Supporting Information for

LassoHTP: a High-throughput Computational Tool for Lasso Peptide Structure Construction and Modeling

Reecan J. Juarez,⁵ Yaoyukun Jiang,¹ Matthew Tremblay,¹ Qianzhen Shao,¹ A. James Link,⁷ and Zhongyue J. Yang^{1-4,6}*

¹Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States

²Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States

³Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235,

United States ⁴Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United

States ⁵Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee

37235, United States ⁶Department of Chemical and Biomolecular Engineering, Vanderbilt

University, Nashville, Tennessee 37235, United States ⁷Department of Chemical and Biological

Engineering, Chemistry and Molecular Biology, Princeton University, 207 Hoyt Laboratory,

Princeton, New Jersey 08544, United States

Contents

Figure S1. input_main.py: sample python code to run LassoHTP	Page S2
Figure S2. Scaffold library of scaffold constructor module	Page S3
Text S1. seq_parser.py: parsing module for user input sequence	Page S7
Table S1. Force field parameters for isopeptide linkers	Page S8
Figure S3. Parsing submodule for random mutation	Page S13
Text S2. Steered molecular dynamics protocol	Page S15
Table S2 . Comparison between RESP charge model and AM1-BCC charge model	Page S16
Figure S4. Default input files for molecular dynamics simulation	Page S16
Text S3. Description of caulosegnin-II crystal structure	Page S18
Table S3. RMSD values for all benchmarked lasso peptides	Page S18
Table S4. PDB IDs for the seven lasso peptides used in the benchmark	Page S21
Text S4. Building multiple constructs for a lasso peptide	Page S21
Table S5. Root mean square error (RMSE) of H-H distances	Page S21
Table S6. Comparison of constructs before and after MD	Page S22
Text S5. Details of dihedral principal component analysis	Page S23
Figure S5. Structural superposition of initial NMR and LHTP scaffolds	Page S23

```
from Class PDB import *
from Class Conf import *
from seq parser import *
def main():
    #Module 1: Scaffold Constructor
    #specify the annotated sequence and working directory
        seq, ring length, upper plug, wk dir =
'GGAGHVPEYFVRGDTPISFYG', 8, 11, ''
        proto lasso=construct scaffold(seq, ring length,
upper plug, wk dir)
        print(proto lasso)
        PDB1=PDB(proto lasso,wk dir)
        #Module 2: Mutation
        sequence=seq flags(seq, 8) #lasso seq
        print(PDB1.Add MutaFlag(sequence))
        PDB1.PDB2PDBwLeap()
    #Module 3: Molecular Dynamics
    #use minimization to relax each mutated lasso
        PDB1.PDB2FF()
        PDB1.PDBMin()
    #run MD
        PDB1.rm wat()
        PDB1.PDB2FF()
        PDB1.conf prod['nstlim'] = 50500000 # Edit MD
configuration (see default in Class Conf.py - Config.Amber)
        PDB1.PDBMD(tag=' mccJ25 RGD')
if name == " main ":
   main()
```

