
Please find enclosed the revised version of our paper (PBIOLOGY-D-22-00725) titled “Anatomic 

and cellular transcriptome structure of human brain disease”. We thank the editor and reviewers 

for their constructive feedback. We have addressed the points that were raised by the reviewers; 

these suggestions and comments have greatly helped in strengthening the manuscript. Below is 

our response, highlighted in color, to these issues. We have significantly rewritten the manuscript 

to address the points made by the reviewers. In addition, we have marked the newly added 

sections throughout the text. Please Note that these are the sections that are either completely 

new or completely changed and not the only changes in the manuscript, since a large portion of 

the text has been revised and rewritten for clarity we didn’t highlight all of them. 

 

 

Reviewer #1: Zeighami et al. leveraged rich data resources (both neuroanatomical and single 

cell transcriptomes) from the Allen brain atlas to investigate the expression of disease-associated 

genes in adult human and mouse brain.The authors concluded that disease risk genes of different 

brain disorders exhibit different anatomic transcriptomic signatures. By analysis of single cell 

transcriptomes, they found cell type-dependent gradients that separate neurodegenerative, 

psychiatric, and substance abuse disorders. 

 

We would like to reiterate the reviewer's summary to emphasize that the overarching goal of the 

study was to investigate and describe the large-scale anatomic and cell type patterning of disease 

risk associated genes in the brain.  Using anatomically mapped tissue sources and cell types, we 

observe that disease risk genes show convergent physiological based expression patterns that 

associate diseases in expected and sometimes less expected ways. While this approach is at a 

lower resolution that is required to derive detailed translational interpretation, a main novelty we 

believe is precisely in describing and summarizing the brain-wide transcriptomic architecture of 

genetic risk for major classes of brain disease. We compared analysis throughout the work to 

phenotypic classification based on the highly cited Global Burden of Disease (GBD) study from 

the (Institute for Health Metrics (IHME), healthdata.org). This is an important bridging link between 

epidemiological classification and transcriptomics which should be of interest to scientists in a 

large community. Whereas the molecular basis of disease will ultimately reveal deeper 

associations which may lead to therapeutic options, we argue that the present approach is a step 

toward a computationally driven approach that will use transcriptomic and cell/pathway data to 

inform brain disorder classification.  While cell type specific data will provide the deepest and most 

informative resolution required to establish the molecular basis of disease risk, tissue based 

anatomic sampling provides a logical approach for comparative analysis across major brain 

patterning and forms a natural way to describe overall structure.  In addition to having added new 

analyses, we have substantially rewritten the manuscript to better highlight the findings and 

significance, and we believe, clarified the presentation. 

   

R1-1: The success of the authors' strategy hinges on gene selection for each of these complex 

and very different brain disorders. Each disease-associated gene carries equal weight in the 

analysis. This is potentially problematic because 1) the disease burden carried by each gene can 

vary significantly (some carry significant burden whereas others are risk factors), 2) the strength 

of the evidence supporting each gene also varies a great deal (some are convergently supported 

http://healthdata.org/


by multiple large cohort studies whereas others have conflicting data), 3) the nature of the 

mutations causing each disease (i.e. loss-of-function, gain-of-function, neomorphic, regulatory) 

or the mode of inheritance were also not considered. 

  

For genes associated with autism spectrum disorder, some carry a large effect in a nearly 

Mendelian way (e.g. CHD8), whereas others (e.g. MTHFR) carry weak and controversial 

associations. As far as I can tell, these genes carry equal weight in the authors' analysis.For 

genes associated with William syndrome, which results from copy number loss at 7q11, there is 

an additional issue. It is thought that only some of the genes within the CNV interval contribute to 

William syndrome phenotypes. It is therefore likely that some of the genes selected by the authors 

for analysis contribute to little or none of the disease (they merely fall within the CNV interval). 

