1 2	Supporting Information: Changes in ozone chemical sensitivity in the U.S. from 2007 to 2016
3 4 5 6	Shannon Koplitz ¹ , Heather Simon ¹ , Barron Henderson ¹ , Jennifer Liljegren ² , Gail Tonnesen ³ , Andrew Whitehill ⁴ , Benjamin Wells ¹
7 8 9 10 11	 ¹Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency ²Region 5, U.S. Environmental Protection Agency ³Region 8, U.S. Environmental Protection Agency ⁴Office of Research and Development, U.S. Environmental Protection Agency
12	
14	
15	

16 Table of Contents17

Tables
Table S1. Modeled anthropogenic NOx and VOC emissions for 2007 and 2016 simulations
Table S2. Chemical regime determinations based on differences in May-Sep weekend and weekdayMDA8 O3 values6
Table S3. Chemical regime determinations based on differences in May-Sep weekend and weekday MDA8 O ₃ values at the monitor with the highest 2016 O ₃ design value in each nonattainment area
Table S4. Ypsilanti monitor MDA8 from the top 9 high days modeled in 2007, projected to2016, and modeled in the 2016
Figures
Monte Carlo day-of-week analysis testing
Figure S1. Atlanta
Figure S2. Chicago
Figure S3. Houston
Figure S4. Los Angeles14
Day-of-week barplots
Figure S5. Day-of-week MDA8 O ₃ at the Northbrook, IL monitor (170314201)15
Figure S6. Day-of-week MDA8 O3 at the Gary, IN monitor (180890022)16
Figure S7. Day-of-week MDA8 O ₃ at the monitor located southeast of O'Hare International airport (170311003)17
Figure S8. Day-of-week MDA8 O3 at the Cicero, IL monitor (170314002)
Figure S9. Day-of-week MDA8 O3 at the Lemont, IL monitor (170311601)19
Figure S10. Day-of-week MDA8 O_3 at the Kenosha, WI monitor (550590019)20
Figure S11. Day-of-week MDA8 O_3 at the Hammond, IN monitor (180892008)21
Figure S12. Day-of-week MDA8 O3 at the Morton Arboretum, IL monitor (170436001) 22
Figure S13. Day-of-week MDA8 O ₃ at the New Haven, MI monitor (260990009)23
Figure S14. Day-of-week MDA8 O ₃ at the Port Huron, MI monitor (261470005)24
Figure S15. Day-of-week MDA8 O ₃ at the Warren, MI monitor (260991003)25
Figure S16. Day-of-week MDA8 O ₃ at the East 7 Mile, MI monitor (261630019)26
Figure S17. Day-of-week MDA8 O ₃ at the Oak Park, MI monitor (261250001)27
Figure S18. Day-of-week MDA8 O ₃ at the Allen Park, MI monitor (261630001)28

51	Figure S19. Day-of-week MDA8 O ₃ at the Ypsilanti, MI monitor (261610008)	29
52		
53	Multi-panel plots of model-predicted average O3 chemical formation regime	30
54	Figure S20. Northeast	30
55	Figure S21. Southeast	31
56	Figure S22. Upper Midwest	32
57	Figure S23 Ohio River Valley	33
58	Figure S24. South	34
59	Figure S25 Northern Rockies and Plains	35
60	Figure S26. Southwest	36
61	Figure S27. Northwest	37
62	Figure S28. West	38
63		
64	Ozone isopleth diagrams	39
65	Figure S29. O ₃ isopleth diagrams for the monitor located southeast of O'Hare International	
66	airport	39
67	Figure S30. O ₃ isopleth diagrams for the Cicero, IL monitor	40
68	Figure S31. O ₃ isopleth diagrams for the Lemont, IL monitor	41
69	Figure S32. O ₃ isopleth diagrams for the Kenosha, WI monitor	42
70	Figure S33. O_3 isopleth diagrams for the Hammond, IN monitor	43
71	Figure S34. O ₃ isopleth diagrams for the New Haven, MI monitor	44
72	Figure S35. O ₃ isopleth diagrams for the Port Huron, MI monitor	45
73	Figure S36. O_3 isopleth diagrams for the Warren, MI monitor	46
74	Figure S37. O_3 isopleth diagrams for the East 7 Mile, MI monitor	47
75	Figure S38. O_3 isopleth diagrams for the Oak Park, MI monitor	48
76	Figure S39. O ₃ isopleth diagrams for the Allen Park, MI monitor	49
77	Figure S40. O ₃ isopleth diagrams for the Ypsilanti, MI monitor	50
78 79 80 81	Figure S41. Multi-panel plot of observed and modeled WE-WD differentials and O ₃ response to 20 NOx cut calculated with the HDDM sensitivities Figure S42. Non-attainment area WE-WD temperature differentials)% 51 52
82		
83		