Figure S1. input_main.py: sample python code to run LassoHTP

Ring size: 7 Loop size: 10

Ring size: 7 Loop size: 10

Ring size: 8 Loop size: 4

Ring size: 8 Loop size: 6

Ring size: 8 Loop size: 8

Ring size: 8 Loop size: 10

Ring size: 8

Loop size: 10

Glutamate Linker Aspartate Linker

Ring size: 8 Loop size: 11 PDB: 2mmw

Ring size: 8 Loop size: 13

Ring size: 8 Loop size: 15

Ring size: 8 Loop size: 17

Ring size: 8 Loop size: 11 PDB: 2mmw

Ring size: 8 Loop size: 13

Ring size: 8 Loop size: 15

Ring size: 8 Loop size: 17

Glutamate Linker Aspartate Linker

Ring size: 8 Loop size: 12

Ring size: 8 Loop size: 14

Ring size: 8 Loop size: 16

Ring size: 8 Loop size: 18 PDB: 6por

Ring size: 8 Loop size: 12

Ring size: 8 Loop size: 14

Ring size: 8 Loop size: 16

Ring size: 8 Loop size: 18 PDB: 6por

Glutamate Linker Aspartate Linker

Ring size: 9 Loop size: 2

Ring size: 9 Loop size: 4 PDB: 5zcn

Ring size: 9 Loop size: 6 PDB: 5d9e

Ring size: 9 Loop size: 8

Ring size: 9 Loop size: 10

Ring size: 9 Loop size: 2

Ring size: 9 Loop size: 4 PDB: 5zcn

Ring size: 9 Loop size: 6 PDB: 5d9e

Ring size: 9 Loop size: 8

Ring size: 9 Loop size: 10

Glutamate Linker Aspartate Linker

Ring size: 9 Loop size: 3

Ring size: 9 Loop size: 3

Ring size: 9 Loop size: 5 PDB: 5gvo

Ring size: 9

Ring size: 9 Loop size: 7 PDB: 2mlj

Ring size: 9 Loop size: 9

Ring size: 9 Loop size: 7 PDB: 2mlj

Ring size: 9 Loop size: 9

Figure S2. Scaffold library of scaffold constructor module. The library consists of 70 scaffold structures with 18 seven-membered ring structures, 34 eight-membered ring structures, and 18 nine-membered ring structures. For scaffolds that were constructed from experimentally-determined structures, the PDB ID is provided.

Text S1. seq_parser.py: parsing module for user input sequence

The main module, seq_parse, receives a lasso peptide sequence as input and indicates the portions of the sequence that belong to the ring, loop, and tail. It also indicates what type of isopeptide linker utilized. construct_scaffold uses seq_parse's output to select a lasso peptide scaffold with the appropriate ring and loop sizes. The tail extender submodule constructs a tail of an appropriate size. The resulting scaffold is shuttled by outfile_mover to the specified working directory.

```
import sys
sys.path.insert(0, '/usr/LassoHTP/lasso extension')
import subprocess
import os
from lasso peptide gen import *
def get cwd(directory):
    """get directory
    .. .. ..
    if (not directory):
        cwd = os.getcwd()
    else:
        cwd = os.path.abspath(directory)
    return cwd
def seq parse (seq:str, ring len: int, upper plug: int):
    sequence = seq
    seq len = len(sequence)
    ring = ring len
    loop = upper plug
    isopeptide = ''
    tail length = seq len - (ring + loop)
    for idx , char in enumerate(seq):
        idx += 1
        if idx == ring:
            isopeptide = 'e' if char in 'E' else 'd'
    return sequence, ring, loop, tail length, isopeptide
def seq flags(seq: str, ring num: int):
    """generates flags from sequence
```

```
.. .. ..
    lis = []
    for idx, char in enumerate(seq):
        idx +=1
        if idx == ring num: #acidic residue
            continue
        lis.append('A' + str(idx) + char)
    return lis
def construct scaffold(seq:str, ring len: int, upper plug:int,
wk dir):
    """constructs scaffold from given sequence
    .. .. ..
    cwd = get cwd(wk dir)
    seq, ring, loop, tail length, isopeptide = seq parse(seq,
ring len, upper plug)
    outfile = f"{ring}{isopeptide} {loop} {tail length}.pdb"
    lasso peptide gen(ring, loop, tail length, isopeptide,
outfile)
    out path = "lasso extension/output structures/" + outfile
    outfile mover(out path, cwd)
    return out path
def outfile mover(lasso,wk dir):
    """moves outfile to working directory.
    ** ** **
    command = ['cp', lasso, wk dir]
    subprocess.run(command)
```

Table S1. Force field parameters for isopeptide linkers. GLX represents glutamate and ASX represents aspartate. Highlighted entries with red font indicate modified forcefield parameters to accommodate the isopeptide bond for each respective modified residue.

