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Supplementary Materials: Multi-modal profiling of peripheral blood cells across 1 

the human lifespan reveals distinct immune cell signatures of aging and longevity 2 

 3 

Supplementary Methods 4 

Experimental Procedure: 5 

Recruitment of human subjects. Centenarian study participants were recruited via recruitment 6 

mailings based upon statewide voter registration lists throughout the United States. A healthy 7 

volunteer effect made it more likely that the enrolled centenarian sample was healthier than 8 

centenarians generally. Participants with capacity provided informed written consent and 9 

otherwise next of kin acted as a legally authorized representative in providing informed written 10 

consent on behalf of the participant. The Boston University Medical Campus Institutional Review 11 

Board (BUMC IRB) reviewed and approved this minimum risk study of centenarians and their 12 

family members. For participants asked to provide a blood sample for the creation of induced 13 

pluripotent stem cell lines, they provided informed written consent for a separate study, again 14 

reviewed and approved by the BUMC IRB that is conducted by the Center for Regenerative 15 

Medicine also based on the Boston University Medical Campus. 16 

 17 

 18 

Processing of blood samples. For each centenarian and younger individual involved in this 19 

study, 8 mLs of peripheral blood was drawn into each of two BD Vacutainer Cell Preparation 20 

Tubes with sodium citrate (BD Biosciences catalog #362760). The tubes were centrifuged at 21 

1,800 x g for 30 minutes at room temperature (RT) and cellular fraction was processed for cell 22 

isolation. The cell layer containing peripheral blood mononuclear cells (PBMCs) isolated by 23 

Ficoll gradient centrifugation was transferred into a sterile 15 mL conical centrifuge tube. The 24 

PBMC sample was brought to 10 mLs with sterile Dulbecco’s phosphate buffered saline (DPBS, 25 

Invitrogen catalog #14190-144) and centrifuged at 300 x g for 15 min at RT. The supernatant 26 

was aspirated and the pellet resuspended in 10 mL sterile DPBS and a cell count performed via 27 

hemocytometer. The sample was centrifuged at 300 x g for 10 min at RT and the supernatant 28 

aspirated. The pellet was resuspended in chilled (4℃) resuspension medium (40% fetal bovine 29 

serum (FBS) hyclone defined, Cytiva catalog #SH30070.03 in Iscove’s Modified Dulbecco’s 30 

Medium (IMDM), catalog #12440053) to achieve a cell concentration of 4 x 10^6 cells/ mL. An 31 

equal amount of chilled 2X freezing medium (30% Dimethyl Sulfoxide (DMSO), Sigma catalog 32 

#D2650 in IMDM/ 40% FBS) was added to achieve a cell concentration of 2 x 10^6 cells / mL. 33 

This mixture was then aliquoted into 1.2 mL cryovials (Corning catalog #430487) at 1 mL / vial. 34 

These vials were then brought to -80℃ before being transferred to a -150℃ deep freezer. 35 

 36 

CITE-seq of PBMCs of centenarians. PBMC samples (2 x 10^6 cells/sample) from the 37 

centenarian cohort were thawed rapidly and mixed with 15 mL StemSpan SFEM II medium 38 

(CAT#09655) with L-glutamine (1:1000 conc). These samples were then brought to 50 mL with 39 

sort buffer (2% Bovine Serum Albumin (BSA), Millipore Sigma catalog #EM-2930 in DPBS) and 40 

centrifuged for 5 min at 400 x g at RT. The supernatant was aspirated, and the pellet of PBMCs 41 

resuspended in 30 mL sort buffer and centrifuged for 5 min at 400 x g at RT. The pellet was 42 

resuspended in 2 mL StemSpan medium (+L-glutamine) and filtered through a 40 uM filter. The 43 

samples were then incubated in this medium for 1 hour at 37℃/5% CO2. Following this 44 
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incubation, the samples were centrifuged for 5 min at 400 rcf at RT and the supernatant 1 

aspirated. Each pellet was then resuspended in 50 uL labeling buffer (1% BSA in PBS) and 5 uL 2 

