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SUPPLEMENTARY FIGURES 

 

Suppl. Fig. S1 

 

Suppl. Fig. S1. Establishment of the genetically engineered sublines based on MDA-

MB-231 cells as parental cells. A: An RNAseq analysis was performed for the stable subline 

of MDA-MB-231 cells that overexpress JunB DDNA in a comparison with the control green 

fluorescence protein (GFP)-overexpressing subline. The heat map shows the selected 

(Control GFP vs JunB DDNA)
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extracellular space-relevant genes that are upregulated or downregulated. B: Establishment 

of MDA-MB-231-derived sublines that stably express foreign LOX, LOXL1, LOXL2, 

LOXL3, or LOXL4, which were all designed to have an HA tag at the C-terminal side. C: 

Establishment of LOXL4 knock-out (KO) cells according to the CRISPR/Cas9 method. The 

target sequences for the genetic ablation of LOXL4 gene were designed and applied as guide 

(g)RNA1 and gRNA2. To obtain the optimal clones that show the complete deletion of the 

expression of LOXL4, we determined the expression levels of the LOXL4 at the protein level, 

and we observed that gRNA2 was very effective genetically erasing the expression of 

intrinsic LOXL4 gene. We thus picked up two clones (#2-3 and #2-22) from the gRNA2-

clones’ pool. D: To confirm the unexpected raising of any off-target silencing in the LOXL4 

KO cells, another LOX family molecule LOXL1, which we have recently reported to express 

in MDA-MB-231 cells at high levels and to play a crucial role in the upregulation of 

invasiveness of MDA-MB-231 cells (Hirabayashi et al. Front Oncol 2023), was analyzed for 

their expressions in the KO cells by the WB procedure. The expression levels of LOXL1 

were not altered in the two KO cell sublines compared to their parental MDA-MB-231 cells. 

No altered expression was observed for the additional LOX family protein LOX among the 

indicated cells.  E: On the basis of the well conserved catalytic motif among the LOX family 

members, the essential amino acid of the catalytic activity in LOXL4, i.e., 622-histidine 

(622H) (green) and the essential amino acids to capture Cu2+ in the motif, i.e., 611H, 613H, 

and 615H (blue) were all replaced with the indicated amino acids, resulting in the LOXL4 

mutant construct named LOXL4 mutCA. F: After the force-delivery of the construct into 

MDA-MB-231 cells, a stable subline that overexpressed LOXL4 mutCA was established. 

The expression of the foreign LOXL4 mutCA was confirmed by WB.  



 

Hirabayashi D, Yamamoto K-I, Maruyama A, Tomonobu N, Kinoshita R, Chen Y, et al. 

LOXL1 and LOXL4 are Novel Target Genes of the Zn2+-Bound Form of ZEB1 and Play as 

Crucial Role in the Acceleration of Invasive Events in Triple-Negative Breast Cancer Cells. 

Front Oncol (2023) 13:1142886. doi:10.3389/fonc.2023.1142886. 
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Suppl. Fig. S2 

 

 

Suppl. Fig. S2. Identification of the LOXL4 regulatory molecule(s). A: To explore novel 

binding partners of LOXL4 on the cell surface, we transfected HEK293T cells with the 

plasmid carrying the HA-tagged LOXL4 wt. The conditioned medium from the transfected 

cells was collected and added to the MDA-MB-231 culture and maintained for 24 hr. The 

incubated MDA-MB-231 cells were then collected, lysed, and subjected to the 
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immunoprecipitation procedure using anti-HA-tag antibody-conjugated agarose beads. The 

collected immunoprecipitated was eluted from the beads by an acidic buffer (100 mM glycin-

HCl buffer, pH 2.0), neutralized with 1.0 M Tris-HCl buffer (pH 9.0), dialyzed with trypsin 

digestion buffer (10 mM CaCl2, 100 mM ammonium bicarbonate; pH 7.8), and trypsinized 

overnight at 37°C. The digested proteins were directly subjected to a shotgun-type protein 

identification approach using a nano-flow liquid chromatography-mass spectrometry 

apparatus (Agilent 6330 Ion Trap, Agilent Technologies, Santa Clara, CA) equipped with an 

analytical chip (Agilent HPLC-Chip, Agilent Technologies). The resulting tandem mass 

spectrometry spectra of the tryptic peptides were finally analyzed using the Agilent software 

program Spectrum Mill MS Proteomics Workbench with the protein database (SwissPlot) 

for putative Homo sapiens protein identifications. The identified proteins in the procedure 

using the conditioned medium of the control GFP transfectant were deleted from the LOXL4 

binding list. B: To study the specificity of the binding of LOXL4 to annexin A2, we 

individually combined the plasmids carrying each LOX family member tagged with HA-tag 

with the Myc-tagged annexin A2 plasmid, and they were then transfected to HEK293T cells. 

The transfected cells were lysed and used to conduct immunoprecipitations with anti-HA tag 

antibody-conjugated agarose beads. After the immunoprecipitation of the expressed products 

with the beads, the bound foreign annexin A2 was western-blotted by the anti-Myc antibody. 

C: To identify the cell surface proteins comprehensively, the indicated live cells were all 

treated with sulfosuccinimidyl 3-[[2-(biotinamido) ethyl] dithio] propionate (Toronto 

Research Chemicals, Toronto, ON, Canada) to label membrane proteins under the living cell 

conditions. The treated cells were collected, lysed, and immunoprecipitated with anti-biotin 

antibody-conjugated agarose beads (Sigma Aldrich). The subsequent elution and tandem 
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mass spectrometry (MS/MS) procedure were followed by a method similar to that described 

in panel A. This protocol was used to obtain the data presented Fig. 4C and with some 

modifications to the data in Fig. 4D,E. The gray-colored columns are all overlapped proteins 

identified together. D: The collection of the cell surface annexin A2 in accord with our 

designed protocol. E: Tumor growth was assessed in an orthotopic xenograft model. A tumor 

growth curve was established after an injection of the indicated cells (control GFP and 

LOXL4 wt sublines), and the tumor diameters were measured. Data are mean ± SEM (n=4). 

ns: no significance. 

 

 


