vitro	CD71	FITC	OKT9	Invitrogen	11-0719-42
	CD110	BV421	1.6.1	BD	562672
	CD41a	BV510	HIP8	BD	563250
	DAPI	n/a	n/a	Sigma	MBD0015
	Ter119		TER-119	Invitrogen	25-5921-82
	Gr-1		RB6-8C5	Invitrogen	25-5931-82
	CD11b		M1/70	Invitrogen	25-0112-81
	B220	PE-Cy7	RA3-6B2	Invitrogen	25-0452-81
	CD3e		145-2C11	Invitrogen	25-0031-82
	CD4		GK1.5	Invitrogen	25-0041-82
	CD8a		53-6.7	Invitrogen	25-0081-81
	Sca-1	PerCP-Cy5.5	D7	Invitrogen	45-5981-82
	c-Kit	APC	2B8	Invitrogen	17- 1171-83
	CD34	FITC	RAM34	Invitrogen	11-0341-82
	CD16/32	BV421	93	BioLegend	101332
Analysis of mouse	Flt3	PE	A2F10	Invitrogen	12-1351-82
HSPCs expansion in	Ter119		TER-119	BioLegend	116223
vitro	Gr-1		RB6-8C5	BioLegend	108423
	CD11b		M1/70	BioLegend	101226
	B220	APC-Cy7	RA3-6B2	BioLegend	103224
	CD3e		145-2C11	BioLegend	100330
	CD4		RM4-5	BioLegend	100526
	CD8a		53-6.7	BioLegend	100714
	CD34	PE-Cy7	MEC14.7	BioLegend	119326
	CD150	BV421	TC15- 12F12.2	BioLegend	115943
	CD48	FITC	HM48-1	Invitrogen	11-0481-85
	CD229	PE	Ly9ab3	BioLegend	122905
	DAPI	n/a	n/a	Sigma	MBD0015
	mCD45	PerCP-Cy5.5	HI30	BD	564105

	1				
	hCD45	FITC	HI30	BD	555482
	hCD33	APC-Cy7	P67.6	BioLegend	366614
	hCD19	PE	HIB19	BD	555413
Reconstitution analysis	hCD3	BV650	SK7	BD	563999
of HSPCs, mveloid	hCD56	BV786	B159	BD	740979
cells, B and T	hCD34	APC	581	BD	555824
lymphocytes, NK cells	hCD38	PE-Cy7	HIT2	BD	560677
IN BIM	hCD110	BV605	1.6.1	BD	743578
	hCD71	BV711	M-A712	BD	563767
	hCD41a	BV510	HIP8	BD	563250
	DAPI	n/a	n/a	Sigma	MBD0015
	mCD45	APC-Cy7	30-F11	BD	557659
	mCD41	APC	MWReg30	BioLegend	133914
	mCD42d	PerCP-Cy5.5	1C2	BioLegend	148508
	mCD61	BV786	2C9.G2	BD	740867
	Ter119	PE-Cy7	TER-119	Invitrogen	25-5921-81
Decensity tion enclusio	mCD71	BV605	C2	BD	563013
of megakaryocytes and	hCD45	FITC	HI30	BD	555482
erythrocytes in BM	hCD41a	BV510	HIP8	BD	563250
	hCD42b	PE	HIP1	BD	555473
	hCD61	BV650	VI-PL2	BD	564172
	CD235a	Alexa Fluor 700	HIR2 (GA- R2)	Invitrogen	56-9987-42
	hCD71	BV711	M-A712	BD	563767
	DAPI	n/a	n/a	Sigma	MBD0015
	Antibody-Oligo	SeqID	Clone	Company	Catalog number
	CD34	AHS0061	581	BD	940021
BD Rhapsody Single-	CD38	AHS0022	HIT2	BD	940013
Cell Analysis	CD45RA	AHS0009	HI100	BD	940011
	CD90	AHS0045	5E10	BD	940032
	CD49f	AHS0119	GOH3	BD	940160

Supplementary Table 9. Primers for qRT-PCR.

Accession number	Primers	Forward (5'-3')	Reverse (5'-3')
NM_002982	CCL2	AAACTGAAGCTCGCACTCTC	AATCCTGAACCCACTTCTGC
NM_000576	IL1B	ATGGACAAGCTGAGGAAGATG	ACAAAGGACATGGAGAACACC
NM_000616	CD4	TCCTGCTTTTCATTGGGCTAG	CTGCTACATTCATCTGGTCCG
NM_000584	CXCL8	ATACTCCAAACCTTTCCACCC	GTTTCACTGGCATCTTCACTG
NM_005211	CSF1R	TGAAGGTGGCTGTGAAGATG	CGAGGTGGATGTTCTTATAGTCG
NM_001100812	CXCL16	CATCTTCATCCTCACCGCAG	AAGCCACAGTTTACCCTCAC
NM_001558	IL10RA	GCAGTGTGAACCTAGAGATCC	CTCTTTAGACCACATCCCCTTG
NM_002984	CCL4	ACCAATACCATGAAGCTCTGC	TTCAGTTCCAGGTCATACACG
NM_021798	IL21R	GTATGAAGAGCTGAAGGACGAG	CAGGGTCTTCGTAATCTGAGC
NM_001560	IL13RA1	CGCAATTCCACACTCTACATAAC	CTCCATCACTGAGAGGCTTTC
NM_004633	IL1R2	AAAATGACTCTGCTAGGACGG	TGAGATGAACGGCAGGAAAG
NM_006140	CSF2RA	TTAATGAACTGTACCTGGGCG	TTGCTGGGAGGGTTGAATC
NM_001337	CX3CR1	GTCTCTGGTAAAGTCTGAGCAG	ATGGCAAAGATGACGGAGTAG
NM_021006	CCL3L1	ATCACCTGCTCCCAATCATG	CACTGACGTATTTCTGGACCC
NM_001001437	CCL3L3	ATCACCTGCTCCCAATCATG	CACTGACGTATTTCTGGACCC
NM_002990	CCL22	GATTACGTCCGTTACCGTCTG	GATGGAGATCAGGGAATGCAG
NM_002019	FLT1	CTCAACTCCTGCCTTCTCTG	CCCCGACTCCTTACTTTACTG
NM_000877	IL1R1	GCATCCTACACATACTTGGGC	CTAGCACTGGGTCATCTTCATC
NM_002607	PDGFA	CGTAGGGAGTGAGGATTCTTTG	CAGATCAGGAAGTTGGCGG
NM_001291468	CCL4L2	CCGCCTGCTGCTTTTCTTAC	TTGCCTACCACAGCTGGC
NM_207007	CCL4L1	AGCACTCTCAGCACCAATG	TTCAGTTCCAGGTCATACACG
NM_001250	CD40	AAGCGAATTCCTAGACACCTG	CGAAAGCAGATGACACATTGG
NM_002991	CCL24	TTCTGTTCCTTGGTGTCTGTG	TTCTGCTTGGCGTCCAG
NM_000609	CXCL12	GAGCCAACGTCAAGCATCTG	CGGGTCAATGCACACTTGTC
NM_001008540	CXCR4	GTCCATTCCTTTGCCTCTTTTG	ACTTGTCCGTCATGCTTCTC
NM_001123041	CCR2	ATTCTCCTGAACACCTTCCAG	TGACTTTCCTTTTCCACGACC