Human TruStain FcX(Biolegend) was added. The samples were incubated at 4℃ for 10 3 

minutes. During this incubation, the TotalSeq-C antibody pool (Biolegend) containing 1 ug of 4 

each antibody was prepared and centrifuged for 10 min at 14,000 x g at 4℃. The supernatant 5 

was then transferred and used as the antibody mix for each sample. The following TotalSeq-C 6 

antibodies were used: CD274, CD3, CD8, CD19, CD33, CD4, CD14, CD16, CD56, and CD279 7 

(BioLegend). 20 uL of the antibody mix was added to each sample and the samples were 8 

brought to 100 uL with labeling buffer. The samples were incubated for 30 minutes at 4℃. 9 

Following this incubation, the samples were washed with 1.3 mL labeling buffer and centrifuged 10 

at 400 x g for 5 minutes at RT. This washing step was repeated for a total of 3 washes. The 11 

pellets were then resuspended in 500 uL labeling buffer with calcein blue AM (1:1000) (Thermo 12 

Fisher, catalog #C1429). 1 x 10^5 calcein blue positive cells (live cells) were then sorted on a 13 

Beckman Coulter MoFlo Astrios cell sorter. The sorted samples were centrifuged for 5 min at 14 

400 rcf at room temperature and resuspended in 120 uL resuspension buffer (0.04% BSA in 15 

DPBS). The samples were counted via hemocytometer and diluted to 600 cells/uL with 16 

resuspension buffer. 17 

 18 

Flow cytometry analysis. Frozen PBMCs from centenarian and younger samples were banked 19 

and thawed and following the same protocol as described above and below for the scRNA-seq. 20 

Cytometry panel design and validation, sample staining and sample acquisition were performed 21 

closely following OMIP-069 protocol1. Briefly, cells were stained with a live-dead dye (Live Dead 22 

Blue, Thermo Fisher), blocked with FcBlock reagent (Biolegend) and Monocyte Blocker 23 

(Biolegend), stained with the fluorescent antibody cocktail and Brilliant Buffer Plus (BD 24 

Biosciences), washed and analyzed on the Cytek Aurora spectral cytometer (Cytek 25 

Biosciences). At least 500,000 cells were recorded for each PBMC sample. Younger PBMCs 26 

and Ultracomp eBeads plus (Thermo Fisher) were used as single stain unmixing controls. Data 27 

were processed in SpectoFlo 2.2 (Cytek Biosciences) and OMIQ data analysis platform. We 28 

reproduced the exact gating strategy as shown in Alpert et al 2  and extracted cell counts and 29 

population proportions for downstream statistical analysis. The following antibodies were used 30 

to identify cell populations: CD45RA BUV395, CD16 BUV496, CD56 BUV737, CD8 BUV805, 31 

CCR7 BV421 (BD Biosciences), CD123 Super Bright 436 (Thermo Fisher), CD33 BV510, CD14 32 

BV570, CD3 Spark Blue 550, CD19 Spark NIR 685 (Biolegend), CD4 cFluor YG584 (Cytek 33 

Biosciences).  34 

 35 

 36 

Single cell analysis: 37 

New England Centenarian dataset: 38 

 39 
CITE-seq and CellRanger Preprocessing. Cellular Indexing and epitopes sequencing (CITE-40 

seq) was performed on the 7 centenarians and 2 younger age individuals using a commercial 41 

droplet-based platform (10x Chromium). We constructed 5’ gene expression libraries (GEX), as 42 

well as surface protein libraries (antibody derived tags, ADT) following the manufacturer’s user 43 

guide. These libraries were sequenced on two runs of an Illumina NextSeq 2000 instrument 44 
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generating 438 and 535 million reads respectively. Raw sequencing files were converted to 1 

fastq and demultiplexed using bcl2fastq v.2.20 and Cellranger v.3.0.2. Counts for the 2 

expression and antibody capture libraries were derived by simultaneously mapping the 3 

respective fastq files to the human genome (GRCh38) and to the feature reference of the 4 

TotalSeq-C antibodies used using the corresponding parameters in cellranger count (v.3.0.2). 5 

This pipeline includes the alignment, barcode and UMI counting 6 

 7 

Filtering, PCA Analysis, Batch Correction, and Clustering. After processing the samples through 8 