state	VOC			NOx				
	2007 (tons)	2016 (tons)	% change	2007 (tons)	2016 (tons)	% change		
			(2016-2007)			(2016-2007)		
Alabama	410,008	388,485	-5.2%	419636	281698	-32.9%		
Arizona	255,738	240,967	-5.8%	323376	183004	-43.4%		
Arkansas	308,889	379,139	22.7%	239762	181729	-24.2%		
California	1,146,194	1,322,224	15.4%	1008339	531648	-47.3%		
Colorado	333,995	276,843	-17.1%	306532	223686	-27.0%		
Connecticut	88,514	77,123	-12.9%	100091	54490	-45.6%		
Delaware	29,192	18,735	-35.8%	48138	24112	-49.9%		
District of	10,571	8,357	-20.9%	13269	7515	-43.4%		
Columbia						-		
Florida	873,743	674,565	-22.8%	935493	495966	-47.0%		
Georgia	636,242	529,453	-16.8%	642853	317161	-50.7%		
Idaho	615,961	378,552	-38.5%	99071	89296	-9.9%		
Illinois	460,970	380,843	-17.4%	694161	377208	-45.7%		
Indiana	327,805	267,135	-18.5%	563814	331265	-41.2%		
Iowa	179,029	200,907	12.2%	279672	180458	-35.5%		
Kansas	278,501	290,110	4.2%	321857	240720	-25.2%		
Kentucky	230,957	347,315	50.4%	417682	237296	-43.2%		
Louisiana	481,043	724,381	50.6%	543347	348429	-35.9%		
Maine	79,529	56,771	-28.6%	74939	45785	-38.9%		
Maryland	158,045	112,581	-28.8%	240267	119404	-50.3%		
Massachusetts	172,631	138,330	-19.9%	179821	116785	-35.1%		
Michigan	503,108	370,754	-26.3%	606407	327744	-46.0%		
Minnesota	397,625	572,937	44.1%	435225	234023	-46.2%		
Mississippi	255,017	211,462	-17.1%	263627	150342	-43.0%		
Missouri	354,001	472,624	33.5%	478210	323218	-32.4%		
Montana	350,865	212,660	-39.4%	155666	105102	-32.5%		
Nebraska	102,386	96,488	-5.8%	234450	158917	-32.2%		
Nevada	124,489	85,794	-31.1%	110055	71136	-35.4%		
New	55,397	39,178	-29.3%	54087	33386	-38.3%		
Hampshire	220.042	1 60 500		00104	10 (500)			
New Jersey	238,943	160,792	-32.7%	2/01/6	136539	-49.5%		
New Mexico	183,200	302,826	65.3%	220065	179884	-18.3%		
New York	503,981	386,431	-23.3%	488560	282666	-42.1%		
North	530,243	540,017	1.8%	4/06/1	274418	-41.7%		
Caronna North Dakota	55 742	531 851	85/11%	158/12	158627	0.1%		
Obio	<i>33,742</i> <i>444</i> 929	373 750	16.0%	771210	361010	53 1%		
Oklahoma	, <i>523</i> /106.050	573,137	-10.070	171217	301212	-33.170		
Oregon	400 074	468 012	13.370	186806	107170	-2-7.070		
Pennsylvania	435 578	513 100	17.8%	642934	409785	-36.3%		
Rhodo Island	-55,520	21 082	_17.5%	072934 22780	21840	-50.570 _/ 10/		
KIIUUUU ISIAIIU	23,122	21,902	-12.370	22/00	21049	-4.1%		

Table S1. Modeled anthropogenic NO_x and VOC emissions for 2007 and 2016 simulations.

South	271,968	228,420	-16.0%	259348	162372	-37.4%
Carolina South Dakota	76,243	141,167	85.2%	76331	54238	-28.9%
Tennessee	313,919	363,226	15.7%	455825	249996	-45.2%
Texas	2,367,214	1,946,787	-17.8%	1651844	1114117	-32.6%
Utah	241,181	211,955	-12.1%	218065	145529	-33.3%
Vermont	29,224	26,846	-8.1%	22380	14043	-37.3%
Virginia	336,864	291,636	-13.4%	408377	238065	-41.7%
Washington	451,071	374,690	-16.9%	341231	217652	-36.2%
West Virginia	105,294	240,617	128.5%	283523	164021	-42.1%
Wisconsin	326,001	229,453	-29.6%	314846	206884	-34.3%
Wyoming	255,149	437,101	71.3%	243837	155264	-36.3%
National	17,317,384	17,240,984	-0.4%	17723555	10832402	-38.9%

- 88 Table S2: Chemical regime determinations based on differences in May-Sep weekend and weekday
- 89 MDA8 O₃ values. "NO_x Lim" (NO_x-limited) or "NO_x Sat" (NO_x-saturated) categorization indicate
- 90 Welch's t test p-values for mean WE-WD differences of less than 0.05. Double asterisks (**)
- 91 indicate p-values less than 0.01. Italics indicate different categorization between the measured and
- 92 modeled values. Bold indicates different signs for the measured and modeled WE-WD differences.

