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Editorial Note: This manuscript has been previously reviewed at another journal 
that is not operating a transparent peer review scheme. This document only 
contains reviewer comments and rebuttal letters for versions considered at Nature 
Communications. 
 
 

REVIEWER COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
They did not address most of the comments from the previous reviews. Their statistical analyses 
were based on the Students' T-test which is wrong. Besides, they did not include key control 
groups that were suggested in most studies. Moreover, their system is too complicated. CT26 
tumors are not considered cold tumors in most papers. I recommend they submit this to another 
subspecialty journal. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
Fu et al. developed a temperature sensitive immunomodulatory inducer to remodel the tumor-
lymph node immune microenvironment. They suggest an innovative immunotherapy approach and 
combine with anti PD-1 treatment. Although their results are striking, there are some points need 
to be addressed: 
MAJOR: 
1. In figure 4a, fluorescence spillovers were not corrected appropriately. Therefore, compensation 
of the Annexin V and PI should be rechecked and corrected. 
2. The authors used mouse cell lines (B16F10 and CT26) for the in vitro and in vivo experiments, 
but they performed uptake assays on HUVEC cells. Instead, it would be better to use mouse 
endothelial cells. 
3. In figure 4d, they gave the percentages of HUVEC cells that engulfed the formulations. Although 
they obtained statistically significant difference, in figure 4e, representative flow cytometry 
histograms seem quite similar for 4 different conditions. Moreover, after 4 hours of incubation, the 
percentages of cellular uptake are approximately 60% but in the flow cytometry histograms the 
fluorescent intensity seem very high (around at 104). To clarify this, they need to add the flow 
cytometry histogram of unstained cells as well. 
4. In figure 4f, especially for the images at 4h, the signals of NF-Lip seem very intense and there 
is a high background fluorescence. Since, there is no drastic difference observed in flow cytometric 
uptake assay, this dramatically intense fluorescent signals for NF-Lip makes these images 
questionable. Did they use the same exposure time for each condition while capturing the images? 
5. In figure 6g, in addition to the representative images of Ki67 and TUNEL staining, the positivity 
of Ki67 and TUNEL would be quantified in mm2 of the tissues to strengthen the authors’ claim. 
6. In figure 8, the combination therapy of NIL-IM-Lip+L with anti-PD-1 mAb seems superior to 
NIL-IM-Lip+L only. However, they did not perform experiments with anti-PD-1 mAb only. If they 
would indicate the superiority of their combination therapy over anti-PD-1 therapy, it would 
improve the manuscript. 
 
 
 
MINOR: 
1. In the study, there are lots of different types of formulations. Although abbreviations were given 
in the text, they should also be given in the figure legends to make it clearer for the readers. 
 



Response to reviewers' comments: 
Reviewer #1 (Remarks to the Author):  
Comments: 
1. Their statistical analyses were based on the Students' T-test which is wrong.  
Response: Thanks for your comments. The statistical significance of the effects in the 
manuscript have been revised. For the comparison among three or more groups, one-
way ANOVA analysis of variance with Tukey’s post hoc test were selected. We have 
checked the whole manuscript and revised the experimental statistical analysis methods 
in the Figure legend, which had no effect on the main results and conclusions. The 
revised parts were marked in red. 
 