  

We thank the reviewer for making these extremely important observations.  The reviewer correctly 

observes the complexity of identifying the actual extent of contributions of disease-associated 

genes and that this may vary significantly between disorders, with varying strength of evidence 

for distinct genes across multimodal experimental data sources. These sources of variation are 

subtle, not well elucidated in literature, and it is a major challenge of the translational studies to 

identify meaningful association and weights. We acknowledge that a fully detailed analysis would 

require an understanding of how different genetic variants or copy number variations contribute 

to the disease process, whether the respective mechanism is due to loss of function or gain of 

function, and whether genes involved are rare or common in the patient population. The approach 

of DisGeNET prioritization relies on a statistical point of view, across these 40 disorders and 1646 

genes, affected brain structure, neural pathway, and cell type that is based on the normative 

expression profile of each gene. Naturally the utility of this assumption is potentially less 

meaningful when it comes to the effects of individual genes involved and their contribution to risk. 

  

There is undoubtedly great variation in the magnitude of effect of individual genes and disease 

risk and any actionable and detailed comparative analysis would need to address this.  However, 

at our present level of understanding of many diseases, it is difficult to ascertain precisely how to 

quantify this risk. Nonetheless the reviewers critique remains valid indicating  more care may be 

necessary in disease gene risk prioritization. To address these issues, we conducted further 

analysis to evaluate the effect of gene importance as reflected in the literature. We used the 

literature based gene disease association weights provided by the DisGeNET dataset where each 

association has a gene-disease association (GDA) score based on the following formula: GDA-

score = C + M + I + L where C is based on curated data sources, M is based on mouse and rat 

animal model reports, I is inferred GDAs from the Human Phenotype Ontology, VDAs reported 

by Clinvar, the GWAS catalog and GWAS database, and finally L is based on number of 

publications reporting the given GDA. Using the GDA-score for each gene disease association 

we then calculated a weighted average expression representing the disease related global gene 

expression pattern across brain regions and cell types as in Figure 1. In this new analysis, 

weighted average replaces the equally weighted average used in the main analysis. We 

recomputed the main analysis for the HBA dataset with results shown in Suppl. Fig. 8.  In the 

new analysis 5 diseases will be removed due to insufficient data (migraine disorders, obsessive-

compulsive disorder, frontotemporal lobar degeneration, dementia, heroin dependence.) The new 



result illustrates a very similar pattern across brain regions grouping similar disease classes, 

confirming the original classification presented in Figure 1 and showing 85% agreement between 

class assignment of remaining diseases. To present the results with the fewest assumptions, 

accounting for potential variability of the GDA-score, and retaining the 40 diseases, we hope the 

reviewer will agree with our decision to retain the original Figure due to similarity of results. Please 

see supplementary methods for more details. 

 

 

R1-3: The nature of the disease-causing mutations needs to be considered. Genes can cause 

disease in many ways. The authors' strategy may work well for loss-of-function mutations but is 

likely not to work for gain-of-function, neomorphic, or regulatory mutations. The nature or direction 

of effect of mutations do not seem to have been considered; this is a major caveat of the study. 

  

The reviewer’s point is well taken, and this level of mechanism is not accounted for in our study.  

In this analysis we are not making claims about the mechanism of action, rather we are saying 

that disease associated genes act in cell types in which they are expressed and that these have 

characteristic expression patterns in the brain. We admit that we have not provided a global 

classification of brain diseases accounting for disease-causing mutations, gain or loss of function 

and related considerations, and such a study would be of paramount interest. We have 

commented on this limitation in the discussion.   

  

R1-4: The genetic architectures of the included brain disorders are very diverse. The current study 

design does not seem able to account for the contributions of common versus rare variants, 

modes of inheritance, levels of polygenicity, etc.  

  

The reviewer is correct that the genetic architectures of the included diseases are quite diverse.  

The level of analysis necessary to account for rare variants, modes of inheritance, and levels of 

polygenicity are all important, although we believe less likely to affect major mean profiles and 

global structure across brain regions.  We would like to emphasize that the present study was 

intended to capture the major transcriptomic and anatomic relationships of disease genes and to 

compare this with common phenotypic understanding. In the classification presented we have 

highlighted several associations that are not commonly phenotypically associated and discussed 

these in the manuscript.  We hope the reviewer will see value in presenting these results while 

acknowledging these identified shortcomings.  We have significantly rewritten the manuscript to 

hopefully better illustrate the value and address caveats and limitations.   