Atom type	Mass	Atomic polarizability	
Ν	14.01	0.53	
Н	1.008	0.161	
СТ	12.01	0.878	
С	12.01	0.616	
OH	16	0.465	
HC	1.008	0.135	
НО	1.008	0.135	
H1	1.008	0.135	

GLX force field (ff14SB) parameters

Bond	Harmonic force constant	Equilibrium bond length
C -NT	490	1.335
H -N	434	1.01
CT-N	337	1.449
C -CT	317	1.522
CT-H1	340	1.09
CT-CT	310	1.526
C -OH	450	1.364
НО-ОН	553	0.96
CT-HC	340	1.09
С-О	570	1.229

	Harmonic force	
Angle	constant	Equilibrium bond angle
O - C-N	80	122.9
C -NT-H	50	120
C -NT-CT	50	121.9
CX-C -NT	70	116.6
C -C -N	70	116
CT-C -C	63	117
N - C-OH	50	107.1
C - N- C	50	133.9
N -CT-HC	50	111
C -CT-N	63	110.1
H1-CT-N	50	109.5
CT-CT-N	80	109.7
CT-N -H	50	118.04
CT-C -OH	80	110
CT-CT-HC	50	109.5
CT-CT-CT	40	109.5
C -CT-H1	50	109.5
C -CT-CT	63	111.1
C -OH-HO	50	113
CT-CT-H1	50	109.5
HC-CT-HC	35	109.5
CT-C -O	80	120.4

\mathbf{C}	СТ		
U	-UI	-HC	

	Coefficient of 12 th power	
Non-bonded	term	Coefficient of 6 th power term
Ν	1.824	0.17
Н	0.6	0.0157
СТ	1.908	0.1094
С	1.908	0.086
OH	1.721	0.2104
HC	1.487	0.0157
НО	0	0
H1	1.387	0.0157
0	1.6612	0.21

50

Improper	Barrier height	Phase shift angle in torsional function	Periodicity of torsional barrier	
СТ-ОН-С-ОН	1.1	180		2
C -CT-CT-HC	1.1	180		2

Dihedral	Torsional barrier division factor	Barrier height, divided by 2	Phase shift angle in torsional function	Periodicity of torsional barrier
OH-C -CT-N	6	0	0	2
HC-CT-CT-N	9	1.4	0	3
CT-CT-CT-N	9	1.4	0	3
C -CT-N -H	6	0	0	2
H1-CT-N -Н	6	0	0	2
CT-CT-N -H	6	0	0	2
CT-C -OH-HC	2	4.6	180	2
СТ-С -ОН-НО	2	4.6	180	2
CT-CT-CT-HC	1	0.16	0	3
C -CT-CT-CT	9	1.4	0	3
C -CT-CT-HC	9	1.4	0	3
ОН-С -ОН-НО	2	4.6	180	2
OH-C -OH-HC	2	4.6	180	2
OH-C -CT-H1	6	0	0	2
H1-CT-CT-HC	9	1.4	0	3

CT-CT-CT-H1	9	1.4	0	3
OH-C -CT-CT	6	0	0	2
O -C -CT-CT	6	0	0	2
HC-CT-CT-HC	1	0.15	0	3
O -C -CT-HC	1	0.8	0	-1
O -C -CT-HC	1	0	0	-2
O -C -CT-HC	1	0.08	180	3
HC-CT-CT-HC O -C -CT-HC O -C -CT-HC O -C -CT-HC	1 1 1 1	0.15 0.8 0 0.08	0 0 0 180	3 -1 -2 3

ASX force field (ff14SB) parameters

Mass	Mass	Atomic polarizability
Ν	14.01	0.53
Н	1.008	0.161
СТ	12.01	0.878
С	12.01	0.616
0	16	0.434
OH	16	0.465
НО	1.008	0.135
H1	1.008	0.135
HC	1.008	0.135

Harmonic force constant	Equilibrium bond length
403.2	1.013
328.7	1.462
313	1.524
330.6	1.097
300.9	1.538
637.7	1.218
400.1	1.351
371.4	0.973
330.6	1.097
	Harmonic force constant 403.2 328.7 313 330.6 300.9 637.7 400.1 371.4 330.6