2. Besides, they did not include key control groups that were suggested in most studies. 
Response: Thanks for your comments. For the in vitro experiments, the key control 
group of the IR780+1-MT+IL-15+Laser was added in the revised manuscript. The in 
vitro evaluations in our study included: cell apoptosis assay, ICD evaluation (CRT 
exposure, HMGB1 release, ATP secretion), BMDC maturation assay and ROS 
evaluation. So, we set up 6 groups, including the PBS, IR780, IR780+Laser, IR780+1-
MT+Laser, IR780+1-MT+IL-15+Laser and NIL-IM-Lip+Laser groups follow your 
suggestions. The results of the revised relevant figures were listed as below and were 
supplemented in the revised manuscript. The results of the cell apoptosis assay on 
B16F10 cells, CT26 cells and MC38 cells were shown in Fig. 4a, Supplementary Fig. 
30 and 31. The results of CRT exposure, HMGB1 release, ATP secretion on B16F10 
cells were shown in Fig.5a,d, Fig.5c,e, Fig.5f. The results of BMDC maturation rate 
and the TNF-α secretion were shown in Fig.5h,l and Fig.5k. The results of CRT 
exposure on CT26 and MC38 cells were shown in Supplementary Fig. 32 and 33. The 
results of ROS generation was shown in Supplementary Fig. 15. The results in the Fig. 
4a, Supplementary Fig.30 and 31 showed that the NIL-IM-Lip+L group had higher 
cell apoptosis rate than the IR780+1-MT+IL-15+L group on B16F10 cells, CT26 cells, 
MC38 cells. Then, as shown in Fig.5a,d, the more red fluorescence and the higher 
quantitative fluorescent signal in the NIL-IM-Lip+L group demonstrated that the NIL-
IM-Lip+L could promote more CRT exposure than that in the IR780+1-MT+L and 
IR780+1-MT+IL-15+L groups (P < 0.001). The fewer HMGB1 nuclei (Fig. 5c), more 
HMGB1 release (Fig. 5e) (P < 0.01) and the more ATP secretion (Fig. 5f) (P < 0.05) 
also confirmed the enhanced ICD effect in the NIL-IM-Lip+L group. Then, the BMDC 
maturation rate and the TNF-α secretion were evaluated. As shown in Fig. 5h,l, the 
NIL-IM-Lip+L group displayed the greatest maturation of DCs (P < 0.01). Besides, the 
NIL-IM-Lip+L group secreted a higher level of TNF-α into the culture supernatant than 
the IR780+1-MT+L group and IR780+1-MT+IL-15+L group (P < 0.05) (Fig. 5k). The 
CRT exposure were also evaluated on the CT26 cells and MC38 cells. As shown in the 



Supplementary Fig.32 and 33, the NIL-IM-Lip+L group could promote the CRT 
exposure on both CT26 and MC38 cells. The results of ROS generation were also 
detected and shown in Supplementary Fig. 15. The groups with irradiation of laser 
showed significantly increased fluorescence compared with the groups without laser 
irradiation. The NIL-IM-Lip+L group showed higher fluorescence than the IR780+1-
MT+L group and IR780+1-MT+IL-15+L group (P < 0.001).  

 
Fig. 4a. Flow cytometric apoptosis analysis of B16F10 cells after treatment with PBS, 
IR780, IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L. The 
IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L groups were 
irradiated with an 808 nm laser for 5 min (1.0 W/cm2). 
 

 
Supplementary Fig. 30. Flow cytometric apoptosis analysis of CT26 cells after 



treatment with PBS, IR780, IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and 
NIL-IM-Lip+L. The IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-
Lip+L groups were irradiated with an 808 nm laser for 5 min (1.0 W/cm2). 
 

 
Supplementary Fig. 31. Flow cytometric apoptosis analysis of MC38 cells after 
treatment with PBS, IR780, IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and 
NIL-IM-Lip+L. The IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-
Lip+L groups were irradiated with an 808 nm laser for 5 min (1.0 W/cm2). 
 



 
Fig. 5. The properties of NIL-IM-Lip+L on the ICD effect, DC maturation and the 
killing effects of NK cells in vitro. a, Fluorescence microscopy images of CRT exposure 
to B16F10 cells. The IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-
Lip+L groups were irradiated with an 808 nm laser for 5 min (1.0 W/cm2). b, Schematic 
illustration of the ICD effect to induce tumour cell death, including CRT exposure, 
HMGB1 release, and ATP secretion, which could promote the maturation of DCs. c, 
Fluorescence microscopy images of HMGB1 release from B16F10 cells. The IR780+L, 
IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L groups were irradiated 
with an 808 nm laser for 5 min (1.0 W/cm2). d, Flow cytometric analysis of CRT 
exposure to B16F10 cells (n = 3 biologically independent experiments). e, Quantitative 
ELISA analysis of HMGB1 release into the B16F10 culture medium supernatant (n = 3 
biologically independent experiments). f, Quantitative ELISA analysis of ATP secretion 
into the B16F10 culture medium supernatant (n = 3 biologically independent 
experiments). g, Schematic illustration of the transwell system used for DC maturation 
detection. h, l, Flow cytometric analysis of the ratio of mature DCs after coculture with 
B16F10 cells prestimulated with different formulations (n = 3 biologically independent 



experiments). i, Schematic illustration of the experimental process to determine the 
killing ability of NK cells. j, B16F10 cells killed by NK cells after pretreatment with 
different formulations (n = 3 biologically independent experiments). k, Quantitative 
ELISA analysis of TNF-α secretion in the DC culture medium supernatant (n = 3 
biologically independent experiments). Statistical significance was calculated by one-
way ANOVA analysis of variance with Tukey’s post hoc test. *P < 0.05, **P < 0.01, 
***P < 0.001, ns P > 0.05. 
 

