Environ Health Perspect

DOI: 10.1289/EHP11134

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Prenatal Exposure to Air Pollution and Pre-Labor Rupture of Membranes in a Prospective Cohort Study: The Role of Maternal Hemoglobin and Iron Supplementation

Lin Wu, Wan-jun Yin, Li-jun Yu, Yu-hong Wang, Xiao-min Jiang, Ying Zhang, Fang-biao Tao, Rui-xue Tao, and Peng Zhu

Table of Contents

Table S1. The general characteristics of the study population during 2015 to 2021 in Hefei [n (%)].

Table S2. Correlations of air pollution in the prenatal period.

Table S3. The PROM risk in association with week-specific prenatal air pollution exposure during pregnancy.

Table S4. Cumulative effects and average effects between air pollutant exposure and PROM risk in Distributed Lag Model and logistic regression model. (unadjusted models)

Table S5. Cumulative effects and average effects between air pollutant exposure and PROM risk in Distributed Lag Model and logistic regression model after adjusting the trimester.

Table S6. Association of prenatal air pollution exposure with the term PROM and preterm PROM.

Table S7. Association of air pollution exposure and PROM in co-pollutant models.

Table S8. The estimated change in hemoglobin levels in third trimester was calculated for each quartile and each unit increment in PM_{2.5}, PM₁₀, SO₂, and CO during the second and third trimesters using linear regression model.

Table S9. Association of air pollution exposure and hemoglobin levels in co-pollutant models.

Table S10. The relationship between hemoglobin levels and PROM risk in logistic models.

Table S11. Correlation matrix eigenvalues of multiple air pollutants model on second to third trimester and corresponding eigenvector.

Table S12. The association between iron supplementation and PROM risk stratified by air pollution levels in anemia women.

Figure S1. Directed acyclic graph for the association between air pollution exposure and PROM GDM: Gestational diabetes mellitus, PROM: pre-labor rupture of membranes.

Characteristics	Included $(n = 6824)$	Excluded $(n=2/106)$	P value ^a
Sociodemographic characteristics. n (%)	(11 - 0024)	(11-2490)	
Age, years			0.281
<25	1666 (24.4)	647 (25.9)	
25–34	4476 (65.6)	1595(63.9)	
≥35	682 (10.0)	254 (10.2)	
Education			0.159
Junior high school	941 (13.8)	382 (15.3)	
High school	1655 (24.3)	583 (23.4)	
Bachelor's degree and above	4228 (62.0)	1531 (61.3)	
Family income, RMB/month		~ /	0.220
≤3999	2149 (31.5)	753 (30.2)	
4000–7999	4132 (60.6)	1521 (60.9)	
≥8000	543 (8.0)	222 (8.9)	
Parity			0.170
Primipara	2611 (38.3)	994 (39.8)	
Multipara	4213 (61.7)	1502 (60.2)	
Season of delivery		× ,	0.003
Spring	1756 (25.7)	658 (27.3)	
Summer	1800 (26.4))	635 (26.3)	
Autumn	1730 (25.4)	605 (25.1)	
Winter	1538 (22.5)	515 (21.3)	
missing	0	83	
Enrollment years	Ũ		0.063
2015-2016	2420(35 5)	831(33.3)	0.000
2017-2018	2534(37.1)	989 (39.6)	
2019-2021	1870(27.4)	676 (27.1.)	
Derivated health lifestyle factors $n (0/2)^{b}$	1070(27.4)	070 (27.17	
Vagatabla intaka timas/waak			0.887
	221(24)	82 (2 2)	0.007
 3 	231(3.4)	33(3.3) 2413(067)	
S S S S S S S S S S S S S S S S S S S	0393 (90.0)	2413 (90.7)	0.202
	470 (6.0)	101(77)	0.203
< 3	470(0.9)	191(7.7)	
≤ 3	0334 (93.1)	2303 (92.3)	0.015
Lessert intake, times/week	5(22 (02 5)	2059(92.5)	0.915
\sim 3 \sim 2	3033(82.3)	2038(82.3)	
≥ 3	1191 (17.5)	438 (17.5)	0.525
Physical activity, days/week	5204 (70.0)	1000 (70 ()	0.525
< 3	5394 (79.0)	1988 (79.6)	
≥ 3	1430 (21.0)	508(20.4)	0.070
Folic acid supplementation, days/week	1207((1.2)		0.869
< 3	4387(64.3)	1600 (64.1)	
≥ 3	2437(35.7)	896 (35.9)	
Iron supplementation, days/week			0.180
< 3	5847(85.7)	2111 (84.6)	
\geq 3	977(14.3)	385 (15.4)	
Passive smoking			0.056
Never	5598(82.0)	2090(83.8)	
Ever	1226(18.0)	406(16.2)	
Perinatal health status, n (%)			
Pre-pregnancy BMI, kg/m ²			0.042
< 18.5	985 (14.4)	373 (14.9)	
18.5–23.9	4816 (70.6)	1722 (69.0)	
≥ 24.0	1023 (15.0)	400(16.2)	
Hypertension during pregnancy	139(2.0)	55(2.2)	0.650