		Weekend – Weekday Differences (ppb)								
.		2007				2016				
Region	Area	Measur	Measured		Modeled		Measured		1	
		mean	category	mean	category	mean	category	mean	category	
	Baltimore	-5.3**	NO _x Lim	-2.3	Mixed	-6.9**	NO _x Lim	-5.2**	NO _x Lim	
	Greater Connecticut	-7.2**	NO_x Lim	-1.7	Mixed	-6.2**	NO _x Lim	-3.5	NO _x Lim	
Northeast	New York	-3.3**	NO_x Lim	1.0	Mixed	-4.6**	NO _x Lim	-2.2**	NO _x Lim	
	Philadelphia	-4.1**	NO_x Lim	-0.3	Mixed	-5.0**	NO _x Lim	-3.7**	NO _x Lim	
	Washington	-4.8**	NO_x Lim	-1.4	Mixed	-5.3**	NO _x Lim	-3.9**	NO _x Lim	
Southeast	Atlanta	-1.6	Mixed	0.3	Mixed	-5.8**	NO _x Lim	-4.9**	NO _x Lim	
	Chicago	-0.5	Mixed	2.6**	NO _x Sat	-1.8**	NO _x Lim	-1.9**	NO _x Lim	
	Cincinnati	0.1	Mixed	-0.8	Mixed	-0.3	Mixed	-0.4	Mixed	
	Cleveland	-7.7**	NO _x Lim	-4.6**	NO _x Lim	-4.3**	NO_x Lim	-1.7	Mixed	
Ohio Valley	Columbus	-5.5**	NO _x Lim	-4.2**	NO _x Lim	-3.8**	NO_x Lim	-1.5	Mixed	
	Louisville	-0.4	Mixed	1.4	Mixed	-0.5	Mixed	-0.9	Mixed	
	St. Louis	-1.4	Mixed	4.6**	NO _x Sat	-2.1	NO_x Lim	-0.7	Mixed	
	Allegan Co, MI	-4.7	Mixed	-1.6	Mixed	-6.1	NO _x Lim	-5.8	NO _x Lim	
	Berrien Co, MI	-4.6	Mixed	-2.6	Mixed	-5.2	Mixed	-5.5	Mixed	
	Detroit	-5.8**	NO_x Lim	-1.3	Mixed	-3.2**	NO _x Lim	-3.7**	NO _x Lim	
Unner Midwest	Door Co, WI	-2.9	Mixed	-1.9	Mixed	-1.0	Mixed	-0.1	Mixed	
Opper Midwest	Manitowoc Co, WI	-1.3	Mixed	0.4	Mixed	-2.1	Mixed	-3.1	Mixed	
	Muskegon Co, WI	-6.2	Mixed	-1.1	Mixed	-3.9	Mixed	-4.3	Mixed	
	Northern Milwaukee	0.1	Mixed	2.1	Mixed	-2.6	Mixed	-2.5	Mixed	
	Sheboygan Co, WI	-1.9	Mixed	0.7	Mixed	-2.7	Mixed	-3.2	Mixed	
	Dallas	-2.2	NO _x Lim	5.0**	NO _x Sat	-3.1**	NO _x Lim	-2.1**	NO _x Lim	
South	Houston	2.4	NOx Sat	6.4**	NO _x Sat	-2.3**	NO _x Lim	-7.1**	NO _x Lim	
	San Antonio	1.8	Mixed	2.0	Mixed	-3.1	NO _x Lim	-5.2**	NO _x Lim	
	Denver	2.2	NO _x Sat	6.1	NO _x Sat	-1.2	Mixed	-0.5	Mixed	
Southwest	Dona Ana Co, NM	1.7	Mixed	3.3	NO_x Sat	2.3	Mixed	2.8	NO_x Sat	
	Northern Wasatch Front	1.7	NO _x Sat	3.1**	NO _x Sat	-0.4	Mixed	-1.6	NO_x Lim	