 

Supplementary Fig. 32. Fluorescence microscopy images of CRT exposure to CT26 
cells. The IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L 
groups were irradiated with an 808 nm laser for 5 min (1.0 W/cm2). Scale bar: 100 μm. 
 

 

Supplementary Fig. 33. Fluorescence microscopy images of CRT exposure to MC38 
cells. The IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L 
groups were irradiated with an 808 nm laser for 5 min (1.0 W/cm2). Scale bar: 100 μm. 

 



 

Supplementary Fig. 15. NIL-IM-Lip+L induced stronger ROS generation in vitro. a, 
The fluorescence microscopy images of ROS generation in B16F10 cells. Scale bar: 
100 μm. b, The flow cytometric analysis of ROS generation in B16F10 cells (n = 3 
biologically independent experiments). Statistical significance was calculated by one-
way ANOVA analysis of variance with Tukey’s post hoc test. ***P < 0.001 
 
3. Moreover, their system is too complicated.  
Response: Thanks for your comments. The combination therapy or the concomitant 
drugs has been widely used in the clinic today1,2. The latest cancer treatment guidelines 
published by National Comprehensive Cancer Network (NCCN) mentioned that the 
multi-drug combination, such as chemoimmunotherapy, the combinational therapy of 
chemical drug, the combinational therapy of immune drug, has been widely used as 
clinical first-line treatment, which indicated that the combination therapy was one of 
the major strategies for the treatment of cancer. Considering the significant differences 
in the pharmacokinetic process of different drugs in vivo, sequential administration 
greatly reduced the antitumour effects, which lead a higher dose of drugs to guarantee 
the effects3,4. Unfortunately, the higher dose of drugs accompanied with inevitable 
accumulated side effects5. Pharmacy was developed to serve the clinic by constructing 
intelligent drug delivery vehicles, which will make the clinical combination treatments 
easier and improve the patient compliance. Multi-drug co-delivery system has become 
one of the focus of drug discovery.  

We very agree with your concern about the complexity of the delivery system, so 
we selected the materials for clinical use and the preparation process for clinical 
preparations to prepare the NIL-IM-Lip.  

In our design, the functions were achieved by easy-to-implement functional 
materials. Because DSPE-PEG, DSPE and PEG are all safe materials and approved by 
FDA for clinical usage, both DSPE-Hyd-PEG5000-NGR and DSPE-PEG2000-MMP2 
pep-IL-15 was acceptable functional materials. And the synthesis process was easy to 
implement, our system was not complicated to achieve pH/MMP2 sensitive functions. 
Otherwise, the temperature-sensitive function was obtained by simply using the 



temperature-sensitive lipid materials DPPC. 
Besides, the preparation process of NIL-IM-Lip was simple and the market was 

huge. We selected liposome, which was widely used in clinic, as the carrier to achieve 
co-delivery of drugs6. The global sales of liposome products reached $5.152 billion in 
2017, which indicated the huge market of liposome products. CPX-351(Vyxeos), the 
world's first co-loaded liposome, was approved in the United States for the treatment 
of acute myeloid leukemia (AML) in 2017. CPX-351 was the co-loaded liposome with 
a 5:1 fixed drug ratio of cytarabine and daunorubicin. Among the CPX-351, cytarabine 
was a hydrophilic drug and daunorubicin was a hydrophobic drug. Hence, the liposome 
co-loading IR780 (hydrophobic drug) and 1-MT (hydrophilic drug) in our study had 
the potential for clinical translation. Moreover, the preparation process of NIL-IM-Lip 
has not changed compared with the liposome products (AmBisome, Visudyne and 
Shingrix). The modification of the DSPE-PEG also used the conventional method, 
which would not enhance the complexity of the preparation process. 