  

R1-5: It would be very helpful if the authors could provide at least some validation of some of their 

biological predictions. Even if empirical evidence is not possible, some orthogonal form of 

validation for at least a few of the biological predictions can add confidence to their analysis. For 

example, do these predictions align with what is known about disease etiology? Where do they 

disagree? Are there any ground truth data that the authors can benchmark their analyses against? 

  

We thank the reviewer for this comment and the opportunity to look more closely at interpretation. 

While a major structured validation of the results presented would take us beyond feasible scope, 



there are many confirmations of the classification presented here in the literature.  Please allow 

us to illustrate several here.  The concurrence of multiple sclerosis and brain tumors has been 

widely described ((Currie and Urich 1974; Hinnell et al. 2010; Khan, Buwembo, and Li 2005)). A 

recent study reported that MS patients have a decreased overall cancer risk, but an increased 

risk for brain tumors (Alkabie et al. 2021). They argue it may be hypothesized that these conditions 

may occur during the remyelinating processes coinciding with a decline of the CNS immune 

reaction.  Similarly, compared to unaffected controls, patients with brain tumors experienced an 

independent several fold increased risk of having a prior migraine diagnosis (Chen et al. 2018). 

Each of these diseases are dominated by expression patterns of ADG1 of Figure 1.  As an 

example of the association found in ADG 2, containing most of the neurodegenerative diseases, 

amyotrophic lateral sclerosis and Alzheimer disease, are seen associated in studies from model 

systems ((Price et al. 1997) as well as frontotemporal dementia (Ugbode and West 2021).  

Psychiatric manifestations after occurrence of epilepsy, both diseases of ADG 3, have often been 

noted. However, the association between newly diagnosed epilepsy and psychiatric disorders 

afterward is not completely understood ((Ugbode and West 2021; Chang et al. 2013)). Seizures 

are known to be extremely effective modulators of psychiatric symptoms, and electroconvulsive 

therapy (ECT) still is used today as one of the most effective antidepressant and antipsychotic 

treatments.  Representative of ADG4, narcolepsy is found associated with excess marijuana use 

(Bolla et al. 2008, 2010)). Representative of the expression pattern found in ADG 5, Parkinsonian 

signs of Huntington’s disease have been found to typically progress in a fairly linear pattern over 

time (Reilmann 2019) where bradykinesia is detectable early on in premanifest gene carriers up 

to two decades prior to the clinical manifestation of Huntington symptoms.   

 

We have rewritten the manuscript to discuss identified associations and included similar evidence 

for the existence of cortical cell type gradients. While the reviewer may legitimately argue this 

evidence is anecdotal, and that associations may be found between many disparate disease 

phenotypes, the literature is consistent with the findings we present. A more startling result which 

corroborates several of these observations is provided in Suppl. Fig. 4, where the mesoscale 

clustering analysis is presented removing pairwise intersection of gene sets.  Surprisingly, the 

grouping of diseases without gene intersection is highly similar (67% class agreement) to Figure 

1, suggesting a meaningful transcriptomic association of the diseases.  We hope this supplies 

some evidence for the reviewer. 

  

R1-6: It is important to note that the brain disorders included in this study have very different ages 

of onset and likely result from pathomechanisms during different times in the lifespan. The current 

study is performed with adult brain transcriptome data without taking into account developmental 

expression. This likely confounds the results. For example, genes that cause autism spectrum 

disorder likely affect prenatal development. The expression of these genes in the adult brain may 

be very different from the fetal brain and may not be relevant to disease etiology. The absence of 

temporal expression analysis weakens the study.  

  

The reviewer is of course correct that the diseases presented have very different temporal genetic 

signatures and thus this is likely to confound associations or even make the proposed association 

not meaningful.  However, we first observe that even genes that likely act mostly in development 
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to cause pathology may continue to contribute to disease state in adulthood since those genes 

are still expressed, and neurodevelopmental disorders have symptoms that are persistent across 

the life span. While we do not claim to capture the developmental aspects of the disorders with 

our approach, it will provide information about adult pathophysiology.  Further, it remains useful, 

we believe, to elucidate these patterns in adults in comparison with other brain diseases. We have 

also now examined the presented set of diseases in the BrainSpan (https://www.brainspan.org) 

data using donors from 60 days old to 39 years.  The results highlight the expected temporal 

patterning and onset of expression in the diseases, while many of the adult associations 

presented in Figure 1 remain.  We have placed this result in a Suppl. Fig. 9 and comment on 

these issues in the main text.  