Supplement Table 1 The general characteristics of the study population during 2015 to 2021 in Hefei [n (%)]

Vaginitis	783 (11.5)	269 (10.8)	0.346
Gestational diabetes mellitus	, ()		0.495
Yes	1424 (20.9)	532(21.5)	
No	5400 (79.1)	1940 (78.5)	
Missing	0	24	
Premature birth	229 (3.4)	102 (4.1)	0.114
Maternal anemia	2290 (33.6)	882 (35.3)	0.109
Maternal anemia	2290 (33.6)	882 (35.3)	0.109

PROM: pre-labor rupture of membranes.

^a Based on the chi-square test.
^b The frequency of vegetable intake, fruit intake, dessert intake , physical activity was duing second trimester. The frequency of folic acid supplementation intake was duing first trimester. The frequency of iron supplementation was during the third trimester.

	First trimester			Second trimester			Third trimester					
Pollutions	PM2.5	PM ₁₀	СО	SO ₂	PM2.5	PM ₁₀	CO	SO ₂	PM2.5	PM ₁₀	CO	SO ₂
First trimester												
PM _{2.5}	1.00	0.94	0.92	0.74	0.13	0.25	0.02	0.24	,0.65	,0.53	,0.43	,0.18
P-value		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
PM_{10}		1.00	0.89	0.83	0.12	0.21	0.07	0.30	,0.52	,0.42	,0.28	,0.38
P-value			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
CO			1.00	0.83	0.41	0.52	0.32	0.51	,0.46	,0.34	,0.28	0.01
P-value				< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.344
SO_2				1.00	0.31	0.37	0.36	0.59	,0.17	,0.09	0.05	0.28
P-value					< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Second trimester												
PM _{2.5}					1.00	0.93	0.91	0.73	0.19	0.26	0.02	0.19
P-value						< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.043	< 0.001
PM_{10}						1.00	0.86	0.79	0.11	0.17	0.01	0.20
P-value							< 0.001	< 0.001	< 0.001	< 0.001	0.388	< 0.001
CO							1.00	0.84	0.48	0.56	0.35	0.50
P-value								< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
SO_2								1.00	0.38	0.42	0.41	0.62
P-value									< 0.001	< 0.001	< 0.001	< 0.001
Third trimester												
PM _{2.5}									1.00	0.92	0.90	0.72
P-value										< 0.001	< 0.001	< 0.001
PM_{10}										1.00	0.83	0.77
P-value											< 0.001	< 0.001
CO											1.00	0.83
P-value												< 0.001

Supplement Table 2 Correlations of air pollution in the prenatal period

Correlations were calculated using Spearmon's correlation coefficient.