	Phoenix	-2.6**	NO _x Lim	-1.5	NO _x Lim	-1.1**	NO_x Lim	-0.2	Mixed
	Southern Wasatch Front	0.3	Mixed	2.6	NO_x Sat	-1.2	Mixed	-1.3	Mixed
	Amador Co, CA	-5.6	NO _x Lim	-5.0	NO _x Lim	-2.9	Mixed	-3.6	Mixed
	Butte Co, CA	-6.5	NO_x Lim	-4.7	Mixed	-5.1**	NO _x Lim	-5.5**	NO _x Lim
	Calaveras Co, CA	-5.2	NO_x Lim	-4.2	Mixed	-2.9	Mixed	-3.3	Mixed
	Imperial Co, CA	-2.3	Mixed	-3.4**	NO_x Lim	-5.1**	NO _x Lim	-6.0**	NO _x Lim
	Kern	0.7	Mixed	-2.3	Mixed	-3.8	Mixed	-2.0	Mixed
	Las Vegas	0.3	Mixed	-0.4	Mixed	-1.2	Mixed	0.4	Mixed
	Los Angeles	11.4**	NO _x Sat	12.2**	NO _x Sat	-1.8	NOx Lim	1.3	Mixed
	Mariposa Co, CA	0.1	Mixed	-0.9	Mixed	-1.1	Mixed	-1.2	Mixed
	Morongo Band of Mission Indians	1.0	Mixed	4.1	Mixed	-9.4**	NO _x Lim	-5.8**	NO _x Lim
	Nevada Co, CA	-4.7	NO _x Lim	-3.9	NO _x Lim	-5.3	Mixed	-5.9	NO_x Lim
West	Riverside	-0.6	Mixed	0.0	Mixed	-6.8**	NO _x Lim	-4.2**	NO _x Lim
	Sacramento	-4.8**	NO _x Lim	-3.6**	NO _x Lim	-2.4**	NO _x Lim	-3.4**	NO _x Lim
	San Bernardino	1.9	Mixed	2.1	NO _x Sat	-6.3**	NO _x Lim	-4.2**	NO _x Lim
	San Diego	4.1**	NO _x Sat	3.2**	NO _x Sat	-0.8	Mixed	1.5	Mixed
	San Francisco	-1.7**	NO _x Lim	-3.7**	NO _x Lim	2.1**	NO _x Sat	2.6**	NO _x Sat
	San Joaquin Valley	-3.1**	NO _x Lim	-3.2**	NO _x Lim	-2.5**	NO _x Lim	-2.5**	NO _x Lim
	San Luis Obispo	-4.4	NO _x Lim	-2.8	NO _x Lim	-2.6	Mixed	-1.0	Mixed
	Sutter Buttes	-6.6**	NO _x Lim	-4.7	NO _x Lim	-3.8	Mixed	-4.7	NO_x Lim
	Tuolumne Co, CA	-3.6	Mixed	-2.8	Mixed	-1.6	Mixed	-2.2	Mixed
	Tuscan Buttes	-6.2	NO _x Lim	-5.0	NO _x Lim	-5.9	NO _x Lim	-4.5	NO _x Lim
	Ventura Co, CA	3.8**	NO_x Sat	0.4	Mixed	-3.6**	NO _x Lim	-3.6**	NO _x Lim

95 Table S3: Chemical regime determinations based on differences in May-Sep weekend and weekday MDA8 O₃ values at the monitor

96 with the highest 2016 O₃ design value in each nonattainment area. NOx Lim or NOx Sat categorization indicate t test p-values for

97 mean WE-WD differences of less than 0.05. Double asterisks (**) indicate p-values less than 0.01.

