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Online Appendix to Incremental Model Fit Assessment in the Case of Categorical Data:

Tucker-Lewis Index for Item Response Theory Modeling by Cai, Chung, and Lee

1 Details on Limited-information Goodness-of-fit Testing

To avoid notation clutter, we will spell out the details under dichotomous responses

and mention how the theory can be extended to polytomous data. Recall the C = 2n-cell

multinominal table on which the IRT model likelihood is define. We shall first write the

C × 1 vector of cell probabilities as π(θ) = [π1(θ), . . . , πC(θ)]
′. The true probabilities

is given by π0 = (π01, . . . , π0C)
′. Correspondingly, the C × 1 vector of observed pro-

portions is p = (p1, . . . , pC)
′. Denote the C× 1 vector of model-implied probabilities as

π̂ = π(θ̂) = (π̂1, . . . , π̂C)
′ after obtaining θ̂ from the maximization of L(θ). The C × 1

vector of cell residuals is given by e = p − π̂. Standard discrete multivariate analy-

sis results suggest that e is asymptotically C-variate normally distributed under exactly

correct model specification (see e.g., Bishop, Fienberg, & Holland, 1975)

√
Ne =

√
N(p− π̂)

D→ NC(0, Ω), (1)

where Ω = Ξ− ∆F−1∆′. The multinomial covariance matrix Ξ is equal to diag(π)−

ππ′, and the Jacobian matrix is

∆ =
∂π(θ)

∂θ′
.

The Fisher information matrix is defined as F = ∆′[diag(π)]−1∆.

In M2, the marginal residuals up to order 2 are used. For n dichotomous items, there

are n first-order marginal residuals, and n(n − 1)/2 second-order marginal residuals.

They are obtained via operator matrices. Let L̇ be an n × C fixed matrix consisting of

zeros and ones. The (i, c)th element in L̇ is one if and only if item i is endorsed in the

cth response pattern. Similarly, let L̈ be an n(n − 1)/2× C fixed matrix of zeros and

ones. Each row of this matrix corresponds to an item pair, and for each row, column c

is equal to one if and only if the pair of items is endorsed in the cth response pattern.
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Pre-multiplying e by L̇ leads to ė = L̇e, the n× 1 vector of first-order marginal residuals.

Similarly, pre-multiplying e by L̈ leads to ë = L̈e, the n(n− 1)/2× 1 vector of second-

order marginal residuals. Stacking ė and ë, the vector of marginal residuals up to order

2 is e2 = (ė, ë). Because e2 is a linear function of e, the asymptotic distribution of e2 is

also normal
√

Ne2
D→ Nn(n+1)/2(0, L2ΩL′2), (2)

where L2 = (L̇, L̈), stacking L̇ and L̈. Let us simplify the notation and let Ω2 = L2ΩL′2 =

Ξ2 − ∆2F−1∆′2, where Ξ2 = L2ΞL′2 and ∆2 = L2∆. Specifically, ∆2 is the matrix of

derivatives of the first- and second order marginal probabilities with respect to θ.

Now Maydeu-Olivares and Joe’s (2005) M2 statistic can be defined:

M2 = Ne′2

[
Ξ̂
−1
2 − Ξ̂

−1
2 ∆̂2

(
∆̂
′
2Ξ̂
−1
2 ∆̂2

)−1
∆̂
′
2Ξ̂
−1
2

]
e′2, (3)

where ∆̂2 and Ξ̂2 denote the evaluation of ∆2 and Ξ2 at the maximum likelihood estimate

θ̂. It follows from Proposition 4 in Browne’s (1984) that M2 is asymptotically chi-square

distributed with n(n + 1)/2− dim(θ) degrees of freedom under the null hypothesis that

the model fits exactly in the population.

For n polytomous items with K categories, the total number of possible response pat-

terns becomes C = Kn. Consequently, the vectors of multinomial cell probabilities π(θ)

and π̂ is C × 1 in size. In limited information goodness-of-fit testing, expanded oper-

ator matrices L̇ and L̈ collapse cell probabilities into univariate and bivariate marginal

probabilities or residual vectors, as detailed in Cai and Hansen (2013), among others.