Supplement Table 3

Gestational weeks	I	PM2.5 ^b	I	PM10 ^b		SO2 ^b		CO ^b
Gestational weeks	OR	(95%CI)	OR	(95%CI)	OR	(95%CI)	OR	(95%CI)
Week 1	0.985	0.961,1.010	1.022	1.001,1.043	1.025	0.965,1.091	0.996	0.972,1.023
Week 2	0.993	0.971,1.013	1.013	0.993,1.034	1.018	0.962,1.081	1.006	0.980,1.030
Week 3	0.999	0.978,1.021	1.007	0.987,1.028	1.015	0.962,1.076	1.012	0.987,1.036
Week 4	1.003	0.983,1.027	1.002	0.982,1.023	1.015	0.963,1.075	1.016	0.991,1.040
Week 5	1.004	0.986,1.030	0.999	0.979,1.019	1.018	0.967,1.078	1.018	0.993,1.043
Week 6	1.004	0.987,1.031	0.998	0.977,1.018	1.023	0.972,1.083	1.019	0.995,1.043
Week 7	1.003	0.987,1.030	0.997	0.976,1.017	1.030	0.978,1.090	1.019	0.995,1.044
Week 8	1.003	0.987,1.029	0.997	0.977,1.018	1.039	0.985,1.100	1.020	0.995,1.044
Week 9	1.003	0.988,1.029	0.999	0.978,1.019	1.048	0.992,1.110	1.020	0.995,1.044
Week 10	1.006	0.989,1.030	1.000	0.979,1.021	1.058	1.000,1.121	1.021	0.996,1.045
Week 11	1.009	0.990,1.033	1.003	0.981,1.024	1.067	1.008,1.133	1.023	0.997,1.047
Week 12	1.013	0.993,1.037	1.005	0.984,1.027	1.077	1.016,1.144	1.025	0.998,1.050
Week 13	1.018	0.995,1.042	1.008	0.987,1.030	1.087	1.023,1.155	1.027	1.000,1.053
Week 14	1.024	0.998,1.048	1.012	0.990,1.033	1.096	1.030,1.165	1.030	1.003,1.057
Week 15	1.029	1.001,1.054	1.015	0.993,1.036	1.104	1.036,1.175	1.033	1.005,1.062
Week 16	1.033	1.003,1.060	1.018	0.996,1.039	1.111	1.041,1.183	1.036	1.008,1.066
Week 17	1.037	1.006,1.065	1.021	0.998,1.042	1.117	1.045,1.190	1.039	1.010,1.069
Week 18	1.040	1.008,1.069	1.023	1.001,1.045	1.122	1.049,1.196	1.042	1.012,1.072
Week 19	1.042	1.010,1.072	1.025	1.003,1.048	1.125	1.051,1.200	1.044	1.015,1.075
Week 20	1.043	1.011,1.074	1.027	1.005,1.050	1.127	1.053,1.203	1.046	1.017,1.077
Week 21	1.044	1.013,1.074	1.029	1.007,1.051	1.128	1.053,1.204	1.048	1.018,1.077
Week 22	1.044	1.014,1.074	1.030	1.009,1.053	1.127	1.053,1.203	1.048	1.019,1.077
Week 23	1.044	1.015,1.073	1.030	1.009,1.053	1.125	1.052,1.201	1.048	1.020,1.077
Week 24	1.043	1.016,1.072	1.031	1.010,1.054	1.122	1.049,1.198	1.048	1.020,1.075
Week 25	1.042	1.016,1.070	1.030	1.010,1.053	1.118	1.046,1.194	1.046	1.020,1.072
Week 26	1.041	1.016,1.067	1.029	1.010,1.053	1.113	1.043,1.189	1.043	1.018,1.069
Week 27	1.039	1.015,1.065	1.028	1.009,1.052	1.108	1.039,1.183	1.040	1.016,1.064
Week 28	1.037	1.013,1.061	1.027	1.008,1.050	1.101	1.034,1.176	1.036	1.013,1.060
Week 29	1.034	1.010,1.058	1.025	1.007,1.049	1.095	1.030,1.170	1.031	1.010,1.055
Week 30	1.031	1.007,1.055	1.023	1.005,1.047	1.088	1.025,1.164	1.028	1.006,1.051
Week 31	1.028	1.004,1.052	1.021	1.003,1.045	1.083	1.021,1.159	1.025	1.002,1.048
Week 32	1.026	1.002,1.050	1.019	1.001,1.042	1.078	1.018,1.155	1.023	0.999,1.046
Week 33	1.025	1.001,1.050	1.017	0.999,1.040	1.074	1.015,1.152	1.022	0.997,1.047
Week 34	1.027	1.002,1.052	1.015	0.997,1.038	1.071	1.014,1.152	1.024	0.998,1.051
Week 35	1.031	1.006,1.057	1.013	0.995,1.036	1.071	1.014,1.155	1.029	1.000,1.057
Week 36	1.036	1.010,1.062	1.012	0.993,1.035	1.073	1.016,1.161	1.034	1.006,1.064