  

R1-7:The significance of this work is dependent on the strength of the biological insights it 

provides into these brain disorders. Unfortunately, it is not clear that this work generated deep 

insights that can form the basis of future studies into disease mechanisms. 

  

We of course agree with the reviewer that a study at this resolution of analysis will not be expected 

to yield profound results about individual diseases. However, we know of no study where the 

overall relationship of transcriptomic patterning with respect to the anatomy of the adult brain is 

presented, and we believe this to be useful and relevant information for those interested in 

comparing disease relationships in the adult brain. Both expected and less obvious associations 

are presented as well as identification of those genes responsible and their anatomic 

presentation.  While we do not offer an explicit path toward distinct disease pathomechanisms, 

we believe the work has value in generating hypotheses that may be followed up through 

experimental and computational approaches in further studies.  Using this work as a model, it will 

now be possible to improve and generalize the results across far larger data sources that are 

being developed through BRAIN Initiative work. We have considerably rewritten the manuscript 

to reflect all of the reviewers essential points and indicate shortcomings of the analysis. 

 

  

Reviewer #2: Zeighami and collaborators present an integrative transcriptomic analysis of genes 

associated with 40 common brain diseases representative of 7 phenotypic classes. The authors 

report that diseases cluster in 5 groups determined by the similarity of expression patterns of their 

associated genes across anatomical structures of the adult human brain. These expression 

patterns are reproducible across subjects, generally discriminate among diseases, and only 

partially relate to phenotypic classes. Comparison with canonical gene expression modules from 

the Allen human brain atlas further supports distinctions between disease transcriptomic groups 

and suggest cell type associations underlying some of the differences. To further dissect these 

associations, the authors analyze expression patterns across cell types from the MTG for 24 

diseases with preferential cortical expression. This analysis identified 4 disease groups based on 

cell type expression patterns and showed that gradients of expression across excitatory and 

inhibitory neuronal subtypes further distinguish disease groups. Finally, the authors show broad 

conservation and consistency of cell type enrichment patterns for disease associated genes in 

both human and mouse, with some exceptions suggestive of species-specific enrichment for a 

number of diseases and cell types. 

https://www.brainspan.org/


 

We thank the reviewer for this excellent summary which captures the intent for our study. 

 

Overall, their results and approach demonstrate that diseases can be compared and classified 

based on the neuroanatomic and cell type specific patterns of expression of their associated 

genes. The study provides an interesting example of how existing brain functional genomics data 

at different resolutions and in multiple species can be interrogated to better dissect and 

understand brain disease associations. 

 

As the reviewer comments, our goal was to describe the relationship of neuroanatomic and cell 

types patterns for major classes of brain diseases, and to characterize their associated disease 

risk genes.  We believe this work provides a valuable overview that is not presented elsewhere 

and suggests many opportunities for follow up and further analysis, particularly in upcoming large 

scale human cell atlas work. 

 

The approaches presented are interesting and timely, considering the increasing pace at which 

gene-disease associations and brain transcriptomic data in human and model species are being 

mapped. However, I have some concerns regarding the presentation of the results, some unclear 

methodologies, and the extent of biological interpretation. More clarity and additional biological 

interpretation complementing data description would largely benefit the study. 

 

These comments on presentation of the results, methodology, and biological interpretation have 

also been made by others and we clearly hear this critique.  We have rewritten the manuscript 

substantially in an attempt to address these methodological issues, caveats and limitations, and 

with included increased emphasis on biological interpretation. 

 

 

R2-1: The style and clarity of the text varies across the manuscript. The syntax and grammar of 

the first half of the manuscript should be revised. In particular, it is hard to follow the sections: 

"Introduction", "Brain disorders and associated genes", and "Structural transcriptomic profile of 

brain diseases". Likewise, the abstract should more closely summarize the data presented and 

highlight the main contributions. 

 

We have endeavored to address these clear concerns with rewriting of the manuscript.  We hope 

the reviewer will find the manuscript improved. 