Angle	Harmonic force constant	Equilibrium bond angle
C -CT-N	67	109.06
H1-CT-N	49.84	108.88
CT-CT-N	65.91	111.61
CT-N -H	45.8	117.68
CT-C -O	67.4	123.2

CT-C -OH	68.4	112.73		
CT-CT-HC	46.34	109.8		
C -CT-CT	63.27	111.04		
С -СТ-Н1	47.04	108.22		
С -ОН-НО	49.88	106.55		
О -С -ОН	75.92	122.1		
CT-CT-H1	46.39	109.56		
HC-CT-HC	39.4	107.58		
C -CT-HC	46.93	108.77		
N - C- N	70	120		
C - N- C	50	121.9		
		Coefficient		
	Coefficient	of 6 th		
Non-	of 12 th power	power		
bonded	term	term		
Ν	1.824	0.17		
Н	0.6	0.0157		
СТ	1.908	0.1094		
С	1.908	0.086		
0	1.6612	0.21		
ОН	1.721	0.2104		
НО	0	0		
H1	1.387	0.0157		
HC	1.487	0.0157		
	1.824	0.17		
			Phase shift	Periodicity
		Barrier	torsional	torsional
Improper		height	function	barrier
СТ-О -С -ОН		1.1	180	2
	Torsional	_	Phase shift	Periodicity
	barrier	Barrier	angle in	of
Dihadral	division factor	height,	torsional	torsional
O = C = CT = N	ractor 6		180	
$OH_C - CT_N$	6	0	180	2
HC-CT-CT-	0	0	100	L
N	9	1.4	0	3
÷ '		1.1	0	

1.4

C -CT-CT-N

C -CT-N -H

3

H1-CT-N -H	6	0	0	2
CT-CT-N -H	6	0	0	2
CT-C -OH-				
НО	2	4.6	180	2
O -C -CT-CT	6	0	180	2
C -CT-CT-				
HC	9	1.4	0	3
C -CT-CT-C	9	1.4	0	3
О -С -СТ-Н1	1	0.8	0	-1
О -С -СТ-Н1	1	0	0	-2
O -C -CT-H1	1	0.08	180	3
О -С -ОН-				
НО	1	2.3	180	-2
О -С -ОН-				
НО	1	1.9	0	1
OH-C -CT-				
H1	6	0	180	2
OH-C -CT-				
CT	6	0	180	2
H1-CT-CT-				
HC	9	1.4	0	3
C -CT-CT-				
H1	9	1.4	0	3
O -C -CT-HC	1	0.8	0	-1
O -C -CT-HC	1	0	0	-2
O -C -CT-HC	1	0.08	180	3

```
def topology_sort(self):
```

```
sorts the sequence of the lasso peptide into sections
representative of its topology
'''
self.upperLoop=[]
self.tail=[]
self.plugs=[]
self.ring=[]
self.upperPlug=[]
self.lowerPlug=[]
self.essentialRes=[] #this residue (ASX) connects the
ring and tail
```

```
#these ranges can be changed to accomodate for
#different lasso peptide structures.
upperRange=range(6)
plugRange=range(7,9)
```

```
tailRange=range(10,12)
        ringRange=range(13,21) # 21 = 7mr, 22 = 8mr, 23 = 9mr
        #pluglocation
        uPlugRes = 7
        lPluqRes = 8
        #sort the PDB
        with open(self.path) as f:
            lines = [line.split() for line in f]
            i = 4 #by residue number
            for 1 in lines:
                if i < len(l): #avoid 'END'</pre>
                    if int(l[i]) in upperRange:
                         self.upperLoop.append(str(l[i]))
                    if int(l[i]) in plugRange:
                         self.plugs.append(str(l[i]))
                         if int(l[i]) == uPlugRes:
                             self.upperPlug.append(str(l[i]))
                         if int(l[i]) == lPlugRes:
                             self.lowerPlug.append(str(l[i]))
                    if int(l[i]) in tailRange:
                         self.tail.append(str(l[i]))
                    if int(l[i]) in ringRange:
                         self.ring.append(str(l[i]))
                    if (l[i-1]) == 'ASX':
                         self.essentialRes.append(str(l[i]))
                else:
                    None
        self.upperLoop = list(set(self.upperLoop))
        self.tail = list(set(self.tail))
        self.plugs = list(set(self.plugs))
        self.ring = list(set(self.ring))
        self.upperPlug = list(set(self.upperPlug))
        self.lowerPlug = list(set(self.lowerPlug))
        self.essentialRes = list(set(self.essentialRes))
        return self.upperLoop, self.tail, self.plugs, self.ring,
self.upperPlug, self.lowerPlug, self.essentialRes
def partition(self, sect=''):
        . . .
        partitions the lasso structure into parts.
        . . .
        a = list(self.topology sort())
```

```
upperLoop = a[0] #loop
tail = a[1] #tail
plugs = a[2] # plugs
ring = a[3] #ring
upperPlug = a[4] #upper plug
lowerPlug = a[5] #lower plug
essentialRes = a[6]
sect = '' #blank string: mutate any topological section.
self.get stru()
chain = choice(self.stru.chains)
resi = choice(chain.residues)
if sect == 'loop':
    if str(resi.id) not in upperLoop:
        while str(resi.id) not in upperLoop:
            resi = choice(chain.residues)
elif sect == 'tail':
    while str(resi.id) not in tail:
        resi = choice(chain.residues)
elif sect == 'plugs':
    while str(resi.id) not in plugs:
        resi = choice(chain.residues)
elif sect == 'ring':
    while str(resi.id) not in ring:
        resi = choice(chain.residues)
elif sect == 'upper plug':
    while str(resi.id) not in upperPlug:
        resi = choice(chain.residues)
elif sect == 'lower plug':
    while str(resi.id) not in lowerPlug:
        resi = choice(chain.residues)
elif sect == '':
    resi = choice(chain.residues)
    if str(resi.id) in essentialRes:
        while str(resi.id) in essentialRes:
            resi = choice(chain.residues)
```