The PROM risk in association with week-specific prenatal air pollution exposure during pregnancy ^a

 Week 37
 1.039
 1.013,1.065
 1.011
 0.991,1.034
 1.079
 1.020,1.171
 1.039
 1.012,1.067

^a The PROM risk in association with week-specific prenatal air pollution exposure during pregnancy

^b The per increase in $PM_{2.5}$ and PM_{10} was 10 µg/m³, the per increase in SO₂ was 5 µg/m³, and the per increase in CO was 0.1 mg/m³. Models were based on a distributed lag (non-linear) model and adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, and temperature.

Supplement Table 4

Cumulative effects and average effects between air pollutant exposure and PROM risk in Distributed Lag Model and logistic regression model. (unadjusted models)

D - 114 ²	Dellestierer Meere Ol		OR (95%	<i>GCI</i>) for PROM ^d
Foliutions		SD	Distributed lag model	Average exposure model
First trimester				
PM _{2.5} (ug/m ³) ^a	57.7	18.6	1.02(0.99,1.05)	1.01(0.98,1.04)
$PM_{10}(ug/m^3)^{a}$	87.0	17.0	1.02(0.98,1.06)	1.03(0.99,1.10)
$SO_2(ug/m^3)^{b}$	17.8	4.9	1.09(1.02,1.15)	1.05(0.99,1.11)
$CO (mg/m^3)^{c}$	0.9	0.2	1.04(1.01,1.08)	1.04(0.99,1.07)
Second trimester				
PM _{2.5} (ug/m ³) ^a	54.6	18.1	1.06(1.10,1.13)	1.06(1.03,1.09)
$PM_{10}(ug/m^3)^{a}$	84.1	16.3	1.09(1.05,1.13)	1.09(1.05,1.26)
$SO_2(ug/m^3)^b$	12.1	4.4	1.15(1.08,1.23)	1.15(1.09,1.21)
$CO (mg/m^3)^{c}$	0.9	0.2	1.08(1.04,1.12)	1.08(1.04,1.12)
Third trimester				
PM _{2.5} (ug/m ³) ^a	54.0	19.0	1.06(1.03,1.09)	1.04(1.01,1.08)
$PM_{10}(ug/m^3)^{a}$	82.2	16.9	1.06(1.03,1.10)	1.05(1.01,1.09)
$SO_2(ug/m^3)^b$	11.5	4.2	1.15(1.07,1.24)	1.14(1.09,1.19)
$CO (mg/m^3)^{c}$	0.9	0.2	1.06(1.03,1.09)	1.07(1.03,1.11)
Second and third trin	nester			
PM _{2.5} (ug/m ³) ^a	54.2	15.1	1.10(1.05,1.14)	1.09(1.05,1.13)
$PM_{10}(ug/m^3)^{a}$	83.2	13.5	1.13(1.08,1.18)	1.12(1.07,1.17)
$SO_2(ug/m^3)^{b}$	11.8	4.0	1.16(1.07,1.25)	1.20(1.10,1.25)
$CO (mg/m^3)^{\circ}$	0.9	0.2	1.10(1.05,1.14)	1.11(1.07,1.15)

PROM: pre-labor rupture of membranes.

 a per increase in10 $\mu g/m^3,\,^b$ per increase in 5 $\mu g/m^3,\,^c$ per increase in 0.1 mg/m^3

^d Estimated by distributed lag models using weekly mean exposures, and by mean air pollution during specific exposure windows (average exposure model).