The asymptotic distribution theory of residuals under polytomous data can derived us-

ing along the same lines as Equation (2), enabling the formation of chi-square statistics

similar to M2 in Equation (3).
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2 The Independence Model

Again, with no loss of generality, we illustrate the computations related to the full-

independence model under dichotomous data. Recall that the 2PL model is

P(Ui = 1|η) = 1
1 + exp[−(α + β′η)]

,

where α is the intercept term and β a potentially vector-valued item slope parameter

conformable with the dimensions of η. For the complete-independence null model, no

latent variable is present

P(Ui = 1) =
1

1 + exp(−α)
. (4)

Note that P(Ui = 0) = 1− P(Ui = 1).

Now let us turn to the computation of the M2 statistic for the independence model.

Requirement components are the first- and second-order marginal probabilities, the Ja-

cobian, and the multinomial covariance matrix. As a practical matter, the fit statistics for

independence model are implemented in flexMIRT®(Cai, 2015). We note that M2 for in-

dependence model leads us to compute other relative fit indices such as the comparative

fit index (CFI; Bentler, 1990), the normed-fit index (NFI; Bentler & Bonett, 1980), and the

incremental fit index (IFI; Bollen, 1989) based on M2.

2.1 Marginal probabilities

Let us begin with the computation of the first- and second-order marginal probabili-

ties. Again, without loss of generality, we only consider dichotomous items. Let there be

n items scored Ui = 0 or 1. Let π̇i denote the first order marginal probability for item i

and π̇ij the second order marginal probability for item pair (i, j). Accordingly, π̇i means

the model-implied probability for item i when Ui = 1. Likewise, π̇ij means the model-

implied joint probability for items i and j when Ui = 1 and Uj = 1. We can compute π̇i
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and π̇ij directly as follows:

π̇i =
∫

P(Ui = 1|θ)g(η)dη, (5)

π̇ij =
∫

P(Ui = 1|θ)P(Uj = 1|θ)g(η)dη. (6)

In our independence model, the first-order marginal probability when Ui = 1 be-

comes

π̇i =
1

1 + exp(−α)

∫
g(η)dη =

1
1 + exp(−α)

. (7)

It follows that π̇i = ṗi, where ṗi is the observed counterpart. This is due to the fact

that intercepts perfectly fit the observed univariate proportions. Once this is established,

the second-order marginal probabilities can be obtained simply as the products of two

observed univariate proportions, i.e., π̇ij = ṗi ṗj.

2.2 The Jacobian

Next, the Jacobian, ∆2, for the independence model can be expressed as

∆2 =
∂π(θ̂)

∂θ′
=

∂π(α̂)

∂α′
=

 ∂π̇(α̂)
∂α′

∂π̈(α)
∂α′

 .

Note that we only have to take the first-order derivatives of the model-implied marginal

probabilities with respect to intercept. A typical elements in the upper block is

∂π̇i

∂αi
=

∂P(Ui = 1)
∂αi

= π̇i(1− π̇i), (8)

and those of the lower block are

∂π̈ij

∂αi
=

∂P(Ui = 1)
∂αi

P(Uj = 1) = π̇i(1− π̇i)π̇j

∂π̈ij

∂αj
=

∂P(Uj = 1)
∂αj

P(Ui = 1) = π̇j(1− π̇j)π̇i.
(9)
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2.3 The multinomial covariance matrix

The multinominal covariance matrix Ξ2 may be rewritten as (see Cai & Hansen, 2013):

Ξ2 = Σ−π2π′2, (10)

where Σ = L2diag(π)L′2, and can be partitioned into Σ11, Σ21, and Σ22 as follows:

Σ =

Σ11

Σ21 Σ22

 =

L̇diag(π)L̇′

L̈diag(π)L̇′ L̈diag(π)L̈′

 (11)

In short, calculating the elements of Σ involves calculation of the first, second, third, and

fourth order marginal probabilities. Because of full-independence, the model-implied

probabilities for the third and fourth order margins can be obtained as products of

univariate proportions.
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