In summary, our system used the easy-to-implement functional materials and 
simple preparation process to prepare the NIL-IM-Lip, which could achieve multiple 
functions. 
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4.CT26 tumors are not considered cold tumors in most papers. 
Response: Thanks for your comments. The “cold” tumours have a low immune 
response with less infiltrated immune cells and more immunosuppressive cells, such as 
Treg cells. The “hot” tumours are infiltrated with more activating immune cells (such 
as CD8+ T cells) and have a better response to immunotherapy. The review published 
in the Nature reviews gastroenterology & hepatology (10.1038/s41575-019-0126-x) 
described “Colorectal cancer (CRC) can be categorized into tumours that are mismatch-



repair-deficient or have high levels of microsatellite instability (dMMR–MSI-H; ~15%) 
and mismatch-repair-proficient or microsatellite instability-low tumours (pMMR–MSI-
L; ~85%)”. Only 15% dMMR–MSI-H colorectal cancer patients responded to PD-1 
antibody, whereas other pMMR–MSI-L colorectal cancer patients had a very low 
response rate to PD-1 antibody. Most of the colorectal cancer patients can’t benefit from 
the immunotherapy alone. 

A research named “Ginseng-derived nanoparticles potentiate immune checkpoint 
antibody efficacy by reprogramming the cold tumour microenvironment” published in 
the Molecular Therapy (10.1016/j.ymthe.2021.08.028) described “PD-1 mAb alone 
significantly inhibited the growth of hot tumours such as B16-F10 murine melanoma 
(Figures S1A and S1B), but mice bearing CT26 murine colon tumour and 4T1 murine 
breast tumour were resistant to PD-1 mAb treatment”, which defined the B16F10 model 
as hot tumour and the CT26 model as cold tumour. In addition, another research 
published in the Acta Pharm Sin B (10.1016/j.apsb.2021.09.022) mentioned 
“Generally, CRC can be considered as a “cold” tumour and the majority of CRC 
patients are poorly immune responsive; merely 15% of CRCs are dMMR–MSI-H 
(mismatch-repair-deficient and microsatellite instability-high), which is a positive 
prognosis biomarker for immunotherapy” in the Introduction and the CT26 model was 
selected to perform the experiments.  

We also evaluated the results of the CTL/Treg ratio, CD8+T/Treg ratio on the both 
B16F10 model and CT26 model for the comparison of immune status in different 
tumour models. The higher CTL/Treg ratio and CD8+T/Treg ratio represented more 
activating immune cells and less immunosuppressive cells infiltration in the tumour 
microenvironment, and the tumour model was defined as “hot” tumour. The low 
CTL/Treg ratio and CD8+T/Treg ratio represented less activating immune cells and 
more immunosuppressive cells infiltration in the tumour microenvironment, and the 
tumour model was defined as “cold” tumour. As shown in the figure below, the higher 
ratio of CTL/Treg and CD8+T/Treg in the B16F10 model compared than CT26 model 
(P < 0.05, P < 0.001). Hence, the CT26 model was considered as cold tumour model. 

 
The ratio of CTL/Treg and CD8+T/Treg in the tumour (NS group) both in the B16F10 



and CT26 model (n = 3 biologically independent experiments). * P < 0.05, *** P < 
0.001. 
 
Reviewer #3 (Remarks to the Author): 
Comments 
Fu et al. developed a temperature sensitive immunomodulatory inducer to remodel the 
tumor-lymph node immune microenvironment. They suggest an innovative 
immunotherapy approach and combine with anti PD-1 treatment. Although their results 
are striking, there are some points need to be addressed: 
MAJOR: 
1. In figure 4a, fluorescence spillovers were not corrected appropriately. Therefore, 
compensation of the Annexin V and PI should be rechecked and corrected.  
Response: Thanks for your comments. The fluorescence spillovers of the cell apoptosis 
assay have been corrected. We have rechecked and corrected the compensation of the 
Annexin V and PI and the Fig. 4a, and the result was supplemented in the revised 
manuscript. 

 
Fig. 4a. Flow cytometric apoptosis analysis of B16F10 cells after treatment with PBS, 
IR780, IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L. The 
IR780+L, IR780+1-MT+L, IR780+1-MT+IL-15+L and NIL-IM-Lip+L groups were 
irradiated with an 808 nm laser for 5 min (1.0 W/cm2). 
 
2. The authors used mouse cell lines (B16F10 and CT26) for the in vitro and in vivo 
experiments, but they performed uptake assays on HUVEC cells. Instead, it would be 
better to use mouse endothelial cells. 
 Response: Thanks for your comments and we very agree with your suggestions. 