	M	CD	OR (95%CI) of PROM ^{d,}		
Pollutions	Mean	SD	Distributed Lag Model ^e	Average Exposure Model ^f	
First trimester					
PM _{2.5} (ug/m ³) ^a	57.7	18.6	1.01 (0.98,1.04)	1.02 (0.99,1.05)	
$PM_{10}(ug/m^3)^{a}$	87.0	17.0	1.02 (0.98 1.05)	1.02 (0.98,1.05)	
$SO_2(ug/m^3)^{b}$	17.8	4.9	1.06 (0.98,1.16)	1.07 (0.98,1.17)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.03 (0.99,1.07)	1.04 (1.00,1.07)	
Second trimester					
PM _{2.5} (ug/m ³) ^a	54.6	18.1	1.11 (1.04,1.19)	1.12 (1.07,1.17)	
$PM_{10}(ug/m^3)^{a}$	84.1	16.3	1.14 (1.07,1.22)	1.15 (1.10,1.21)	
$SO_2(ug/m^3)^{b}$	12.1	4.4	1.13 (1.03,1.24)	1.19 (1.11,1.28)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.09(1.03,1.14)	1.12 (1.08,1.14)	
Third trimester					
$PM_{2.5}(ug/m^3)^{a}$	54.0	19.0	1.04 (1.01,1.08)	1.05 (1.02,1.08)	
$PM_{10}(ug/m^3)^{a}$	82.2	16.9	1.05 (1.01,1.09)	1.06 (1.02,1.10)	
$SO_2(ug/m^3)^b$	11.5	4.2	1.14 (1.05,1.25)	1.13 (1.05,1.21)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.06 (1.02,1.10)	1.07 (1.03,1.11)	
Second and third tri	imesters				
$PM_{2.5}(ug/m^3)^{a}$	54.2	15.1	1.13 (1.06,1.22)	1.08(1.03,1.13)	
$PM_{10}(ug/m^3)^{a}$	83.2	13.5	1.18 (1.10,1.27)	1.11(1.06,1.17)	
$SO_2(ug/m^3)^b$	11.8	4.0	1.16 (1.06,1.28)	1.16(1.07,1.25)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.10 (1.04,1.15)	1.09(1.04,1.14)	

Supplement Table 5 Cumulative effects and average effects between air pollutant exposure and PROM risk in Distributed Lag Model and logistic regression model after adjusting the trimester.

PROM: pre-labor rupture of membranes.

^a per increase in 10 µg/m³, ^b per increase in 5 µg/m³, ^c per increase in 0.1 mg/m³

^d Estimated by distributed lag models using weekly mean exposures, and by mean air pollution during specific exposure

windows (average exposure model).

^e The models were adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, temperature.

^f The models were adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, temperature. And air pollution in the other two trimesters.

