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Supplementary Figures

Fig.S1: Analysis of OCR, metabolomics, and the labile iron pool after autophagy inhibition in PDAC. (A) CQ treated PDAC cells 
are supplemented with NAC and OCR is measured from n=3 (Statistical analysis done using  One way ANOVA Holm Sidak’s test). PDAC
cells treated with CQ (B) or siATG5 (C) were analyzed for TCA substrates by LC-MS. Statistical analysis done using unpaired two-tailed 
t-tests. This data includes the same succinate levels that were shown in Fig2D. (D) Equine ferritin (1mg/ml, 8h) was added to cells under 
autophagy or ferritinophagy inhibited conditions, and the LIP level was determined. (E) mRNA level was measured by qRT-PCR after 
siRNA against indicated target genes were used in PDAC cells. Data are mean ±s.d and P  values were quantified using one way ANOVA
with Tukey’s post hoc test.  ****P < 0.0001, ***P < 0.001, **P < 0.01, * P  < 0.05 were considered as significant.
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Fig.S2: Protein expression of the Fe-S protein SDHB cannot be rescued by NAC supplementation during autophagy loss in PDAC.
(A) 8988T PDAC cells were either starved for cystine (glutamine starvation was used as a random amino acid starvation control) 
or exposed to iron chelation, followed by western blotting for indicated proteins. (B) OXPHOS, VDAC1 (porin) protein levels were measured
by immunoblot upon co-treatment with CQ and NAC. SDHB is indicated in (B) using a triangle. (C) PDAC expressing control or SDHB 
overexpressing cells were treated with CQ, followed by an analysis of their cell proliferation. Data are mean ±s.d and P values were 
quantified using one-way ANOVA with Tukey’s post hoc test. ****P < 0.0001, ***P < 0.001, **P < 0.01 were considered as significant. 
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Fig.S3: Analysis of mitochondrial and cytoplasmic Fe-S cluster proteins by immunoblotting and proteomics. (A) 8988T cells were
treated for indicated timepoints and immunoblotted for cytoplasmic, mitochondrial Fe-S proteins. (B) Heatmap showing quantiative 
proteomics analysis of mitochondrial and cytoplasmic Fe-S  cluster proteins from autophagy inhibited 8988T cells. Statiscal analysis of  
Fig.S3B is shown in following Supplementary Table-1.



CIAO1
shGFP vs. shGFP+CQ ns 0.9733
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 **** <0.0001
CIAO3
shGFP vs. shGFP+CQ **** <0.0001
shGFP vs. shATG5#1 *** 0.0008
shGFP vs. shATG5#2 ** 0.0013
CIAPIN1
shGFP vs. shGFP+CQ ns 0.879
shGFP vs. shATG5#1 ns 0.1775
shGFP vs. shATG5#2 ns 0.2947
MMS19
shGFP vs. shGFP+CQ ns 0.6599
shGFP vs. shATG5#1 ns 0.9619
shGFP vs. shATG5#2 ns 0.9953
NUBP1
shGFP vs. shGFP+CQ ns 0.6593
shGFP vs. shATG5#1 ** 0.0016
shGFP vs. shATG5#2 ns 0.0966
NUBP2
shGFP vs. shGFP+CQ ns 0.2244
shGFP vs. shATG5#1 ns 0.5099
shGFP vs. shATG5#2 ns 0.6289
FDX1
shGFP vs. shGFP+CQ ns 0.9643
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 **** <0.0001
FDXR
shGFP vs. shGFP+CQ ns 0.9247
shGFP vs. shATG5#1 ns 0.4248
shGFP vs. shATG5#2 ns 0.1264
GLRX5
shGFP vs. shGFP+CQ * 0.0185
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 ns 0.6029
HSCB
shGFP vs. shGFP+CQ ns 0.0525
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 *** 0.0006
IBA57
shGFP vs. shGFP+CQ ns 0.0962
shGFP vs. shATG5#1 ** 0.0022
shGFP vs. shATG5#2 ns 0.1836