Indeed, the uptake assay to use the mouse endothelial cells would be better than 
HUVECs. CD13, a Zn2+ dependent metalloprotease, was highly expressed in many 
tumour and angiogenic cells but not activated in normal endothelial cells1,2. NGR could 
target the CD13 receptor in tumour neovascularization for effective tumour 
accumulation3,4. We checked many literatures and researches and no mouse CD13 high-
expression vascular endothelial cell line was found. The normal mouse endothelial cells 
was not highly expressed the CD13 receptor. Hence, we have to consider another 
endothelial cell with high CD13 expression. Human umbilical vein endothelial cells 
(HUVEC), a type of human vascular endothelial cell with high CD13 receptor 
expression, were often used as model cells to test the targeting of NGR5-7. For example, 
Angelo Corti et. al used the HUVECs to evaluated the binding with the NGR peptide 
in Advanced Functional Materials8. Ting Kang and his group used the HUVECs to 
evaluated the cellular uptake of iNGR-modified PEG-PLGA nanoparticles in 
Biomaterials9. Besides, the tumour cells with high CD13 expression were also used to 
evaluated the NGR-mediated tumour vasculature accumulation. For example, Guowei 
Wang et.al used the Biopsy xenograft of Pancreatic Carcinoma line-3 (BxPC3) to 
evaluated the cellular uptake of the NGR modified LPGL in Advanced Matirials10. 
Finally, considering to get closer to the tumor neovascularization endothelial cells, 
HUVEC was selected for cellular uptake assay which could prove the CD13-targeting 
function of NGR modification.  
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functionalized with tumor-targeting iNGR delivering abundant siRNA for efficient glioma 
therapy. Biomaterials. 2015;53:330-340.  
8. Corti A, Gasparri AM, Ghitti M, et al. Glycine N-methylation in NGR-Tagged Nanocarriers 
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10. Wang G, Jiang Y, Xu J, et al. Unraveling the Plasma Protein Corona by Ultrasonic 
Cavitation Augments Active-Transporting of Liposome in Solid Tumor. Adv Mater. 
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3. In figure 4d, they gave the percentages of HUVEC cells that engulfed the 
formulations. Although they obtained statistically significant difference, in figure 4e, 
representative flow cytometry histograms seem quite similar for 4 different conditions. 
Moreover, after 4 hours of incubation, the percentages of cellular uptake are 
approximately 60% but in the flow cytometry histograms the fluorescent intensity seem 
very high (around at 104). To clarify this, they need to add the flow cytometry histogram 
of unstained cells as well. 
Response: Thanks for your comments. We have rechecked and corrected the mistake 
in the Fig. 4e. In the previous manuscript, from top to bottom were the 4. NF-Lip, 3. 
NF-Lip with preincubation, 2. F-Lip, 1. NS groups, which was reversed with the 
labeling order. Besides, we also supplemented the histogram of unstained cells. The 
rechecked Fig. 4e were supplemented in the revised manuscript. In order to better show 
the difference of Fig. 4e, we also provided the raw data image of the flow cytometry 
histogram.  
The revised Fig. 4e were shown as below: 

 
Fig. 4d-e, Flow cytometric analysis of HUVEC uptake. FITC was selected to replace 
1-MT for the cellular uptake assay (n = 3 biologically independent experiments). 
 
The raw data image of the flow cytometry histogram was shown as below: 



 

 
 

4. In figure 4f, especially for the images at 4h, the signals of NF-Lip seem very intense 
and there is a high background fluorescence. Since, there is no drastic difference 
observed in flow cytometric uptake assay, this dramatically intense fluorescent signals 
for NF-Lip makes these images questionable. Did they use the same exposure time for 
each condition while capturing the images? 
Response: Thanks for your comments. The cellular uptake assay was keeping the same 
exposure time when capturing the images. In order to enhance the display effect of the 
images in the Fig. 4f, we uniformly enhanced the brightness of the images in Fig. 4f. 
The high background fluorescence in the NF-Lip at 4 h (Fig. 4f) was because the 
uniformly over-enhanced brightness of images, which resulted in significant 



enhancement of the background fluorescence of the NF-Lip group at 4 h. We have 
uniformly revised the brightness of the images in Fig. 4f, and the revised Fig.4f were 
shown in the revised manuscript.  