CellRanger, we performed filtering, normalization, and principal component analysis using 9 

Seurat v.3 3.   10 

First, we performed quality control steps based on the number of genes and UMIs 11 

detected per cell, and percent of mitochondrial genes expressed per cell. To remove poor 12 

quality cells with low RNA content, we removed cells with less than 200 genes detected. To filter 13 

out outlier cells and doublets, we filtered out cells with greater than 3,000 detected genes, as 14 

well as cells with greater than 15,000 UMIs. To account for cells that are damaged or dying, we 15 

removed cells with greater than 15 percent mitochondrial counts expressed.   16 

After filtering, we normalized the RNA-level expression data for each cell to compare 17 

gene expression between sample cells; Gene counts for each cell were normalized by total 18 

expression, multiplied by a scale factor of 10,000 and transformed to a log scale. We 19 

normalized the protein-level expression data by applying a centered log ratio (CLR) 20 

transformation for each cell to account for differences in total protein ADT counts that make up 21 

each cell.  22 

Further downstream analyses were performed on the RNA-level expression data. PCA 23 

based on the top 2000 highly variable genes was performed for dimensionality reduction, and 24 

the top 20 significant PCs were selected that explain the most variability in the data. The top 25 

significant PCs were used as an input for clustering the cells and for nonlinear dimension 26 

methods mentioned below to identify populations of cells with similar expression profiles. To 27 

account for technical variations between samples from different experimental batches, we 28 

corrected the PCA embeddings using the Harmony algorithm 4, a method that iteratively clusters 29 

and corrects the PC coordinates to adjust for batch specific effects. We assessed the integration 30 

of these datasets by employing PCA visualizations of batches of cells and calculating the 31 

average silhouette width (ASW) score5,6 for each cell type population based on the top 20 32 

principal components before correction and the top 20 harmony components after batch 33 

correction reported with Wilcoxon rank sum test and p-value significance threshold of 0.05. We 34 

clustered cells based on graph-based methods (SNN and Louvain community detection 35 

method) using the top 20 Harmony-adjusted components and used the Unifold Manifold 36 

Approximation and Projection (UMAP) algorithm7 to visualize clusters of cells and other known 37 

annotations. 38 

 39 

Identification and classification of cell types. We used a multi-modal approach to identify 40 

immune subpopulations in the NECS dataset. First, we used the 10 cell-surface protein immune 41 

cell marker panel of expression to identify main immune cell types. We then further partitioned 42 

the main immune cell types into immune subtypes using graph-based clustering and based on 43 

the expression of immune cell type signatures from literature 8,9. The average expression score 44 
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of each signature was calculated for a single cell by calculating the average scaled expression 1 

of all genes within a signature, with the scaling based on the expression of a control set of 2 

genes (AddModuleScore function in Seurat3), and by taking the absolute value of the average 3 

scaled expression to compare scores across signatures within a cell population. 4 

 5 

Publicly available datasets: 6 

Data collection, filtering, PCA analysis, and clustering. We downloaded the raw UMI matrix for 7 

the scRNA-seq dataset of PBMCs from 45 younger age individuals of European descent 10, 8 

which we will refer to as NATGEN. We also downloaded the raw UMI matrix for the scRNA-seq 9 

dataset of PBMCS from 7 supercentenarians and 5 younger age individuals of Japanese 10 

descent11, which we will refer to as PNAS. For both PBMC datasets, we performed all 11 

downstream processing including filtering, normalization, and scaling of data using the Seurat 12 

v.3 3. For both datasets, we performed quality control steps based on the number of genes and 13 

UMIs detected per cell, and percent of mitochondrial genes expressed per cell. For the 14 

NATGEN dataset, we filtered cells based on similar thresholds from the original manuscript10. 15 

For the PNAS dataset, we filtered cells as previously published11. After filtering the datasets, we 16 

normalized the expression levels of each cell to compare gene expression between sample 17 

cells; gene counts for each cell were normalized by total expression, multiplied by a scale factor 18 

of 10,000 and transformed to a log scale. We then performed PCA analysis based on the top 19 