					We	ekend – Weekda	y Differences (ppb)		
region	Site number	er area		20	07		2016			
	Site number	urcu	Mea	sured	Mea	sured	Mea	sured	Mea	sured
			mean	mean	mean	mean	mean	mean	mean	mean
	240251001	Baltimore	-5.7	mixed	-1.5	mixed	-6.8	Nox Lim	-6.3	mixed
	90110124	Greater Connecticut	-4.3	mixed	2.1	mixed	-5.8	mixed	-5.7	mixed
Northeast	90019003	New York	-4.1	mixed	-0.3	mixed	-6.5	mixed	-2.3	mixed
	421010024	Philadelphia	-4.6	mixed	2.7	mixed	-4.6	mixed	-1.7	mixed
	240338003	Washington	-5.6	mixed	-4.1	mixed	-5.5	Nox Lim	-5.1	mixed
Southeast	131210055	Atlanta	-1.5	mixed	2.9	mixed	-5.8	mixed	-4.0	mixed
	550590019	Chicago	0.0	mixed	2.5	mixed	-3.9	mixed	-2.5	mixed
	390610006	Cincinnati	1.0	mixed	0.2	mixed	0.3	mixed	0.6	mixed
	390850003	Cleveland	-8.9**	Nox Lim	-1.3	mixed	-5.5	mixed	-1.2	mixed
Ohio Valley	390490029	Columbus	-7.5	Nox Lim	-4.2	mixed	-4.5	Nox Lim	-1.8	mixed
v ane y	180190008	Louisville	-2.9	mixed	-1.2	mixed	-2.0	mixed	-1.8	mixed
	180431004	Louisville	-0.1	mixed	1.7	mixed	-1.2	mixed	-2.3	mixed
	291831002	St. Louis	-3.7	mixed	4.0	mixed	-3.2	mixed	-1.5	mixed
	260050003	Allegan Co, MI	-4.7	mixed	-1.6	mixed	-6.1	Nox Lim	-5.8	Nox Lim
	260210014	Berrien Co, MI	-4.6	mixed	-2.6	mixed	-5.2	mixed	-5.5	mixed
	261630019	Detroit	-6.9	mixed	1.3	mixed	-4.8	mixed	-2.9	mixed
Upper	550290004	Door Co, WI	-2.9	mixed	-1.9	mixed	-1.0	mixed	-0.1	mixed
Midwest	550710007	Manitowoc Co, WI	-1.3	mixed	0.4	mixed	-2.1	mixed	-3.1	mixed
	261210039	Muskegon Co, MI	-6.2	mixed	-1.1	mixed	-3.9	mixed	-4.3	mixed
	550890009	Northern Milwaukee	-0.3	mixed	1.0	mixed	-2.5	mixed	-3.5	mixed
	551170006	Sheboygan Co, MI	-1.9	mixed	0.7	mixed	-2.7	mixed	-3.2	mixed
S41-	482010024	Houston	1.4	mixed	6.7	mixed	-3.2	mixed	-7.1	Nox Lim
South	480290032	San Antonio	2.7	mixed	3.7	mixed	-3.1	mixed	-5.1	mixed

	481210034	Dallas	-4.8	mixed	5.3	mixed	-5.1	mixed	-3.7	mixed
	80590011	Denver	1.6	mixed	7.6	Nox Sat	-2.0	mixed	0.6	mixed
	350130022	Dona Ana Co, NM	1.8	mixed	2.1	mixed	2.2	mixed	2.4	mixed
	350130021	Dona Ana Co, NM	1.6	mixed	3.9	mixed	2.3	mixed	3.2	mixed
Southwest	490353006	Northern Wasatch Front, UT	3.2	mixed	4.0	mixed	1.1	mixed	-1.3	mixed
Sounwesi	40132005	Phoenix	-5.1	Nox Lim	-2.3	mixed	-1.9	mixed	-3.1	mixed
	40139997	Phoenix	-0.3	mixed	3.1	mixed	-1.4	mixed	1.7	mixed
	490490002	Southern Wasatch Front, UT	1.4	mixed	2.7	mixed	-0.2	mixed	-0.9	mixed
	490471002	Uinta Basin, UT	-1.5	mixed	1.5	mixed	0.1	mixed	-0.3	mixed
	60050002	Amador Co, CA	-5.6	Nox Lim	-5.0	Nox Lim	-2.9	mixed	-3.6	mixed
	60070007	Butte Co, CA	-6.5	Nox Lim	-4.7	mixed	-6.0	Nox Lim	-5.7	Nox Lim
	60090001	Calaveras Co, CA	-5.2	Nox Lim	-4.2	mixed	-2.9	mixed	-3.3	mixed
	60250005	Imperial Co, CA	-1.6	mixed	-4.6	mixed	-3.2	mixed	-5.8	Nox Lim
	60290011	Kern Co, CA	0.7	mixed	-2.3	mixed	-3.8	mixed	-2.0	mixed
	320030075	Las Vegas	0.5	mixed	-1.1	mixed	-2.2	mixed	-0.6	mixed
	60658001	Los Angeles	9.0**	Nox Sat	16.4**	Nox Sat	-3.4	mixed	1.4	mixed
	60376012	Los Angeles	8.9	Nox Sat	6.0	mixed	-7.1	Nox Lim	-4.1	mixed
	60430003	Mariposa Co, CA	-1.6	mixed	-1.4	mixed	0.1	mixed	-0.4	mixed
	60650012	Morongo Band of Mission Indians	0.1	mixed	5.2	Nox Sat	-10.7**	Nox Lim	-5.7	Nox Lim
West	60570005	Nevada Co, CA	-5.7	mixed	-3.9	mixed	-5.3	mixed	-5.9	Nox Lim
	60655001	Riverside Co, CA	2.2	mixed	0.1	mixed	-9.5**	Nox Lim	-5.5	Nox Lim
	60170010	Sacramento	-5.5	mixed	-4.1	mixed	-5.3	mixed	-4.7	mixed
	60731006	San Diego Co, CA	4.1	mixed	-0.6	mixed	-4.3	mixed	-1.2	mixed
	60010007	San Francisco Bay Area	-1.9	mixed	-4.0	mixed	0.8	mixed	3.7	mixed
	60194001	San Joaquin Valley	-2.3	mixed	-4.3	mixed	-6.5	Nox Lim	-4.3	mixed
	60798005	San Luis Obispo	-4.7	mixed	-2.7	mixed	-2.2	mixed	-1.4	mixed
	61010004	Sutter Buttes	-6.6	Nox Lim	-4.7	Nox Lim	-3.8	mixed	-4.7	Nox Lim
	61090005	Tuolumne Co, CA	-3.6	mixed	-2.8	mixed	-1.6	mixed	-2.2	mixed
	61030004	Tuscan Buttes, CA	-6.2	Nox Lim	-5.0	Nox Lim	-5.9	Nox Lim	-4.5	Nox Lim
	61112002	Ventura Co, CA	6.8	Nox Sat	0.8	mixed	-5.2	Nox Lim	-4.7	mixed

