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Figure S1. PntP1 and Ets21C affect ISC proliferation and act in a RAS/MAPK signaling independent manner. Related to Figure 1.
(A-C) Results of the MEK and PntP1, PntP2, or Ets21C epistasis tests. Transgenes were induced via the esg’ system at 29°C for 5 days. (A)
PntP1 and MEKRNAI co-expressing midgut, showing clusters of large GFP+ ISCs and EBs (green). PntP1 could rescue MEKRNA-induced
inhibition of ISC proliferation. PntP2 and MEKRNA/ co-expressing midguts did not show any difference compared to control midguts. Scale
bars represent 50 um. (B) Ets21C and MEKRNA co-expressing midgut, showing more PH3+ ISCs (red) and GFP+ ISCs/EBs (green). (C)
Quantification of PH3+ cells in adult midguts of the indicated genotypes. MAPK knockdown could not inhibit ISC mitoses caused by PntP1
or Ets21C overexpression. (D-E) Overexpressing Ets21C-PC isoform in ISCs induces ISC proliferation. (D) Confocal images of posterior
midguts overexpressing Ets21C isoforms specifically in ISC using the esg’s; Su(H)Gal80 driver for 5 days at 29°C. Scale bar is 50uM. (E)
Mitotic events per gut scored by counting PH3+ cells. (F-G) EGFR signaling and downstream transcription factors affected ISC cellular size.
(F) Flow cytometry unit distribution of FSC-Area of YFP positive ISCs upon activation of EGFR signaling by EGF ligand sSpi or downstream
transcription factors for 8h. Short time activation of EGFR signaling mildly promoted ISC cellular growth. (G) Flow cytometry unit distribution
of FSC-Area of YFP positive ISCs upon EGFR signaling depletion by Egfr, Pnt, or Ets21C knockdown, or EGFR signaling activation by
transcriptional repressor Cic knockdown. Statistical significance was determined by Student’s t test corrected for multiple testing (*p<0.05,
****p<0.0001; ns, not significant). Error bars represent standard deviation.
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Figure S2. ISC specific DamID Seq and mRNA Seq of PntP1, PntP2, and Ets21C. Related to Figure 2.

(A-C) Venn diagram showing the significant overlap between DamID Seq and mRNA Seq of Ets21C, PntP1, and PntP2 OE for 24h in ISC. (D-I)
DamlID binding peaks align nicely at TSS and CRM. (J-N) PntP1 and PntP2 showed great similarity in their transcriptional function as shown

by the significant overlap between their (J) up-regulated genes, (K) down-regulated genes, (l) up-regulated direct targets, (M) down-regulated
direct targets, and (N) DamID bound genes. (O-P) Comparison of the Log2FC expression of genes differentially expressed by 8h induction
versus 24h induction of (O) Spitz or (P) Ets21C. Black bars indicate the Log2FC cutoff (0.5 and -0.5). The gene expression profile of (O) sSpi

changes dramatically between the 8h and 24h time-points, while the gene profile induced by (P) Ets21C OE strongly correlates between the
8h and 24h time-points.
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Figure S3. Pnt and Ets21C are essential downstream transcriptional mediators of EGFR signaling. Related to Figure 3.
(A) Venn diagrams showing the significant overlap (P=7.87e-134) between 8h sSpi induced differentially expressed genes, Pnt direct target