2,000 highly variable genes detected and clustered cells based on graph-based methods (SNN 20 

and Louvain community detection method)3 based on the top significant PCs for each data set 21 

implemented in Seurat. We used the UMAP algorithm4 to visualize the clusters of single cells 22 

and other known annotations. 23 

 24 

Subpopulation Identification and Harmonization. To define the set of consensus immune cell 25 

types across regular aging and longevity, we first identified subpopulations of each cell type 26 

using immune cell type signatures from literature 8,9. The average expression score of each 27 

signature was calculated for each single cell across datasets as described for the NECS dataset 28 

using Seurat. In addition, we compared the expression of canonical gene markers of the 29 

immune populations identified for comparison 12. After identifying subpopulations in each 30 

dataset, we then integrated these scRNA-seq datasets of PBMCs by correcting the PCA 31 

embeddings using the Harmony algorthim4 and assessed batch correction using average 32 

silhouette width (ASW) score5,6 for each cell type population based on the top 20 principal 33 

components before correction and the top 20 harmony components after batch correction 34 

reported with Wilcoxon statistic and p-value significance threshold of 0.05. We determined the 35 

four age groups in the integrated datasets by grouping subjects into four approximate quantile 36 

groups based on age in decades.  37 

 38 

Statistical Methods.  39 

Heterogeneity of the overall cell type distribution. We compared the overall cell type composition 40 

differences across samples and age groups by calculating the cell type diversity statistic for 41 

each sample13. The cell type diversity statistic Es is the normalized Shannon entropy based on 42 

the cell type proportions pi for the sample s. The normalization is based on the total number of 43 

cell types k to make the entropy measure independent of the number of cell types. 44 
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 1 

𝐸𝑠  =  
− ∑ 𝑝𝑖𝑠

𝑘
𝑖=1 𝑙𝑜𝑔(𝑝𝑖𝑠

)

𝑙𝑜𝑔(𝑘)
 −  1 2 

 3 

The normalization is important because we do not have the same number of cell types in the 4 

various age groups. For example, if we compare two groups with perfectly uniform cell type 5 

proportions, but different number of cell types, the Shannon entropy would show a difference 6 

while both distributions are uniformly distributed. We performed ANOVA to assess differences 7 

between age groups, and used p-value < 0.05 to determine statistical significance. 8 

 9 

Effect of age and sex on cell type distribution. To investigate cell type specific differences 10 

across age and sex groups, at subject level, we applied a Bayesian multinomial regression 11 

model to the cell type abundances. The outcome of this analysis was the vector of counts of the 12 

13 cell types in each subject, and the exposure was age group and the confounder was sex.  13 

Since high throughput sequencing data is compositional 14–16 and cell type frequencies are 14 

constrained to the total cells per sample 17, we used a multinomial model that accounts for this 15 

constraints and estimates cell type proportions that add up to 1 for each sample. We 16 

implemented a Bayesian analysis in the R-package rjags that allows for the fitting of a 17 

multinomial regression model without any additional specification. The model set up is  18 

 19 

𝑌𝑖,1:𝐽  ~  𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,1:𝐽  , 𝑁. 𝑡𝑜𝑡𝑎𝑙𝑖) 20 

𝑙𝑜𝑔(𝑞𝑖,𝑗)  =  𝛼𝑗  + 𝛽𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗  + 𝛾𝑠𝑒𝑥𝑖 ,𝑗  21 

𝑝𝑖,𝑗  =  
𝑞𝑖,𝑗

∑ 𝑞𝑖,𝑘
𝑁.𝑐𝑡
𝑘 = 1

 22 

 23 

𝛼𝑗 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 24 

𝛽𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 25 

𝛾𝑠𝑒𝑥𝑖,𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.001) 26 

 27 

where 𝑌𝑖,1:𝐽 represents the abundances of cell type 1: 𝐽 for sample 𝑖 that are modeled using a 28 

Multinomial distribution with probabilities 𝑝𝑖,1:𝐽  ∑ 𝑌𝑖,𝑗
𝐽
𝑗 = 1  =  𝑁. 𝑡𝑜𝑡𝑎𝑙𝑖  for all sample 𝑖 and 29 