 

R2-2: In section "Brain disorders and associated genes": It is not clear why and how the OMIM 

repository was used. Authors point to reference (14) to support the selection of 549 brain-related 

diseases to be intersected with the DisGeNET database. Reference 14 does not seem to be 

related to this. The information included in the associated methods section (Disease genes 

section) is largely a repetition of what is already included in the main text and does not clarify this 

issue. There are some inconsistencies between the numbers included in the main text and those 

included in the methods (e.g., "549 brain-related diseases" vs "an original list of 500 diseases"). 

Considering that all gene disease association data is coming from DisGeNET, please clarify why 



and how the OMIM repository was used. I would suggest clarifying and including most of these 

details only in the methods section. 

 

We would like to thank the reviewer for pointing out this inconsistency. The reference 14 was in 

error and should be reference 13: (Hawrylycz et al. 2015). In that study the OMIM database was 

used to form a list of 549 potential brain-related diseases for a component of that study (We 

apologize for the inaccuracy, the mismatch between the numbers is now corrected to the correct 

value of 549.)  As DisGeNET contains gene disease associations for many non-brain related 

diseases, we used the OMIM list as an initial starting point to search for brain related diseases 

from DIsGeNET, and to be consistent with previous work.   We have clarified this in the methods. 

 

  

R2-3: Diseases are required to have at least 10 associated genes to be included in the study. 

However, several of the diseases included in Supplementary table 1 contain less than 10 genes. 

Are all the diseases in Supplementary table 1 included in the study or only a subset? An additional 

table sheet with descriptions for each data sheet would help clarify this and additional issues 

regarding the data presented in the tables. 

 

We had included these lower gene diseases as a type of supplementary analysis for several 

important low gene association diseases (e.g. Opioid-Related Disorders). The analysis originally 

included ten additional disorders with less than 10 genes based on this prevalence and 

importance. However due to the potential confusion and since these disorders are not sufficiently 

discussed in the manuscript, we have now removed this both from the manuscript.   

 

R2-4: In "the proportion of shared genes between diseases is known to be correlated with 

phenotypic similarity (rho = 0.40,  p = 6.0 × 10−3)", it is not clear how these numbers were 

calculated and what they are referring to. How do you measure phenotypic similarity based on 

the data you have? 

 

This statement is a reference quoted from (Qi et al. 2019).   In that study, the authors derived a 

disease manifestation network (DMN) by curating OMIM and Pubmed. The relationship between 

the genetic similarity and phenotypic similarity was found correlating phenotype similarity scores 

from the  DMN and shared genes. DMN scores of these disease pairs were found correlated with 

the proportion of genes shared between diseases at 0.40,  p < 6.0 × E−3.  A similar statistic could 

be calculated from the results of Figure 1, where phenotypic similarity is now correlation between 

the average expression pattern across major brain structures for a disease pair versus the number 

of overlapping genes in the pair of disorders and we find (rho = 0.21,  p < 1.0 × E−3). 

 

R2-5: When listing gene distribution across GBD classes in the format (number, % unique to GBD 

class), the numbers shown are not percentages. 

 

The percentage is used for Jaccard clustering and is shown as the gray scale color code while 

the absolute numerical values are written as inset numbers to be consistent with diagonal values, 

https://paperpile.com/c/O6ZtC8/CoCB
https://paperpile.com/c/O6ZtC8/WKU3


we have added the text “(shown in gray scale color)” in the Supp. Fig. 2 legend to further clarify 

this. 

 

R2-6: In the final disease/disorder list, what is "Dementia" referring to and how is it different from 

other common causes of dementia also included (e.g. Alzheimer's disease)? 

 

Dementia from DiGeNET is referring to unspecified dementia (ICD10: F03), including dementia 

with and without behavioral disturbances. The genes reported in “dementia”only include genes 

reported in studies with patients with unspecified dementia rather than genes associated with 

dementia with specific underlying neuropathology (e.g. Alzheimer’s disease, ICD10: G30). The 

information for each disease is detailed in Suppl. Table 1, Sheet1 (Brain Disease Attributes), and 

we have added a new column in Suppl. Table 1, sheet 1 with ICD10 codes for each disease to 

disambiguate these definitions and have referred to this table in the main text. 

 

R2-7: What does structural transcriptomic profile mean? 