101 Table S4. Ypsilanti monitor MDA8 from the top 9 high days modeled in the 2007 simulation,

102 these same days projected to 2016 values using the 2007 HDDM sensitivities and assuming 2016

103 emission levels (0.55 NO_x and 0.75 VOC of 2007 emissions), and the top 9 high days modeled in

104 the 2016 simulation. Averages across each set of 9 days are shown in bold italics in the bottom

105 row.

Modeled 2007	Projected 2016	Modeled 2016
79.68	73.01	77.14
79.43	71.81	71.92
79.21	79.67	71.13
77.72	69.15	65.65
75.43	65.54	63.67
72.64	73.39	63.19
72.63	70.90	62.38
70.55	65.32	62.03
70.05	71.68	61.61
75.26	71.16	66.52

106

108 Monte Carlo DOW Analysis Testing

- 109 To investigate the sensitivity of our DOW analysis results to the observations used, we
- 110 performed Monte Carlo analyses for four of the most populated non-attainment areas in our
- 111 study: Atlanta, Chicago, Houston, and Los Angeles. For each area, 1000 Monte Carlo
- simulations were performed. For each case, weekday values were randomly sampled without
- replacement and the Welch's t-test comparison was re-run for the weekend vs. re-sampled
- 114 weekday values. This was repeated 100 times and the distributions of p-values and WE-WD
- 115 differences were recorded. Blue stars indicate values from the original analysis that includes all
- 116 weekday data.

118

119 Figure S1. Monte Carlo results to randomize observations selected in DOW analysis – Atlanta.

120 For 2007, both the modeled and observed distributions have insignificant p-values and ranges of

WE-WD differences that cross 0. For 2016, both the modeled and observed distributions have

122 consistently negative WE-WD differences and mostly significant p-values (there are some outlier

123 insignificant p-values in the modeled dataset).

125 Figure S2. Monte Carlo results to randomize observations selected in DOW analysis – Chicago.

126 For 2007, the observations have insignificant p-values and ranges of WE-WD differences that

127 cross 0. Modeled values for 2007 have mostly significant p-values and consistently positive WE-

128 WD differences. In 2016, both the modeled and observed values have consistently negative WE-

129 WD differences and generally significant p-values, although the non-outlier range for the p-

130 values goes up to 0.2 for the observations and 0.3 for the model.

132 Figure S3. Monte Carlo results to randomize observations selected in DOW analysis – Houston.

In 2007, both the modeled and observed distributions have generally significant p-values and
 positive WE-WD differences. Observed p-values have a wider range and WE-WD differences

are less positive. In 2016, both the modeled and observed distributions have consistently

136 negative WE-WD differences and mostly significant p-values (there are some insignificant

137 outlier p-values in the 2016 observational dataset).

139 Figure S4. Monte Carlo results to randomize observations selected in DOW analysis – Los

140 Angeles. In 2007, both the modeled and observed distributions have significant p-values and

141 consistently positive WE-WD differences. In 2016, both the modeled and observed distributions

have ranges of WE-WD differences that cross 0 and mostly insignificant p-values (original 2016

143 observational p-value was less than 0.05 but above 0.01).

146 Figure S5. May-September weekday versus weekend MDA8 O3 at the Northbrook, IL monitor

147 (170314201) for 2007 and 2016 based on monitored values (left panel) and modeled values in

148 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

statistically different distributions on weekends versus weekdays are outlined in bold.

154 Figure S6. May-September weekday versus weekend MDA8 O3 at the Gary, IN monitor

155 (180890022) for 2007 and 2016 based on monitored values (left panel) and modeled values in

156 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

158 show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

159 statistically different distributions on weekends versus weekdays are outlined in bold.

