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S1 Derivation of covariate-adjusted KRV coefficient

Suppose that we have a phenotype kernel matrix L and a full-rank covariates matrix X

that includes a column of 1’s. We first perform a kernel principal component analysis (kernel

PCA; equivalent to an eigendecomposition) on the phenotype kernel matrix and obtain a

matrix Φ such that:

L = ΦΦT .

Here each column of Φ is a kernel principal component (kernel PC) of L and has the form

√
λrφr for r = 1, · · · , n, where λr is the rth eigenvalue of L and φr is the corresponding

eigenvector for λr. We can view Φ as a finite sample basis for the space spanned by the

phenotype kernel function `(·, ·).

We then regress out the covariates X from each kernel PC:

ε̂ := Φ− PXΦ,

where PX = X(XTX)−1XT is the projection matrix onto the column space of X. Now ε̂

represents a sample basis that is orthogonal to the covariates X. We can construct a new

phenotype kernel matrix from this residual basis: L∗ := ε̂ε̂T . Note that L∗ can be expressed

in terms of L:

L∗ = (I − PX)ΦΦT (I − PX) = (I − PX)L(I − PX) = P⊥XLP
⊥
X ,

where we let P⊥X := I − PX . Similar procedures can be performed on the genotype kernel

matrix K to obtain the adjusted genotype kernel matrix K∗ := P⊥XKP
⊥
X . Both K∗ and

L∗ are column-centered, since the covariates matrix X includes a column of 1’s, accounting

for the intercept in a regression. We can then construct a KRV statistic from the adjusted
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kernel matrices K∗ and L∗:

KRVadj(G, Y |X) =
tr(K∗L∗)√

tr(K∗K∗) tr(L∗L∗)
=

tr(P⊥XKP
⊥
XL)√

tr(P⊥XKP
⊥
XK) tr(P⊥XLP

⊥
XL)

.

Such a strategy of covariate adjustment can be seen as a special case of conditional inde-

pendence (or uncorrelatedness) testing in a kernel-based framework, as proposed by Zhang

et al. and Strobl et al. [9, 5]. In the context of microbiome GWAS, we are testing the

correlation between genetic variants and microbiome community profiles, while conditioning

on the covariates.

Special case of the linear kernel

Suppose that we use a linear kernel `(yi,yj) = yT
i yj for the phenotype data, where

yi = (yi1, · · · , yiq)T is the set of q traits for individual i.

Let Y be the n × q matrix that stores the phenotype data for all n individuals. Then

the resulting phenotype kernel matrix can be constructed as L = Y Y T . Note that we can

rewrite the covariate-adjusted kernel matrix L∗ as:

L∗ = P⊥XLP
⊥
X = P⊥XY Y

TP⊥X = (P⊥XY )(P⊥XY )T .

Therefore, in the case of a linear kernel, our proposed approach for covariate adjustment is

equivalent to the previously proposed residual-based approach [6, 2, 8], where we first regress

out the covariates from each raw phenotype and then construct the phenotype kernel matrix

using the resulting residuals.
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Connection between Euclidean distance and linear kernel

When constructing a microbiome kernel matrix, we can often obtain the kernel matrix

by transforming existing distance or dissimilarity matrices calculated based on microbiome

data. For example, assuming that the original microbial abundance data matrix is Y , we

can obtain a “CLR-Euclidean” kernel matrix by first constructing the Euclidean distance

matrix D based on the CLR-transformed abundance data CLR(Y ) and then transforming

D into a kernel matrix L via:

L = −1

2

(
I − 11T

n

)
D2
(
I − 11T

n

)
,

where D2 is the element-wise square of D.

Now we show that, taking Euclidean distances of data CLR(Y ) followed by kernel ma-

trix transformation is equivalent to constructing a centered linear kernel matrix based on

CLR(Y ). For convenience, we still use yi to represent the CLR-transformed abundances for

individual i.

Let d2ij be the (i, j)-th entry of matrix D2. Then we have

d2ij = (yi − yj)T (yi − yj) = yT
i yi − 2yT

i yj + yT
j yj.

As H := I − 11T

n
is a centering matrix, the (i, j)-th entry of matrix

(
I − 11T

n

)
D2
(
I − 11T

n

)
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becomes

d̃2ij = d2ij −
1

n

n∑
i=1

d2ij −
1

n

n∑
j=1

d2ij +
1

n2

n∑
i=1

n∑
j=1

d2ij

= −2
[
yT
i yj −

1

n

n∑
i=1

yT
i yj −

1

n

n∑
j=1

yT
i yj +

1

n2

n∑
i=1

n∑
j=1

yT
i yj

]
+
[
yT
i yi + yT

j yj

]
− 1

n

n∑
i=1

[
yT
i yi + yT

j yj

]
− 1

n

n∑
j=1

[
yT
i yi + yT

j yj

]
+

1

n2

n∑
i=1

n∑
j=1

[
yT
i yi + yT

j yj

]
= −2

[
yT
i yj −

1

n

n∑
i=1

yT
i yj −

1

n

n∑
j=1

yT
i yj +

1

n2

n∑
i=1

n∑
j=1

yT
i yj

]
.