return chain, resi Figure S3. Parsing submodule for random mutation.

Text S2. Steered molecular dynamics protocol

To construct each scaffold, we applied steered molecular dynamics (sMD) to a peptide ring-thread system. The ring-thread system's amino acid sequence featured almost exclusively alanine

residues except for a glutamate or aspartate isopeptide linker. The center-of-mass (COM) of the N-methyl capped C-terminus of the thread was docked into the COM of the ring. By using AmberMD's tLEaP submodule, we parameterized the system with the ff14SB force field and solvated the system with a truncated octahedron TIP3P water box with a 40 Angstrom cutoff. We used the Antechamber submodule to assign charges and atom types to the aspartate or glutamate linker and used the prepgen program and tLEaP to parameterize the acidic linker. For sMD, we selected the N atom of the of the peptide thread's second alanine and the C-terminus carbon of the acidic linker. With a harmonic restraint of 2000kJ/mol, the 30 ps sMD simulation brought the selected atoms to a 1.5 Angstrom distance. We used tLEaP to bond the atoms, remove extraneous oxygen and hydrogen atoms, and create a PDB file of the partial lasso peptide structure

Table S2. Comparison between RESP charge model and AM1-BCC charge model. Average RMSD for RESP charge models were taken from a 10 ns production MD and compared to the first 10 ns of the original LHTP production MD, which used the AM1-BCC charge model.