∑ 𝑝𝑖,𝑗
𝐽
𝑗 = 1  =  1. The probabilities 𝑝𝑖,1:𝐽 depend on age and sex through the function  𝑙𝑜𝑔(𝑞𝑖,𝑗). We 30 

chose a reference for each age group (younger age) and sex (male). The implementation of the 31 

analysis in rjags does not require a logistic parameterization since rjags can work with 32 

unnormalized probabilities that are internally summed up to 1 18. This allows us to calculate 33 

explicitly the predicted probabilities of all the cell types for every combination of age and sex, 34 

with no need for a reference cell type (Supplementary Table S10). Therefore, for each cell 35 

type1: 𝑗, we can estimate the probability 𝑝𝑖,𝑗 for each group profile 𝑖 from the estimates of the 36 

parameters  𝛼𝑗 , 𝛽𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖,𝑗  , 𝛾𝑠𝑒𝑥𝑖 ,𝑗 as shown below:  37 

�̂�𝑖,𝑗  =  
exp ( �̂�𝑗  + �̂�𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗  + 𝛾𝑠𝑒𝑥𝑖,𝑗)

∑ exp (�̂�𝑗 + �̂�𝑎𝑔𝑒.𝑔𝑟𝑜𝑢𝑝𝑖 ,𝑗 + 𝛾𝑠𝑒𝑥𝑖 ,𝑗)𝑁.𝑐𝑡
𝑘=1

 38 

where the notation ^ represents the estimated parameters using rjags. 39 
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 1 

The model was estimated using Markov Chain Monte Carlo (MCMC) sampling using rjags, the 2 

R package for JAGS19. We ran parameter inference for all coefficients for group level predicted 3 

probabilities of composition (𝑝𝑖,𝑗) and the age group and sex effect coefficients (𝛽, 𝛾) using 4 

1,000 iterations with 500 iterations for burn-in. We estimated the group level composition 5 

predicted probabilities and 95 percent credible interval for males and female subjects for 6 

younger, middle, older, and EL age groups across all immune cell types. In addition, to assess 7 

the significance of the effect of age and sex in each cell type, we calculated the z-score (Z) for 8 

parameters  𝛽 and 𝛾 based on the mean estimate and standard error of the posterior 9 

distribution. We subsequently calculated the two-sided large sample p-value based on the 10 

standard normal distribution: 2Φ(−|Z|)) where Φ is the standard normal cumulative distribution 11 

function. We calculated the adjusted p-value based on the Benjamin and Hochberg correction 12 

for multiple testing across all coefficients tested. 13 

 In addition, to investigate cell type specific differences in other age group comparisons 14 

including older age vs. EL, we applied the multinomial regression analysis as described above 15 

with the exception of the age group reference set to EL. 16 

 17 

 18 

Analysis of the hierarchy of peripheral immune compartments. To estimate the hierarchy of 19 

peripheral immune compartments, we utilized K2Taxonomer (v1.0.5)20, which performs top-20 

down partitioning of cell types based on the relative similarity of their transcriptomic profiles. 21 

Prior to running K2Taxonomer, we performed several data processing steps. First, for each 22 

subject, we removed profiles of lowly represented cell types with fewer than 10 profiles for that 23 

subject only. Following this filter, we further removed all plasma cell profiles because they were 24 

represented in fewer than 10 subjects. Next, for each subject we aggregated single-cell profiles 25 

of each cell type into a “pseudo-bulk” profile by summing the counts of each gene, followed by 26 

normalization to log2(counts-per-million). The resulting data set included 515 total profiles 27 

across 66 subjects and 12 cell types. The number of subjects for which each of these 12 cell 28 

types were identified in each of the four batches is given in Supplementary Table S12. Next, we 29 

removed lowly expressed genes, i.e., genes that failed to reach 2 counts-per-million in at least 2 30 

profiles across all batches, which left 12,354 genes. Finally, we performed batch correction on 31 

these data using ComBat (v3.40.0)21, parameterized to preserve the cell type-specific signals 32 

using “mod” parameter of the ComBat() function. K2Taxonomer was run on these data, using 33 

the package’s “group-level” workflow, and setting the number of features parameter, "nFeats", 34 

to use 5% of the total genes, i.e., 618 genes per partition estimate. Finally, we calculated the 35 

cell type diversity statistics for each K2Taxonomer generated cell type subgroup. 36 