 

In the section “Structural transcriptomic profile of brain diseases”, we are discussing the 

transcriptional pattern of the risk genes for each brain disorder across major neuroanatomy of the 

brain. To be clearer and more accurate we have changed the title of this section to “Neuroanatomy 

and the transcriptomic profile of brain diseases.”   

 

R2-8: In Figure 1A, an additional annotation column with the total number of genes for each 

disease (row) would help with data interpretation. Do diseases in ADG groups 4 and 5 tend to 

have less genes than diseases in other groups? If so, would that explain the lack of regularities 

seen in the other, larger ADG groups? An analysis demonstrating that differences in gene number 

do not play a major role in determining ADG patterns would improve this section. 

   

This is a good point, we have replaced the disease uniqueness annotation bar in Figure 1A with 

an annotation bar indicating gene number. This is likely more relevant to interpreting the results 

than the more abstract uniqueness score.  Most important in reproducibility we believe is the 

consistent signature across donors. However, the major outliers in gene set size are the 

neuropsychiatric diseases autistic disorder  (g=204), bipolar disorder (g=384), depressive 

disorder (g=251),  and schizophrenia (g=733).  We have conducted a reproducibility analysis 

reducing all gene sets to a maximum of 200 and placed this in Suppl. Fig

 

 

R2-9: In Figure 1A, it is not clear what uniqueness means. 

 

Uniqueness in this context indicates whether a given transcriptomic profile uniquely identifies the 

disease in each of the 6 postmortem specimens, that is, by having an expression signature across 

regions that is most closely correlated with the same disease in other donors.  As this is also 

addressed in panels 1C,D we have replaced this bar with the more informative disease gene 

number annotation bar. 

 



R2-10 and R2-11:  

 

● Are ADG expression patterns explainable by the degree of gene overlap within classes? 

It would be interesting to compare the degree of gene overlap (Jaccard index) between 

diseases of the same ADG group versus the overlap across ADG groups. 

 

● To what extent a small number of "influential" shared genes drives the associations? One 

way to address this could be by performing a reproducibility analysis similar to those 

presented in Supp Figures 5 and 6 but this time removing highly pleiotropic (genes) within 

each ADG group. This analysis would also complement the pairwise analysis presented 

later in Supp Figure 8. Alternatively, presenting earlier in the text a more extensive 

description of how the analysis in Supp Figure 8 addresses this problem -- perhaps with 

specific examples of particularly pleiotropic genes within classes -- would  improve the 

section. 

 

These are interesting and related points. In Figure 1 all genes associated with each disease are 

included and so invariably this will be reflected in the ADG groupings.  However, we examined 

the relationship of gene overlap between diseases and ADG membership more closely.  A logit 

regression of common ADG membership against normalized gene set intersection 

(intersection/union) finds highly significant coefficients (intercept p<2e-16, overlap p<3.58e-11). 

However, normalized gene set intersection for within ADG pairs is 0.029 compared with 0.016 for 

non-ADG pairs, and while a one-sided t-test shows this is significant (p<4.8e-09) the difference 

in magnitude is not large. The reviewer is correct that the results could be regenerated removing 

influential and highly pleiotropic genes, however, the result of Supp. Fig. 4 is essential to this 

point and shows that ADG membership is reproducible by comparing common pairs of diseases 

with and without shared genes agrees at 67% which is quite strong.    

  

 

R2-12: Figure legend explanations for panels C and D in Figure 1 are not very clear. Axes labels 

are missing. This analysis is very interesting, but the results are hard to follow as currently 

presented in the main text and figure. Are the authors trying to show that the anatomic pattern of 

a given disease in one subject tends to be similar to patterns in another subject for the same 

disease or disease of the same class -- and not to patterns of different diseases? 

 

We apologize for this lack of clarity, and realize the explanation given was imperfect. The goal of 

the analysis is to examine the transcriptomic pattern of a disease for one of six donors compared 

with other donors with respect to their ADG and GBD classification. This analysis is a study in the 

variability and reproducibility in the patterns across donors. In this way we consider the anatomic 

transcriptomic profile for each disease in a given donor and ask which profile is it most closely 

correlated with in other donors.  The result may be that it is highest correlated with the same 

disease in another individual, with another disease in the same ADG, or with some other disease.  