genes, and Ets21C direct target genes. (B) Venn diagrams showing the significant overlap (P= 3.16e-147) between 24h sSpi induced
differentially expressed genes, Pnt direct target genes, and Ets21C direct target genes. (C) Venn diagrams showing the significant overlap (P=
1.35e-301) between 24h sSpi induced differentially expressed genes, Pnt differentially expressed genes, and Ets21C differentially expressed
genes. (D) Venn diagrams showing the significant overlap (P=0) between Cic, Pnt, and Ets21C DamlID binding target genes. . (E) Network of
core transcription factors downstream of EGFR signaling. Red solid line blunt arrow indicates transcriptional down-regulation, while green
indicates up-regulation. Previous study showed upon activation, PntP2 up-regulates itself, but PntP1 isoformS'. Red dash line blunt arrow
indicates post-translational repression, while green indicates activation. Pnt and Ets21C directly bound and down-regulated both Cic and
EGFR, suggesting positive and negative feedback, respectively. Similarly, long-term induction of sSpi also down-regulated EGFR. Pnt and
Ets21C had binding sites at each other’s loci, but, while Pnt down-regulated Ets21C gene expression, Ets21C did not affect Pnt expression.
Interestingly, DamID indicated that Pnt and Ets21C both bound to the Spi gene, but only Pnt up-regulated Spi. (F) Heatmap of pathway
components and feedback regulators of EGFR signaling. Due to its potent mitogenic action, tight control of EGFR activity is essential for
intestinal homeostasis. EGFR signaling pathway has many accessory regulators that modulate its spatial and temporal responses, using both
positive and negative feedback mechanismssS2. When looking at the known feedback regulators of EGFR signaling, a majority of them were
responsive to sSpi. Positive feedback regulators included Src64B, rho, rau, stet, S, step, and two EGFR ligands, vnS3-55 and spis3, while
negative feedback regulators included Fasciclin256, kek1S7, kek5, kek6, pumS8, aosS3. S9-S1 rho-5 Chmp1, ed, Sulf1512, Socs36E, gemininsS13,
Ptp10D, styS14, Mkp3 (MAPK Phosphatase 3) S1°.516 and d-CbFF'7. Dual regulators edS'8 519 and Src42A were also present. Interestingly, this
set of feedback regulators was significantly enriched in our DamlID data for PntP1, PntP2, and Ets21C with p-value 1.28e-9, 7.75e-10, and
4.43e-10, respectively, meaning they are potential targets of Pnt and Ets21C. In short, our data suggest that the ETS-TFs directly influence a
complex network of feedback in the EGFR signaling pathway.
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Figure S4. EGFR signaling regulates ISC fatty acid B-oxidation and mitochondrial biogenesis. Related to Figure 4.
Heatmap of (A) fatty acid transport related genes, (B) fatty acid degradation genes (KEGG dme00071), and (C) mitochondrial
localized genes and mitochondria master regulators for control and sSpi 24h OE. Genes whose name is in red color are
significantly differentially expressed according to our cutoff.
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Figure S5. EGFR signaling promotes mitochondrial biogenesis and activity of human RPE-1 cells. Related to Figure 5.

(G-1) Transmission Electron Microscopy (TEM) images reveal EGFR signaling activation promotes Drosophila ISC mitochondrial
biogenesis. (A) TEM images of ISCs in posterior midguts. Scale bar is 1uM. (B-C) Quantification of the (B) average area of
mitochondria in an ISC section, and (C) the proportion of total mitochondria area in cytoplasm (cytoplasm area is cell area minus
nuclear area). (C) Live-imaging of RPE-1 cells upon 24h hEGF treatment. For top panels, blue is Hoechst dye, and red is mitoview650
dye. For bottom panels, blue is Hoechst dye, red is JC1 aggregates, and green is JC1 monomers. The ratio of JC1 red/green indicates
mitochondrial membrane potential. Scale bar is 50uM. (D) Mitochondria mass increased upon EGF activation. (E) Mitochondria activity
increased upon EGF activation. (G) Live-imaging of RPE-1 cells upon 24h hEGF, MEKI, and hEGF+MEKi treatment. Cells were stained
with Hoechst dye (blue), TMRM (red), and MitoTracker dye (green). Scale bar is 50uM. (H) Quantification of the average mitochondria
pixel area across the Z-stacks of each RPE-1 cell. hEGF treatment significantly increased the mitochondria mass of RPE-1 cells in a
MEK-dependent manner. (l) Quantification of average ratio between TMRM intensity and MitoTracker intensity across the Z-stacks of a
RPE-1 cell, as an indication of mitochondrial activity. hEGF treatment significantly increased mitochondrial activity of RPE-1 cells in a
MEK-independent manner. (*p<0.05, **p<0.01, ****p<0.0001; ns, not significant)
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Figure S6. mtTFB2 and TFAM are required for ISC proliferation and cellular growth. Related to Figure 6.

(A) mtTFB2 mediated ISC proliferation is EGFR signaling dependent. (B,C) FASC showed the effects of TFAM knockdown on cell
size, mitochondria size and activity. In quiescent esg cells, TFAM knockdown did not show a strong effect (B). Upon EGFR
activation, TFAMRNA only decreased mitochondrial activity, but increased cell size and mitochondria mass (2 out of 3 TFAMRNA! [ines)
(C). (D-F) Similar with mTFB2RNA TFAMRNA lines blocked EGFR mediated ISC proliferation. (G-H) mtTFB2 and MEK are required
for EB endoreplication and differentiation. Cell ploidy state of esg!s>GFP cells with different genotypes (H). esgs>GFP driver drives
the expression of UAS transgenes in both ISC and EB. When the guts are undergoing fast regeneration, for instance during EGFR
signaling activation, differentiating EBs or newly differentiated ECs still retain some GFP protein and would be sorted as GFP
positive cells by FACS. For this reason, we found that it is important to distinguish the cell ploidy when using the esg's>GFP driver.
Flow cytometry gating scheme (H), esg-GFP cells were gated to 2C, 4C, 8C, and 16C sub-populations based their cell size (FCS-
Area) and DNA content (Hoechst-Area). (I-K) Median of FSC-Area (I), MitoTracker-Area (J), and TMRM-Area (K) of esgs>GFP cells

in different ploidy states and genotypes.
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