In this study, the “cellular uptake” experiments were carried out in three times 
(only one of the pictures was shown in the manuscript). The images of NF-Lip group 
at 4 h in HUVEC cells for three times experiments were shown as below figure. The 
results of the flow cytometric uptake assay were the quantitative data of whole cells. 
The image was a magnified field of camera vision, which displayed part of a complete 
field of vision. In the magnified field of vision, the images may display fewer cells. 
Moreover, the fluorescence signal in the 4 h NF-Lip appears particularly pronounced 
due to the excessive uniform enhancement of the image brightness. Therefore, the 
discrepancy between the fluorescent intensity of NF-Lip in Figure 4F and the results of 
the flow cytometric uptake assay due to the difference of the camera vision and the 
over-enhanced brightness. We corrected the high background fluorescence in the 
revised manuscript to reduce the discrepancy in vision between the fluorescence 
intensities and the flow cytometric uptake assay. 

 
Fig. 4f. Fluorescence microscopy image of HUVEC uptake. Scale bar=200 μm. 



 
The images of NF-Lip group at 4 h in HUVEC cells for three times experiments. 

 
5. In figure 6g, in addition to the representative images of Ki67 and TUNEL staining, 
the positivity of Ki67 and TUNEL would be quantified in mm2 of the tissues to 
strengthen the authors’ claim. 
Response: Thanks for your comments. Indeed, the quantitative results of Ki67 and 
TUNEL staining images were more confirmable than the images. So, the quantitative 
results of the Ki67 and TUNEL staining images were supplemented as your suggestions. 
As shown in Supplementary Fig. 20, the NIL-IM-Lip+L group showed less positivity 
of Ki67 and more positive of TUNEL. 

 
Supplementary Fig. 20. Quantification of (a) Ki67 and (b) TUNEL staining assays of 
tumour tissues. Statistical significance was calculated by one-way ANOVA analysis of 



variance with Tukey’s post hoc test. *P < 0.05, **P < 0.01, # P < 0.001 
 
6. In figure 8, the combination therapy of NIL-IM-Lip+L with anti-PD-1 mAb seems 
superior to NIL-IM-Lip+L only. However, they did not perform experiments with anti-
PD-1 mAb only. If they would indicate the superiority of their combination therapy 
over anti-PD-1 therapy, it would improve the manuscript.  
Response: Thanks for your comments. Anti-PD-1 therapy alone as the control was 
necessary for confirming the great antitumour effects of the combination therapy. The 
antitumour effects of the combination therapy containing the NS, PD-1, NIL-IM-Lip+L, 
NIL-IM-Lip+PD-1+L groups were supplemented follow your suggestions. The 
schedule of the in vivo administration approach in the B16F10 model and CT26 model 
were shown in Fig. 8a and Fig. 8j. 

In the B16F10 model, smaller tumour volumes and lighter tumour weight were 
observed after NIL-IM-Lip+PD-1+L treatment than those in the NIL-IM-Lip+L group 
(P < 0.001) and PD-1 group (P < 0.001) (Fig. 8b-e). As shown in Fig. 8e, one mouse 
of NIL-IM-Lip+PD-1+L was cured and the NIL-IM-Lip+PD-1+L gave a 20% complete 
response (CR), which indicated the great potential of NIL-IM-Lip+L combined with 
the PD-1 mAb. Subsequently, the tumour and the lymph nodes were used to the analysis 
of immune cells. In the tumour tissues (Fig. 8f,h), the frequency of positive immune 
responders in the NIL-IM-Lip+PD-1+L group, including CD4+ T cells, CD8+ T cells, 
CTLs and NK cells, were higher than those in the NIL-IM-Lip+L group (P < 0.001, P 
< 0.001, P < 0.05, P < 0.001) and PD-1 group (P < 0.001, P < 0.001, P < 0.001, P < 
0.001). The NIL-IM-Lip+PD-1+L group greatly suppressed negative Treg cells 
compared with NIL-IM-Lip+L group and PD-1 group (P < 0.001) (Fig. 8f). Consistent 
with changes in the immune state in the tumour tissues, NIL-IM-Lip+PD-1+L activated 
more CD4+ T cells, CD8+ T cells and NK cells and inhibited more Treg cells in the LNs 
(Fig. 8g, i). These results confirmed that NIL-IM-Lip+PD-1+L reversed the suppressive 
tumour-lymph node immune microenvironment (TLIME) and established antitumour 
immunity.    