ISCA2
shGFP vs. shGFP+CQ ns 0.9864
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 **** <0.0001
ISCU
shGFP vs. shGFP+CQ ns 0.108
shGFP vs. shATG5#1 ns 0.5647
shGFP vs. shATG5#2 ns 0.9622
NFU1
shGFP vs. shGFP+CQ ns 0.6067
shGFP vs. shATG5#1 **** <0.0001
shGFP vs. shATG5#2 ns 0.7728
SDHB
shGFP vs. shGFP+CQ **** <0.0001
shGFP vs. shATG5#1 * 0.0132
shGFP vs. shATG5#2 *** 0.0007
NDUFS2
shGFP vs. shGFP+CQ ns 0.5599
shGFP vs. shATG5#1 ns 0.9946
shGFP vs. shATG5#2 ns 0.4575
NDUFS3
shGFP vs. shGFP+CQ ns 0.9908
shGFP vs. shATG5#1 ns 0.9947
shGFP vs. shATG5#2 ns 0.5696
NDUFS4
shGFP vs. shGFP+CQ ns 0.9996
shGFP vs. shATG5#1 ns 0.9552
shGFP vs. shATG5#2 ns 0.4563
NDUFS5
shGFP vs. shGFP+CQ ns >0.9999
shGFP vs. shATG5#1 ns 0.9688
shGFP vs. shATG5#2 ns 0.6388
NDUFS6
shGFP vs. shGFP+CQ ns 0.9348
shGFP vs. shATG5#1 ns 0.8049
shGFP vs. shATG5#2 ns 0.9871
NDUFS7
shGFP vs. shGFP+CQ ns 0.9995
shGFP vs. shATG5#1 ns 0.9858
shGFP vs. shATG5#2 ns 0.3656
NDUFS8
shGFP vs. shGFP+CQ ns 0.8723
shGFP vs. shATG5#1 ns 0.8307
shGFP vs. shATG5#2 ns 0.1861

Supplementary Table-1: Two way ANOVA Tukey’s multiple comparison  with the  
statistical summary and adjusted P value for Fig.S3B
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Fig.S4: CAFs rescue SDHB levels in autophagy impaired PDAC and undergo paracrine signaling to regulate the IL6-ferritin 
axis. (A) siRNA knockdown quality of indicated genes were analyzed by mRNA level quantification. These knockdown cells were
used in Fig.7B. (B) Western blot analysis of OXPHOS cocktail was performed in autophagy intact or inhibited PDAC lysates which 
was mono or co-cultured with CAFs. (C) Cell lysates from conditions similar in (B) was used for quantification of PDAC ATP. (D) CAFs 
with or without IL6 knocked down were cocultured with PDAC having ATG5 inhibition and the CAF lysates were used for ferritin 
immunoblots. (E) IL6 was knocked down in CAF and the lysates were immunoblotted for IL6. (F) Hemoglobin analysis of B6 mice fed
on indicated diet for 1 month was analyzed using retroorbital blood by Hemavet analyzer. Data are mean ±s.d and P values were
quantified using one-way ANOVA  with Tukey’s post hoc test. ****P < 0.0001, ***P < 0.001, **P < 0.01 were considered as significant. 
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Fig.S5: Iron restriction does not further enhance immune infiltration in the setting of autophagy inhibition. (A) Immunohistochemical 
analysis was performed for CD8 and CD3 using tumor samples from Fig.10A followed by their quantification in (B). Data are mean ±s.d and P 
values were quantified using one-way ANOVA with Tukey’s post hoc test. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 were considered 
as significant. 
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Fig.S6: Proliferative inhibition in PDAC by loss of autophagy does not involve ferroptosis. Indicated ferroptosis markers were 
analyzed from tumor samples (from Fig.10) bearing autophagy inhibition  by Atg4Bdn (A) or CQ (B)with or without low iron diet by 
immunoblotting. Autophagy was inhibited in HY19636 PDAC cells by Atg4Bdn (C) or CQ (D) and the colony formation assay was 
enumerated after treating the cells with Ferrostatin-1 (20µM) or Liproxstatin-1 (14µM). P values were quantified using one way ANOVA
with Tukey’s post hoc test and P>0.05 were considered as non-significant (ns).



Supplementary Methods: 

Histology and immunohistochemistry: The Experimental Pathology Research Laboratory at NYU 

Grossman School of Medicine carried out staining for hematoxylin and eosin, CD8 (Cell Signaling 

Technology, 98941S), CD3 (Cell Signaling Technology, 78588S) and slide scanning on the tumor tissues 

was done after they had been fixed in formalin overnight and embedded in paraffin. IHC images were 

quantified using Leica Biosystems Aperio ImageScope software; necrotic and non-tumor regions were 

excluded from the analysis. 

Quantitative Proteomics: Analysis of quantitative proteomics on PaTu-8988T cell lines was performed as 

previously described (33) after inhibiting autophagy genetically using shRNAs against ATG5 or 

pharmacologically using CQ. Proteins were extracted using a lysis buffer composed of 8 M urea, 200 mM 

EPPS (pH 8.5), supplemented with protease inhibitors. Around 50-100µg of protein extracts underwent 

reduction, alkylation followed by precipitation. These protein pellets were digested and 50µg of peptides 

were labelled with TMT reagent. Protein loading was equalized by checking ratio of 2μg of each TMT-

labeled sample. Sample fractionation was done using basic pH RP-HPLC. Desalted samples were analyzed 

by LC-MS/MS/MS. Data acquisition was performed with Orbitrap Lumos mass spectrometer in-line with a 

Proxeon NanoLC-1200 UHPLC system followed by processing with Comet (34) and a previously reported 

informatics pipeline (35). Spectral searches were performed using FASTA-formatted databases (Uniprot 

Human, 2020). Protein quantitative values were normalized to ensure the sum of all protein signals in every 

channel was equalized to account for sample loading. 
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