D - 114	M	۵D	<i>OR</i> (95% <i>CI</i>) ^d		
Pollutions	Mean	SD	Term PROM(n=1328)	Preterm PROM(n=111)	
First trimester					
PM _{2.5} (ug/m ³) ^a	57.7	18.6	1.01 (0.98,1.04)	0.88 (0.64,1.21)	
$PM_{10}(ug/m^3)^{a}$	87.0	17.0	1.03 (0.99,1.10)	0.85 (0.68,1.06)	
$SO_2(ug/m^3)^b$	17.8	4.9	1.05 (0.99,1.11)	0.93 (0.85,1.01)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.03 (0.99,1.07)	0.86 (0.68,1.09)	
Second trimester					
$PM_{2.5}(ug/m^3)^a$	54.6	18.1	1.14 (1.07,1.22)	1.01 (0.98,1.03)	
$PM_{10}(ug/m^3)^{a}$	84.1	16.3	1.17 (1.10,1.26)	1.01 (0.98,1.03)	
$SO_2(ug/m^3)^b$	12.1	4.4	1.15 (1.05,1.26)	0.86 (0.68,1.09)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.11 (1.06,1.17)	1.07 (0.76,1.49)	
Third trimester					
$PM_{2.5}(ug/m^3)^{a}$	54.0	19.0	1.04 (1.01,1.08)	1.01 (0.98,1.03)	
$PM_{10}(ug/m^3)^{a}$	82.2	16.9	1.05 (1.01,1.09)	1.09 (0.78,1.56)	
$SO_2(ug/m^3)^b$	11.5	4.2	1.13 (1.04,1.23)	0.97 (0.88,1.07)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.07 (1.03,1.11)	1.02 (0.71,1.48)	
Second and third trimes	sters				
$PM_{2.5}(ug/m^3)^{a}$	54.2	15.1	1.13 (1.05,1.23)	1.01 (0.71,1.45)	
$PM_{10}(ug/m^3)^{a}$	83.2	13.5	1.21 (1.13,1.29)	1.09 (0.78,1.56)	
$SO_2(ug/m^3)^{b}$	11.8	4.0	1.20 (1.09,1.32)	0.98 (0.90,1.07)	
$CO (mg/m^3)^{c}$	0.9	0.2	1.12 (1.05,1.19)	0.95 (0.66,1.35)	

Supplement Table 6 Association of prenatal air pollution exposure with the term PROM and preterm PROM

PROM: pre-labor rupture of membranes.

 a per increase in10 $\mu g/m^3,\,^b$ per increase in 5 $\mu g/m^3,\,^c$ per increase in 0.1 mg/m^3

^d The models were adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, temperature, and air pollutant in other two trimesters.

Models	PR	ОМ
	Adjusted OR ^b	95%CI
PM _{2.5}		
Single-model	1.08	(1.03,1.13)
$+SO_2$	1.08	(1.01,1.06)
+CO	1.11	(1.01,1.22)
PM_{10}		
Single-model	1.11	(1.06,1.17)
$+SO_2$	1.02	(1.01,1.03)
+CO	1.16	(1.02,1.31)
SO ₂		
Single-model	1.16	(1.07,1.25)
$+PM_{2.5}$	1.03	(1.01,1.05)
$+PM_{10}$	1.01	(0.98,1.04)
СО		
Single-model	1.09	(1.04, 1.14)
+PM _{2.5}	1.03	(1.00,1.06)
$+PM_{10}$	1.08	(1.03,1.13)

Supplement Table 7 Association of air pollution exposure and PROM in co-pollutant models ^a

PROM: pre-labor rupture of membranes.

^a Air pollution was in the second and third trimesters. The per increase in $PM_{2.5}$ and PM_{10} was 10 µg/m³, the per increase in SO₂ was 5 µg/m³, and the per increase in CO was 0.1 mg/m³.

^b Models was adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, and temperature.

Pollutants and Quartile	Hemoglobin			
of Concentration —	β ^b	95% CI		
PM _{2.5} , μg/m ³				
Quartile 1 (<41.3)	0.00	_		
Quartile 2 (41.4–52.8)	-3.29	(-4.12, -2.46)		
Quartile 3 (52.9–66.4)	-3.62	(-2.46, -2.83)		
Quartile 4 (≥66.5)	-4.03	(-4.92, -3.14)		
Continuous (per 10 µg/m ³)	-0.94	(-1.15, -0.73)		
PM10, μg/m ³				
Quartile 1 (<72.5)	0.00	—		
Quartile 2 (72.6–82.4)	-2.58	(-3.36, -1.80)		
Quartile 3 (82.5–92.2)	-3.92	(-4.83, -3.01)		
Quartile 4 (≥92.3)	-4.62	(-5.43, -3.80)		
Continuous (per 10 µg/ m ³)	-1.31	(-1.55, -1.07)		
SO2, μg/m ³				
Quartile 1 (<7.2)	0.00	—		
Quartile 2 (7.3–11.9)	-4.08	(-4.85, -3.30)		
Quartile 3 (12.0–14.9)	-4.62	(-5.38, -3.86)		
Quartile 4 (≥15.0)	-5.09	(-5.88, -4.30)		
Continuous (per 5 μ g/m ³)	-2.96	(-3.32, -2.61)		
CO, mg/m ³				
Quartile 1 (<0.794)	0.00			
Quartile 2 (0.795-0.896)	-4.59	(-5.35, -3.82)		
Quartile 3 (0.897–1.033)	-5.86	(-6.66, -5.06)		
Quartile 4 (≥1.034)	-6.78	(-7.54, -6.01)		
Continuous (per 0.1 mg/m ³)	-1.11	(-1.31, -0.92)		