 37 

Cell type specific differential gene expression analysis. To investigate the cell type specific 38 

differences across age groups, we used a Bayesian mixed effects model with the rjags R 39 

package19 to perform differential gene expression analysis across the four age groups. For each 40 

gene, we applied the model to the expression values across cells from all subjects with 41 

exposure variable for age group comparing middle, older, and EL age groups in reference to the 42 

younger age group, and confounding variables including sex, ethnicity, and batch, and a 43 

random effect that accounts for within subject correlations of cells. For each cell type, we first 44 
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filtered genes to keep genes with expression in at least fifty percent of the smallest cell type 1 

population. We then applied the Bayesian mixed effects model where for each cell type, to each 2 

gene i: 3 

 4 

𝐺𝑒𝑛𝑒𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑖  , 𝜏) 5 

𝜇𝑖  =  𝛽𝑆,𝑠𝑎𝑚𝑝𝑙𝑒  +  𝛽1𝑀𝑖𝑑𝑑𝑙𝑒𝑖  +  𝛽2𝑂𝑙𝑑𝑒𝑟𝑖  + 𝛽3𝐸𝐿𝑖  + 𝛽4𝑆𝑒𝑥𝑖  + 𝛽5𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦𝑖 + 𝛽6𝐵𝑎𝑡𝑐ℎ𝑖  6 

 7 

𝛽𝑆,𝑠𝑎𝑚𝑝𝑙𝑒  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛽0 , 𝜏𝑠) 8 

𝛽𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.0001) ∀ 𝑘 ∈  [0, . . . ,6] 9 

𝜏 ~ 𝐺𝑎𝑚𝑚𝑎(0.0001, 0.0001) 10 

𝜏𝑠  ~ 𝐺𝑎𝑚𝑚𝑎(0.00001, 0.00001) 11 

 12 

where 𝐺𝑒𝑛𝑒𝑖 is the log-normalized expression of a gene for each cell 𝑖 in the cell type; 13 

𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6, 𝛽0 are model parameters. The subject specific intercept 𝛽𝑆,𝑠𝑎𝑚𝑝𝑙𝑒 follows a 14 

normal distribution with population mean , 𝛽0. The model is adjusted by fixed covariates sex, 15 

batch, and ethnicity, as well as a random effect based on samples to account for differences in 16 

cell abundances between samples within groups. Using this model, we monitored the age-17 

dependent coefficients (β1, β2, β3) across 10,000 MCMC iterations with 2,500 burn-in iterations 18 

to obtain the log fold change (logFC) based on age group. Then, we calculated the z-score (Z) 19 

for the age-dependent parameter based on the mean estimate and standard error of the 20 

posterior distribution. We subsequently calculated the two-sided p-value based on the standard 21 

normal distribution: 2*Φ(-|Z|)) where Φ is the standard normal cumulative distribution function. 22 

We calculated the FDR based on the Benjamin and Hochberg correction for multiple testing 23 

across all genes tested. Significant differential genes were selected based on a significance of 24 

FDR < 0.05 and fold change cutoff of 10 percent (|logFC| > log(1.1)). 25 

In addition, to investigate cell type specific differences between other age group 26 

comparisons including older age vs. EL, we applied the mixed effects model as described above 27 

with the exception of the age group reference set to EL. 28 

 29 

Bulk level differential gene expression analysis. We performed differential gene expression 30 

analysis at the bulk level between age groups using DESeq2 22.  We filtered genes in the single 31 

cell data to keep genes expressed in at least 50% of the smallest cell type population. We then 32 

aggregated the raw counts per sample and ran DESeq2 to perform normalization and fit a 33 

negative binomial generalized linear model with covariates age group, sex, batch, and ethnicity. 34 

We used Wald test to identify differentially expressed genes between middle, older, and EL v. 35 

younger age with a log fold change greater than log2(1.5) and FDR  < 0.05. 36 

 37 
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