				Average	Average RMSD
Construct	Upper Plug	Structure	Modality	RMSD RESP (Å)	AM1- BCC (Å)
benenodin-1 state 1	E14	full	LHTP	3.17	2.95
benenodin-1 state 2	A16	full	LHTP	2.15	2.55
	Q15	full	LHTP	2.28	2.69
caulosegnin-II (A					
Proline)	H15	full	LHTP	1.10	1.03
caulosegnin-II (B					
Proline)	H15	full	LHTP	1.10	1.03
citrocin	R17	full	LHTP	2.34	2.24
microcin J25 (RGD					
Mutant)	F19	full	LHTP	1.74	1.64
streptomonomicin	A15	full	LHTP	3.83	3.51
	P14	full	LHTP	3.81	4.83
	Y13	full	LHTP	3.86	3.99
ubonodin	Y26	full	LHTP	2.93	3.07
xanthomonin-II	G10	full	LHTP	3.05	2.43
	G11	full	LHTP	3.25	3.20
	M9	full	LHTP	3.88	3.22

```
Minimize
  &cntrl
    imin = 1, ntx = 1, irest = 0,
    ntc = 2, ntf = 2,
    cut = 10.0,
    maxcyc= 20000, ncyc = {0.5maxcyc},
    ntpr = {0.01maxcyc}, ntwx = 0,
```

```
ntr = 1, restraint wt = 2.0, restraintmask =
'@C,CA,N',
   /
Heat
 &cntrl
 imin = 0, ntx = 1, irest = 0,
 ntc = 2, ntf = 2,
 cut = 10.0,
 nstlim= 20000, dt= 0.002,
 tempi = 0.0, temp0=300.0,
 ntpr = {0.01nstlim}, ntwx={nstlim},
 ntt = 3, gamma ln = 5.0,
 ntb = 1, ntp = 0,
 iwrap = 1,
 nmropt= 1,
 ig = -1,
 ntr = 1, restraint wt = 2.0, restraintmask =
'@C,CA,N',
 /
 &wt
 type = 'TEMP0',
 istep1= 0, istep2={0.9nstlim},
 value1= 0.0, value2=300.0,
 /
 &wt
 type = 'TEMP0',
 istep1= {A istep2+1}, istep2={nstlim},
 value1= 300.0, value2=300.0,
 /
 &wt
 type = 'END',
 /
Equilibration: constant pressure
 &cntrl
  imin = 0, ntx = 5, irest = 1,
 ntf = 2, ntc = 2,
 nstlim= 500000, dt= 0.002,
 cut = 10.0,
 temp0 = 300.0,
 ntpr = \{0.002nstlim\}, ntwx = 5000,
 ntt = 3, gamma ln = 5.0,
 ntb = 2, ntp = 1,
  iwrap = 1,
  iq = -1,
 ntr = 1, restraint wt = 2.0,
```

```
restraintmask = '@C,CA,N',
 /
Production: constant pressure
 &cntrl
 imin = 0, ntx = 1, irest = 0,
 ntf = 2, ntc = 2,
 nstlim= 50000000, dt= 0.002,
 cut = 10.0,
 temp0 = 300.0,
 ntpr = 50000, ntwx = 5000,
 ntt = 3, gamma \ln = 5.0,
 ntb = 2, ntp = 1,
 iwrap = 1,
 iq
      = -1,
 /
```

Figure S4. Default input files for molecular dynamics simulation.

Text S3. Description of caulosegnin-II crystal structure.

The crystal structure of caulosegnin-II has two defined forms: A and B. These forms reference the stereochemical positions of P8 and P18 of caulosegnin. The A form features both prolines' gamma carbons oriented towards the plane of the peptide bond. In contrast, the B form features the same prolines' gamma carbons facing away from the peptide bond plane.

Table S3. RMSD values for full and ring, loop, and tail substructures of all eight benchmarked lasso peptides. RMSD values account for backbone heavy atoms.

				Average
Construct	Upper Plug	Structure	Modality	RMSD (Å)
benenodin-1 state 1	E14	full	LHTP	2.96
			NMR	3.04
		loop	LHTP	1.55
			NMR	1.04
		ring	LHTP	1.39
			NMR	1.09
		tail	LHTP	2.34
			NMR	2.34
benenodin-1 state 2	A16	full	LHTP	2.24
			NMR	1.21
		loop	LHTP	1.64
			NMR	0.94
		ring	LHTP	1.50
			NMR	0.58
		tail	LHTP	1.30
			NMR	0.74