In the CT26 model, NIL-IM-Lip+PD-1+L showed stronger antitumour efficacy 
and better immune response. The combination therapy NIL-IM-Lip+PD-1+L group 
greatly inhibited the tumour growth and showed the smaller tumour volume and lighter 
tumour weight than the single therapy of NIL-IM-Lip+L group (P < 0.01, P < 0.01) and 
PD-1 group (P < 0.001, P < 0.001) (Fig. 8k-n). Similarly, NIL-IM-Lip+PD-1+L group 
showed higher frequency of CD8+ T cells, CTLs and NK cells compared with the NIL-
IM-Lip+L group (P < 0.01, P < 0.05, P < 0.01) and the PD-1 group (P < 0.01, P < 0.001, 
P < 0.001) in the tumour tissues (Fig. 8o,q). The frequency of CD4+ T cells in the NIL-
IM-Lip+PD-1+L group was higher than that in the PD-1 group, but no difference was 
found between NIL-IM-Lip+PD-1+L group and NIL-IM-Lip+L group. NIL-IM-



Lip+PD-1+L group greatly suppressed the immunosuppressive Treg cells than NIL-IM-
Lip+L group (P < 0.05) and PD-1 group (P < 0.001). For the evaluation of immune 
cells in the lymph nodes (Fig. 8p,r), NIL-IM-Lip+PD-1+L group activated more CD4+ 
T cells, CD8+ T cells and NK cells and inhibited more Treg cells. 

These results verified that NIL-IM-Lip combined with PD-1 mAb showed great 
antitumour immunotherapy in both B16F10 tumours and CT26 tumours by remodelling 
the suppressive TLIME and simultaneously comobilizing T and NK cells in the TLIME. 

 

 
Fig. 8. Amplified antitumour effects of NIL-IM-Lip+L and PD-1 mAb cotreatment in 
hot tumours (B16F10 model) and cold tumours (CT26 model). Mice were sacrificed 
when the tumour volumes reached ~2000 mm3. a, Schedule of the NIL-IM-Lip+L 
combined with PD-1 mAb experiment in B16F10 tumour-bearing C57BL/6 mice. b, 



Tumour volume curves of different formulations (n = 5 biologically independent 
animals per group). c, Photographs of tumours after 16 days of treatment (n = 5 
biologically independent animals per group). d, Tumour weights in different 
formulation-treated groups (n = 5 biologically independent animals per group). e, 
Individual tumour volume curves after treatment with different formulations (n = 5 
biologically independent animals per group). f, h, Flow cytometric analysis of the 
intratumoural CTLs, CD4+ T cells and CD8+ T cells (h), NK cells and Treg cells (n = 3 
biologically independent experiments per group). g, i, Flow cytometric analysis of the 
infiltration of DCs, CD4+ T cells, CD8+ T cells (i), NK cells and Treg cells in the LNs 
(n = 3 biologically independent experiments per group). j, Schedule of the NIL-IM-
Lip+L combined with PD-1 mAb antitumour experiment in CT26 tumour-bearing 
BALB/c mice. k, Tumour volume curves of different formulations (n = 5 biologically 
independent animals per group). l, Photographs of tumours after 16 days of treatment 
(n = 5 biologically independent animals per group). m, Tumour weights in different 
formulation-treated groups (n = 5 biologically independent animals per group). n, 
Individual tumour volume curves after treatment with different formulations (n = 5 
biologically independent animals per group). o, q, Flow cytometric analysis of the 
intratumoural CTLs, CD4+ T cells, CD8+ T cells (q), NK cells and Treg cells (n = 3 
biologically independent experiments per group). p, r Flow cytometric analysis of the 
infiltration of DCs, CD4+ T cells and CD8+ T cells (r), NK cells and Treg cells in the 
LNs (n = 3 biologically independent experiments per group). Statistical significances 
were calculated by one-way ANOVA analysis of variance with Tukey’s post hoc test. 
*P < 0.05, **P < 0.01, ***P < 0.001. 
 
MINOR: 
1. In the study, there are lots of different types of formulations. Although abbreviations 
were given in the text, they should also be given in the figure legends to make it clearer 
for the readers. 
Response: Thanks for your comments. The abbreviations of different types of 
formulations were also supplemented in the figure legends as your suggestions. The 
revised parts were marked in red in the revised manuscript.  



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
They have addressed the previous reviews. 
 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors' responses and revisions are appropriate. 
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