160

Figure S7. May-September weekday versus weekend MDA8 O3 concentrations at the monitor 163

located southeast of O'Hare International airport (170311003) for 2007 and 2016 based on 164

monitored values (left panel) and modeled values in grid cells containing monitor location (right 165

panel). Boxes represent the 25th-75th percentile, horizontal lines represent median values, 166 whiskers extend to $1.5 \times$ the interquartile range, dots show outlier values and triangles represent

167

168 95th percentile values. Boxplot pairs that have statistically different distributions on weekends

169 versus weekdays are outlined in bold.

171 Figure S8. May-September weekday versus weekend MDA8 O3 at the Cicero, IL monitor

172 (170314002) for 2007 and 2016 based on monitored values (left panel) and modeled values in

173 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

178 Figure S9. May-September weekday versus weekend MDA8 O3 at the Lemont, IL monitor

179 (170311601) for 2007 and 2016 based on monitored values (left panel) and modeled values in

180 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

182 show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

185 Figure S10. May-September weekday versus weekend MDA8 O3 at the Kenosha, WI monitor

186 (550590019) for 2007 and 2016 based on monitored values (left panel) and modeled values in

187 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

190 statistically different distributions on weekends versus weekdays are outlined in bold.

193 Figure S11. May-September weekday versus weekend MDA8 O3 at the Hammond, IN monitor

194 (180892008) for 2007 and 2016 based on monitored values (left panel) and modeled values in

195 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

197 show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

Figure S12. May-September weekday versus weekend MDA8 O3 at the Morton Arboretum

201 monitor (170436001) for 2007 and 2016 based on monitored values (left panel) and modeled

values in grid cells containing monitor location (right panel). Boxes represent the 25th-75th

203 percentile, horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile

range, dots show outlier values and triangles represent 95th percentile values. Boxplot pairs that

207

208 Figure S13. May-September weekday versus weekend MDA8 O3 at the New Haven monitor

209 (260990009) for 2007 and 2016 based on monitored values (left panel) and modeled values in

210 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

211 horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

Figure S14. May-September weekday versus weekend MDA8 O3 at the Warren, MI monitor

216 (260991003) for 2007 and 2016 based on monitored values (left panel) and modeled values in

217 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

Figure S15. May-September weekday versus weekend MDA8 O3 at the Port Huron monitor

223 (261470005) for 2007 and 2016 based on monitored values (left panel) and modeled values in

grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

statistically different distributions on weekends versus weekdays are outlined in bold

230 Figure S16. May-September weekday versus weekend MDA8 O3 at the East 7 Mile, MI monitor

231 (261630019) for 2007 and 2016 based on monitored values (left panel) and modeled values in

grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

237 Figure S17. May-September weekday versus weekend MDA8 O3 at the Oak Park, MI monitor

238 (261250001) for 2007 and 2016 based on monitored values (left panel) and modeled values in

239 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

Figure S18. May-September weekday versus weekend MDA8 O3 at the Allen Park, MI monitor

245 (261630001) for 2007 and 2016 based on monitored values (left panel) and modeled values in

246 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

251 Figure S19. May-September weekday versus weekend MDA8 O3 at the Ypsilanti, MI monitor

252 (261610008) for 2007 and 2016 based on monitored values (left panel) and modeled values in

253 grid cells containing monitor location (right panel). Boxes represent the 25th-75th percentile,

horizontal lines represent median values, whiskers extend to $1.5 \times$ the interquartile range, dots

show outlier values and triangles represent 95th percentile values. Boxplot pairs that have

statistically different distributions on weekends versus weekdays are outlined in bold.

259 Figure S20: Northeast model-predicted average O₃ chemical formation regime on days with

- 260 MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left
- 261 panels) and 2016 (right panels)

Figure S21: Southeast model-predicted average O_3 chemical formation regime on days with MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left panels) and 2016 (right panels)

268 Figure S22: Upper Midwest model-predicted average O₃ chemical formation regime on days

with MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left

270 panels) and 2016 (right panels)

272

Figure S23: Ohio River Valley model-predicted average O₃ chemical formation regime on days

with MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left

277 panels) and 2016 (right panels)

- Figure S24: South model-predicted average O₃ chemical formation regime on days with MDA8
- $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left panels) and 2016 (right panels)
- 282 2016 (right panels)

- Figure S25: Northern Rockies and Plains model-predicted average O₃ chemical formation regime
- on days with MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in
- 287 2007 (left panels) and 2016 (right panels)

294 MDA8 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left

295 panels) and 2016 (right panels)