Therefore, the (i, j)-th entry of matrix L is

(L)i,j = −1

2
d̃2ij = yT

i yj −
1

n

n∑
i=1

yT
i yj −

1

n

n∑
j=1

yT
i yj +

1

n2

n∑
i=1

n∑
j=1

yT
i yj.

Consequently, the resulting kernel matrix L is a centered linear kernel matrix based on

CLR(Y ): L = HL0H , where (L0)i,j = yT
i yj and H = I − 11T

n
.

In light of this result, we can view the CLR-Euclidean kernel as a centered linear kernel

applied to the CLR-transformed microbiome data (or denote it as the CLR-linear kernel).

Applying our proposed covariate adjustment approach to the CLR-Euclidean kernel matrix

is thus equivalent to using the residual-based approach on the CLR-transformed data (i.e.,

regressing out the covariates from the CLR-transformed data and constructing a kernel

matrix based on the residuals).
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S2 Taxon-level microbiome GWAS of the HCHS/SOL

study

As a comparison to our proposed gene-based community-level microbiome GWAS frame-

work, we performed a traditional variant-based taxon-level microbiome GWAS based on the

same set of HCHS/SOL data (n = 1219) used in our main analysis, where we tested the

association between individual genetic variants and individual microbial genera.

For genetic data, we applied the same quality control criteria as for the community-level

analysis and focused on common genetic variants with minor allele frequency (MAF) ≥ 0.05

along the genome (including both coding and non-coding regions). For microbiome data,

we focused our analysis on relatively common genera that are present in ≥ 10% of all 1219

individuals under analysis.

To conduct association testing, we performed either linear regression or logistic regres-

sion depending on the prevalence of the genera, based on analysis procedures in previous

microbiome GWAS studies [3, 7, 4]. Specifically, for genera present in ≥ 90% of individu-

als, we performed rank normal transformation on the rarefied abundance data to encourage

normality and used linear regression to assess the association between each rank-normal-

transformed microbial abundance and each genetic variant. For genera present in ≥ 10%

but < 90% of individuals, the presence/absence of each genus was used as the outcome and

associated with each genetic variant via logistic regression. Similar to the community-level

analysis, the top 5 PCs of genome-wide genetic variability were included in the regression

models as covariates. The genome-wide association testing was conducted using the GENE-

SIS R package v2.28.0: https://bioconductor.org/packages/GENESIS.
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S3 Analyses to assess the robustness of the IL23R-

C1orf141 signal

Based on our main analysis of 1219 HCHS/SOL subjects, we have identified genome-

widely significant associations between variants in IL23R and C1orf141 and gut microbiome

composition using the Bray-Curtis kernel (Table 1), where population structure, a major

confounder captured by the top 5 PCs of genetic variability, was adjusted. However, these

two associations no longer have genome-wide significance in a reduced sample (n = 1096)

where additional covariates (age, gender and study sites) were available and adjusted. To

assess the robustness of these two signals, we have conducted several additional analyses.

First, to investigate if there is additional confounding caused by age, gender and study

site, we have assessed the association between our identified loci and these covariates in the

reduced sample. IL23R and C1orf141 were combined into a single IL23R-C1orf141 region

due to overlapping variants. We applied the SNP-set kernel association test (SKAT) [6]

to assess the association between age/gender and common variants in the IL23R-C1orf141

region, with a linear model for age and a logistic model for gender. Since there were no

available SKAT models to accommodate study site as an outcome, which is a categorical

variable with four levels, we used linear regression to regress the genotype of the top variant

(rs10789226) in the IL23R-C1orf141 region on study site. In all models, the population

structure captured by the top 5 genome-wide genetic PCs were adjusted. We found no

significant association between the genetics and any of the covariates (p-values for age,

gender and study site were 0.06, 0.08 and 0.75, respectively), thus confirming that these

covariates are not likely to be confounders in the genetics-microbiome relationship in our

study.

Next, to discover any systematic differences between participants with (n = 123) and
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without missing data (n = 1096) for the three covariates, we have compared the overall

microbiome composition and genetic features of the IL23R-C1orf141 region between these

two sub-samples. We plotted the top two kernel PCs of the Bray-Curtis microbiome kernel

matrix to identify any clustering by sub-samples and conducted permutational multivariate

analysis of variance (PERMANOVA) [1] to test the difference between the two sub-samples

in microbiome composition (see Figure S7). Similar analysis was performed for the genetic

kernel matrix, constructed based on common variants in the IL23R-C1orf141 region using

a linear kernel. These analyses revealed no significant difference between participants with

and without missing covariates data (PERMANOVA p-value = 0.07 for microbiome; 0.40

for genotypes).