	Q15	full	LHTP	2.66
			NMR	1.21
		loop	LHTP	1.28
			NMR	0.95
		ring	LHTP	1.38
			NMR	0.58
		tail	LHTP	0.85
			NMR	0.77
caulosegnin-II (A				
Proline)	H15	full	LHTP	1.48
			NMR	1.48
		loop	LHTP	0.70
			NMR	0.68
		ring	LHTP	0.70
			NMR	0.71
		tail	LHTP	0.84
			NMR	0.86
caulosegnin-II (B				
Proline)	H15	full	LHTP	1.48
			NMR	1.55
		loop	LHTP	0.70
			NMR	0.67
		ring	LHTP	0.70
			NMR	0.66
		tail	LHTP	0.84
			NMR	0.85
citrocin	R17	full	LHTP	2.24
			NMR	2.26
		loop	LHTP	1.95
		-	NMR	2.00
		ring	LHTP	0.87
		C	NMR	1.08
		tail	LHTP	1.22
			NMR	1.21
microcin J25 (RGD				
Mutant)	F19	full	LHTP	1.93
			NMR	1.65
		loop	LHTP	1.67
			NMR	1.15
		ring	LHTP	0.88
		-	NMR	0.85
		tail	LHTP	0.61
			NMR	0.81

streptomonomicin	A15	full	LHTP	3.38
			NMR	2.49
		loop	LHTP	1.38
		F	NMR	0.51
		ring	LHTP	1.85
		8	NMR	0.88
		tail	LHTP	2.96
			NMR	2.43
	P14	full	LHTP	3.77
			NMR	2.49
		loop	LHTP	0.73
		1	NMR	0.42
		ring	LHTP	1.64
		_	NMR	0.88
		tail	LHTP	2.75
			NMR	2.57
	Y13	full	LHTP	3.77
			NMR	2.49
		loop	LHTP	1.18
			NMR	0.36
		ring	LHTP	1.60
			NMR	0.88
		tail	LHTP	3.08
			NMR	2.67
ubonodin	Y26	full	LHTP	3.33
			NMR	3.04
		loop	LHTP	2.96
			NMR	2.63
		ring	LHTP	1.34
			NMR	0.76
		tail	LHTP	0.54
			NMR	0.87
xanthomonin-II	G10	full	LHTP	2.53
			NMR	2.46
		loop	LHTP	0.81
			NMR	0.78
		ring	LHTP	0.80
			NMR	0.79
		tail	LHTP	1.88
			NMR	1.77
	G11	full	LHTP	3.31
			NMR	2.46
		loop	LHTP	1.44

	NMR	1.04
ring	LHTP	1.57
	NMR	0.79
tail	LHTP	1.13
	NMR	1.01
full	LHTP	2.75
	NMR	2.46
loop	LHTP	0.40
	NMR	0.28
ring	LHTP	1.08
	NMR	0.79
tail	LHTP	2.00
	NMR	2.05
	ring tail full loop ring tail	NMR ring LHTP NMR tail LHTP NMR full LHTP NMR loop LHTP NMR ring LHTP NMR tail LHTP NMR

Table S4. PDB IDs for the seven lasso peptides used in the benchmark.

Lasso peptides	PDB ID
benenodin-1	5TJ1
conformer 1	
benenodin-1	6B5W
conformer 2	
citrocin	6MW6
RGD variant of	2MMW
microcin J25	
streptomonomicin	2MW3
ubonodin	6POR
xanthomonin-II	2MFV

Text S4. Building multiple constructs for a lasso peptide

Benenodin-1 conformer 2, streptomonomicin, and xanthomonin-II required multiple LassoHTP constructs for benchmarking studies. We used two separate constructs of loop size 7 and 8 for benenodin-1 conformer 2, three separate constructs of loop size 4, 5, and 6 for streptomonomicin, and three separate constructs of loop size 2, 3, and 4 for xanthomonin-II. For each construct, the tail extender submodule constructed the appropriate tail length in accordance with the difference in tail residues.