298 Figure S27: Northwest model-predicted average O₃ chemical formation regime on days with

MDA8 O₃ > 70 ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left
 panels) and 2016 (right panels)

302 Figure S28: West model-predicted average O₃ chemical formation regime on days with MDA8

 $O_3 > 70$ ppb (top panels) and across all May-Sep days (bottom panels) in 2007 (left panels) and 2016 (right panels)

307 Figure S29. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

308 (bottom) and high MDA8 (O3>70) (top) for the monitor located southeast of O'Hare

309 International airport. Dashed lines are shown at 50% and 75% of original emissions, and

hatching covers the area where large emission reductions (of 50-100%) are outside the domain of

- 311 expected HDDM accuracy. The dotted curved line depicts locations in the Ozone isopleth space
- that match 71 ppb MDA8 O_3 , below which the site would not be modeling exceedances of the
- 313 2015 ozone NAAQS.

Figure S30. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

317 (bottom) and high MDA8 (O3>70) (top) for the Cicero, IL monitor. Dashed lines are shown at

318 50% and 75% of original emissions, and hatching covers the area where large emission

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

320 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

321 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

325 (bottom) and high MDA8 (O3>70) (top) for the Lemont, IL monitor. Dashed lines are shown at

326 50% and 75% of original emissions, and hatching covers the area where large emission

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

328 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

329 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

Figure S32. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0) 334

(bottom) and high MDA8 (O3>70) (top) for the Kenosha, WI monitor. Dashed lines are shown 335 at 50% and 75% of original emissions, and hatching covers the area where large emission

336

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted 337 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below 338

which the site would not be modeling exceedances of the 2015 ozone NAAQS. 339

Figure S33. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

344 (bottom) and high MDA8 (O3>70) (top) for the Hammond, IN monitor. Dashed lines are shown

- at 50% and 75% of original emissions, and hatching covers the area where large emission
 reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted
- curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below
- 348 which the site would not be modeling exceedances of the 2015 ozone NAAQS.
- 349
- 350
- 351
- 352

Figure S34. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

(bottom) and high MDA8 (O3>70) (top) for the New Haven, MI monitor. Dashed lines are

shown at 50% and 75% of original emissions, and hatching covers the area where large emission
 reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

360 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

Figure S35. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0) (bottom) and high MDA8 (O3>70) (top) for the Port Huron, MI monitor. Dashed lines are shown at 50% and 75% of original emissions, and hatching covers the area where large emission reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below which the site would not be modeling exceedances of the 2015 ozone NAAQS.

- 371
- 372

375

Figure S36. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

377 (bottom) and high MDA8 (O3>70) (top) for the Warren, MI monitor. Dashed lines are shown at

378 50% and 75% of original emissions, and hatching covers the area where large emission

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

380 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

381 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

Figure S37. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

(bottom) and high MDA8 (O3>70) (top) for the East 7 Mile, MI monitor. Dashed lines are
shown at 50% and 75% of original emissions, and hatching covers the area where large emission

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

388 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

389 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

394

395 Figure S38. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

(bottom) and high MDA8 (O3>70) (top) for the Allen Park, MI monitor. Dashed lines are 396

shown at 50% and 75% of original emissions, and hatching covers the area where large emission 397

398 reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted 399 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

which the site would not be modeling exceedances of the 2015 ozone NAAQS. 400

Figure S39. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)
(bottom) and high MDA8 (O3>70) (top) for the Oak Park, MI monitor. Dashed lines are shown
at 50% and 75% of original emissions, and hatching covers the area where large emission
reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

409 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

410 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

414 Figure S40. Ozone isopleth diagrams in 2007 (left) and 2016 (right) for all MDA8 (O3>0)

415 (bottom) and high MDA8 (O3>70) (top) for the Ypsilanti, MI monitor. Dashed lines are shown

at 50% and 75% of original emissions, and hatching covers the area where large emission

reductions (of 50-100%) are outside the domain of expected HDDM accuracy. The dotted

418 curved line depicts locations in the Ozone isopleth space that match 71 ppb MDA8 O₃, below

419 which the site would not be modeling exceedances of the 2015 ozone NAAQS.

425 Figure S41. Comparison of (left) modeled vs. observed WE-WD differential, (middle) ozone

426 response to a 20% NOx cut calculated with the HDDM sensitivities vs. modeled WE-WD

427 differential, and (right) ozone response to a 20% NOx cut calculated with the HDDM

428 sensitivities vs. observed WE-WD differential for (top) 2007 and (bottom) 2016.

429

421 422

- 431 Figure S42. Non-attainment area (NAA) WE-WD temperature differentials from the AQS
- 432 network with p-value < 0.05 in either 2007 or 2016. Crosses indicate significant p-value for that

433 year.