Based on the above analyses, we have further confirmed that there is not likely to be

systematic differences between the original sample and the reduced sample, and the ad-

ditionally adjusted covariates are not likely to be confounders in the genetics-microbiome

relationship. These results have confirmed the robustness of our identified genetic loci based

on the Bray-Curtis kernel, and the reduced genome-wide significance in the reduced sample

is likely due to sample size loss.
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Supplementary tables and figures

Figure S1: Manhattan plots from the first-stage gene-level analysis of the
HCHS/SOL data, using the PC-adjusted KRV. Each panel corresponds to a dis-
tinct microbiome kernel. The top 5 PCs of genome-wide genetic variability were adjusted.
The red lines represent the genome-wide significance threshold (α = 2.6× 10−6).
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Table S1: P-values for the significant genes from Table 1 when additional covariates were
adjusted in the first-stage KRV analysis of the HCHS/SOL data.

Microbiome kernel Genes Number of common variants P-value

Bray-Curtis
C1orf141 484 2.5× 10−5

IL23R 284 3.7× 10−5

Unweighted UniFrac
MTMR12 174 2.3× 10−7

ZFR 288 3.3× 10−8

CLR-linear MTMR12 174 3.3× 10−6

Adjusted covariates include the top 5 PCs of genome-wide genetic variability, age, gender and study sites.
The analysis was performed on 1096 unrelated individuals where all relevant data were available.

Table S2: Empirical type I error rate of unadjusted and covariate-adjusted KRV at nominal
level α under Type I Error Scenario 2.

Method Microbiome kernel
α

0.05 0.01 0.001

Unadjusted KRV

Bray-Curtis 1.0000 1.0000 1.0000
Unweighted UniFrac 1.0000 1.0000 1.0000
Weighted UniFrac 0.9980 0.9794 0.8312

Generalized UniFrac 1.0000 1.0000 1.0000
CLR-linear 1.0000 1.0000 1.0000

PhILR-linear 1.0000 1.0000 0.9983

Adjusted KRV

Bray-Curtis 0.0489 0.0104 0.0014
Unweighted UniFrac 0.0473 0.0079 0.0007
Weighted UniFrac 0.0482 0.0102 0.0018

Generalized UniFrac 0.0467 0.0096 0.0009
CLR-linear 0.0521 0.0116 0.0010

PhILR-linear 0.0524 0.0094 0.0018

Linear kernel was used for genetic data.
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Figure S2: Microbiome GWAS results of MTMR12, based on the CLR-linear
kernel. Panel (A): Manhattan plot and linkage disequilibrium (LD; R2) heatmap from the
second-stage variant-level analysis of the HCHS/SOL data, using the PC-adjusted KRV.
The red line represents variant-level significance (α = 1.08×10−4) used in the main analysis.
Panel (B): PC2 vs. PC1 from kernel PCA on the CLR-linear kernel, colored by genotype
of the top variant from MTMR12. The percent of variance captured by each kernel PC was
provided in the axis labels.
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Figure S3: Illustration of procedures to identify specific microbial taxa involved
in the community-level microbiome GWAS associations.
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Figure S4: Manhattan plots from alternative analysis of the HCHS/SOL data, via
linear regression of the top PC of the community-level microbiome kernel matrix
on the top PC of the gene-level genotype kernel matrix. Each panel corresponds
to a distinct microbiome kernel. The top 5 PCs of genome-wide genetic variability were
adjusted. The red lines represent the genome-wide significance threshold (α = 2.6× 10−6).
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Figure S5: Manhattan plots from alternative analysis of the HCHS/SOL data, via
SKAT test of the top PC of the community-level microbiome kernel matrix on
gene-level genetic variation. Each panel corresponds to a distinct microbiome kernel.
The top 5 PCs of genome-wide genetic variability were adjusted. The red lines represent the
genome-wide significance threshold (α = 2.6× 10−6).
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Figure S6: Empirical power of covariate-adjusted KRV and competing methods at
nominal level α = 0.05 for different microbiome kernels under large effect sizes.
Panel (A): A single SNP affects the abundance of common OTUs. Panel (B): A single SNP
affects the abundance of OTUs from a common phylogenetic cluster. Panel (C): A single
SNP affects the abundance of rare OTUs. In each scenario, linear kernel was used for genetic
data.
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Figure S7: PC2 vs. PC1 from kernel PCA on the Bray-Curtis microbiome kernel
and the IL23R-C1orf141 genotype kernel, colored by missing status of three
covariates: age, gender and study site. Panel (A): Kernel PCA was conducted on
the Bray-Curtis microbiome kernel matrix. Panel (B): Kernel PCA was conducted on the
linear genotype kernel matrix, which was constructed based on common variants in the
IL23R-C1orf141 region.
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