Supplement Table 8 The estimated change in hemoglobin levels in third trimester was calculated for each quartile and each unit increment in PM_{2.5}, PM₁₀, SO₂, and CO during the second and third trimesters using linear regression model.^a

^a The estimated change in hemoglobin levels in third trimester was calculated for each quartile and each unit increment in PM_{2.5}, PM₁₀, SO₂, and CO during the second and third trimesters.

^b The model was based on the line regression model and adjusted for age, education, income, activity, passive smoking, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, and temperature. β (per 1 g/L)

Model	Hen	noglobin
	β ^b	(95%CI)
PM _{2.5}		
Single-model	-0.94	(-1.15, -0.73)
$+SO_2$	0.31	(-3.49, 1.67)
+CO	-0.91	(-1.04, -0.77)
PM_{10}		
Single-model	-1.31	(-1.55, -1.07)
$+SO_2$	-2.92	(-3.47, -2.38)
+CO	-2.45	(-2.86, -1.67)
SO_2		
Single-model	-2.96	(-3.32, -2.61)
$+PM_{2.5}$	-2.58	(-3.49, -1.67)
$+PM_{10}$	-2.61	(-3.52, -1.70)
СО		
Single-model	-1.11	(-1.31, -0.92)
+PM _{2.5}	-0.82	(-0.93, -0.71)
$+PM_{10}$	-0.91	(-1.04, -0.77)

Supplement Table 9 Association of air pollution exposure and hemoglobin levels in co-pollutant models ^a

^a Air pollution was in the second and third trimesters. The per increase in $PM_{2.5}$ and PM_{10} was 10 µg/m³, the per increase in SO₂ was 5 µg/m³, and the per increase in CO was 0.1 mg/m³.

^b Models was adjusted for age, education, income, parity, activity, passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, and temperature.

 β (1 unit g/L)

	PR	OM	
Hemoglobin (g/L)	OR	95% CI	
<100	2.44	(1.73, 3.46)	
100-104	2.42	(1.72, 3.41)	
105-109	2.40	(1.73, 3.34)	
110-114	1.97	(1.42, 2.73)	
115-119	1.77	(1.27, 2.45)	
120-124	1.72	(1.23, 2.42)	
125-129	1.52	(1.05, 2.21)	
≥130	1.00 ^a	_	

Supplement Table	10 The relationship	hetween hemoglobin	levels and PROM	risk in logistic models
Supplement Table	IV The relationship	J between nemoglobin	levels and I ROM	mak in logistic models.

PROM: pre-labor rupture of membranes.

The relationship between hemoglobin levels in third trimester and PROM. The model was based on the logistic regression model and adjusted for age, education, income, parity, activity, active and passive smoking folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, and temperature.

^a Reference group

Principal component	Correlation matrix eigenvalue				Corresponding eigenvector			
	Eigenvalue	Contribution rate	Accumulated Contribution rate	PM _{2.5}	PM10	SO_2	СО	
PC1	3.615	90.38	90.38	0.956	0.970	0.899	0.975	
PC2	0.277	6.93	97.31	-0.209	-0.134	0.423	-0.002	

Supplement Table 11 Correlation matrix eigenvalues of multiple air pollutants model on second to third trimester and corresponding eigenvector