Table S5. NOE violation represented by the root mean square error (RMSE) of H-H distances. For each lasso peptide, the NOE violation is evaluated by the deviation of MD snapshots from the NMR restraints. From PDB files of NMR structures, we extracted the upper bounds of the H–H distance restraints. In each MD snapshot, an H–H pair was considered to have an NOE violation if their distance value is greater than the corresponding NMR restraint upper bound. To highlight the conformational fluctuation, the reference list only incorporates the H–H distances with an upper bound value greater than 5.0 Å. To assess the fluctuation of MD conformational snapshots from the NMR restraints, we computed the root mean square error (i.e., RMSE) for the excess

				Root	
				mean square error (RMSE)	Average RMSE for all sub- constructs
Construct	Upper Plug	Structure	Modality	(Å)	(Å)
benenodin-1 state 1	E14	full	LHTP	3.66	3.66
			NMR	2.97	2.97
benenodin-1 state 2	A16	full	LHTP	1.72	1.58
			NMR	0.69	0.69
	Q15	full	LHTP	1.44	
			NMR	0.69	
citrocin	R17	full	LHTP	1.47	1.47
			NMR	1.39	1.39
microcin J25 (RGD Mutant)	F19	full	LHTP	3.26	3.26
			NMR	2.39	2.39
streptomonomicin	A15	full	LHTP	2.47	2.61
			NMR	1.69	1.69
	P14	full	LHTP	2.43	
			NMR	1.69	
	Y13	full	LHTP	2.92	
			NMR	1.69	
ubonodin	Y26	full	LHTP	1.55	1.55
			NMR	0.74	0.74
xanthomonin-II	G10	full	LHTP	0.33	0.56
			NMR	0.04	0.04
	G11	full	LHTP	0.85	
			NMR	0.04	
	M9	full	LHTP	0.51	
			NMR	0.04	

distance values of the H–H pairs where NOE violation was observed. Caulosegnin-II is not included because the structure is derived from crystal structure, not the NMR.

Table S6. Comparison of average RMSD for lasso peptide constructs before and after MD.

Construct	Upper Plug	Structure	Modality	Average RMSD before MD (Å)	Average RMSD after MD (Å)
benenodin-1 state 1	E14	full	LHTP	4.18	2.96
benenodin-1 state 2	A16	full	LHTP	2.72	2.24
	Q15	full	LHTP	3.95	2.66

1					
caulosegnin-II (A					
Proline)	H15	full	LHTP	1.79	1.48
caulosegnin-II (B					
Droling)	U15	£111	і цтр	1 70	1 49
Floime)	п	Tull	LHIF	1./9	1.40
citrocin	R17	full	LHTP	1.77	2.24
microcin J25 (RGD					
Mutant)	F19	full	LHTP	0.75	1.93
streptomonomicin	A15	full	LHTP	3.55	3.38
	P14	full	LHTP	5.05	3.77
	Y13	full	LHTP	4.92	3.77
ubonodin	Y26	full	LHTP	1.39	3.33
xanthomonin-II	G10	full	LHTP	3.87	2.53
	G11	full	LHTP	2.86	3.31
	M9	full	LHTP	4.60	2.75

Text S5. Procedure for dihedral PCA (dPCA) calculations. For each lasso peptide, dPCA was performed for both LassoHTP construct and NMR-initiated conformational ensembles. The backbone phi and psi dihedral angles were calculated for every residue for each snapshot in the conformational ensembles. Because of circular statistics involved with dihedral angles, we normalized each snapshot's dihedral angles. Specifically, we utilized min-max normalization. The two equations below show the process for rescaling data to fit a range of [0,1]. *X*_{scaled} is then utilized for PCA analysis.

$$x_{std} = (x - \min(x)) / (\max(x) - \min(x))$$
$$x_{scaled} = x_{std} * (max - \min) + \min$$

For each lasso peptide, the principal components are calculated from the diagonalization of covariance matrix of the dihedral angle arrays that contain both LHTP and NMR-initiated conformational ensembles. PC1 and PC2, the top two principal components with greatest variance values, are used to project the dihedral angle array of each conformer on a two-dimensional plane.

Figure S5. Structural superposition of initial NMR (green) and LHTP (cyan) scaffolds for citrocin and benenodin-1 conformer 1.