PC1: First principal component PC2: Second principal component

Pollutions ^a	Evmographic lovel	Iron supplementation,	NI	Hemoglobin PROM			
	Exposure level	days/week	1	M± <i>SD</i> , g/L	%	Unadjusted OR (95%CI)	Adjusted OR (95%CI) ^d
PM _{2.5}	<p75<sup>f</p75<sup>	≥3	711	114.5±10.6 ^b	17.9 °	0.70(0.51,0.98)	0.69(0.49,0.98)
		< 3	1141	$112.0{\pm}11.0$	19.5	0.78(0.58,1.06)	0.78(0.56,1.08)
	≥P75	\geq 3	129	111.5 ±9.1	21.7	0.90(0.55,1.47)	0.88 (0.53,1.46)
		< 3	309	110.8 ± 10.1	23.6	1.00 ^e	1.00 ^e
PM_{10}	<p75< td=""><td>\geq 3</td><td>700</td><td>114.5±10.5^b</td><td>17.7 °</td><td>0.62(0.45,0.85)</td><td>0.64(0.45,0.91)</td></p75<>	\geq 3	700	114.5±10.5 ^b	17.7 °	0.62(0.45,0.85)	0.64(0.45,0.91)
		< 3	1127	112.0±11.0	19.9	0.73(0.53,1.01)	0.75(0.55,1.01)
	≥P75	\geq 3	140	111.9±9.7	22.1	0.76(0.46,1.25)	0.75(0.46,1.25)
		< 3	323	$108.0{\pm}10.0$	22.0	1.00 °	1.00 ^e
CO	<p75< td=""><td>\geq 3</td><td>740</td><td>114.6±10.2^b</td><td>18.1 °</td><td>0.72(0.54,0.95)</td><td>0.59(0.43,0.81)</td></p75<>	\geq 3	740	114.6±10.2 ^b	18.1 °	0.72(0.54,0.95)	0.59(0.43,0.81)
		< 3	1143	112.4±10.9	18.6	0.79(0.61,1.02)	0.58(0.32,1.04)
	≥P75	\geq 3	100	$110.1{\pm}10.7$	21.0	0.93(0.65,1.34)	0.73(0.42,1.27)
		< 3	307	$108.1{\pm}10.0$	22.7	1.00 ^e	1.00 ^e
SO_2	<p75< td=""><td>\geq 3</td><td>732</td><td>114.6±10.2^b</td><td>18.3 °</td><td>0.69(0.49,0.97)</td><td>0.70(0.50,0.98)</td></p75<>	\geq 3	732	114.6±10.2 ^b	18.3 °	0.69(0.49,0.97)	0.70(0.50,0.98)
		< 3	1144	112.2±10.9	19.1	0.74(0.54,1.02)	0.73(0.53,1.00)
	≥P75	\geq 3	108	110.3 ± 11.0	19.4	0.72(0.41,1.25)	0.73(0.42,1.27)
		< 3	306	$110.0{\pm}10.0$	24.8	1.00 ^e	1.00 ^e

Supplement Table 12 The association between iron supplementation and PROM risk stratified by air pollution levels in anemia women

PROM: pre-labor rupture of membranes. ^a Air pollution was in the second and third trimesters.

^b P for trend of hemoglobin levels across four groups was < 0.001, < 0.001, < 0.001, < 0.001, < 0.001, respectively.

^c P for the trend of PROM across four groups was0.023, 0.022, 0.042, 0.002, respectively..

The test for P-trend was performed using general linear regression model and Mantel-Haenszel chi-square test in hemoglobin levels and PROM prevalence across above four groups.

^d Models adjusted for age, education, income, parity, activity, active and passive smoking, folic acid supplementation, iron supplementation, pre-pregnancy BMI, hypertension during pregnancy, gestational diabetes mellitus, vaginitis, and temperature.

^eReference group

^f The 75th percentile for the exposure during second and third trimester was 66.5 μ g/m³ for PM_{2.5}, 92.3 μ g/m³ for PM₁₀, 14.9 μ g/m³ for SO₂, 1.03 mg/m³ for CO, respectively.

Supplement Figure 1 Directed acyclic graph for the association between air pollution exposure and PROM GDM: Gestational diabetes mellitus, PROM: pre-labor rupture of membranes. (A): exposure, (M): mediator, (Y): outcome