This forms a measure of the uniqueness of disease profiles and the stability of ADG groups across 

donors. For example in 1C, diseases of ADG4 in one donor are always most closely correlated 

with ADG4 in other individuals, and almost always identifies (0.96) the exact disease.  The stability 



of ADG membership in this way is quite strong, and in the majority of cases the exact disease can 

be identified in another donor. We believe the unique identifiability of a disease through its 

anatomic transcriptomic signature is an interesting and important concept that may be useful in 

distinguishing and further characterizing diseases. With respect to phenotypic GBD classes, 

movement and substance abuse disorders are seen to have the most reproducible and unique 

profiles, while psychiatric and developmental the most variable across donors. We have enriched 

this explanation in the text and also added the labels for the corresponding axis.  

 

  

R2-13: This statement is not clear: "The ability to uniquely identify a disease from its anatomic 

signature indicates a finer transcriptomic patterning and is a bridge to cell type analysis". 

 

The intent of our statement is that the extent to which a disease can be identified by its 

transcriptomic signature across neuroanatomy is also indicative of specialization of the cell types 

expressed by genes associated with that disease. A more unique and reproducible transcriptomic 

signature across anatomical structures for a given disease may provide indication of an approach 

to cell type characterization of that disease. We have now modified the original text to clarify this 

point. 

 

 

R2-14: Have the authors considered whether the fact that different diseases show different 

degrees of cross-subject anatomical profile similarity could relate to their underlying 

neurobiology? For example, given their developmental origin and high phenotypic heterogeneity, 

is it expected that psychiatric and developmental diseases show the least consistency? Some 

level of discussion of this would be interesting. 

 

This is an interesting point which is to a certain extent summarized in Figure 1D and Supp. Fig. 

11-B,C.  We have discussed Fig 1D above which measures between subject variability of 

anatomic profiles by GBD class.  Suppl. Fig. 11 uses the concept of differential stability (DS) 

proposed in (Hawrylycz et al. 2015) as a measure of the transcriptomic consistency of individual 

genes across donors, based on preserved differential relations between anatomic structures, and 

provides a complementary perspective.  Whereas in terms of cross-subject consistency in Fig 1D 

substance abuse and movement disorders are highest, and developmental and psychiatric 

diseases least, when examining the stability of individual disease genes by donor, we find that 

while substance abuse diseases have the most stable gene patterns, and tumor and 

neurodegenerative diseases the least.  

 

The differential stability measure prioritizes neuronal cell types with strong structural markers and 

less so the non-neuronal broad non-regional expression common in glial cells.   While gene 

expression variability may be potentially related to higher heterogeneity within a disease, 

consistent anatomic patterning may suggest shared underlying cellular pathways between these 

disorders and a spectrum with both shared and unique phenotypic elements. Another method of 

examining this is shown in the module analysis of Figure 2 of the manuscript.   Here genes for 

each disease that are associated with each of M1-M31 canonical expression patterns are 

https://paperpile.com/c/O6ZtC8/CoCB


presented, with higher values (deeper red) indicating a higher fraction of genes associated with 

that module.  The modules are ordered by decreasing neuronal cell type content, as shown in the 

upper annotation  bar.   Figure 2 shows the over-representation of neuronal markers in diseases 

of movement and substance abuse and glial patterning for ADG 1 and ADG 2. 

 

R2-15: Brain disorders are classically defined based on observable neuropathological signatures 

(e.g., degenerative disorders) and/or behavioral symptoms (e.g. psychiatric disorders). There has 

been much discussion in the field regarding intrinsic limitations when trying to understand the 

neurobiology linking genes to brain disease phenotypes. Because multiple levels of organization 

are involved (molecular, cellular, circuit, behavioral, etc…), it is not clear whether certain 

accessible endophenotypic levels might be more appropriate than others to study disease.  

● Have the authors considered interpreting/discussing some of their results in such a 

context? For example, some disease phenotypic classes show more consistent 

transcription patterns than others, and some diseases are more transcriptionally similar to 

diseases in other classes. Does this suggest that phenotype classes might not capture the 

relevant underlying neurobiology and need revision, or that molecular level 

endophenotypes are not equally informative across brain disease classes? Some level of 

discussion of these aspects would improve the representation of your results. 

 

 

We thank the reviewer for the observation that some disease phenotypic classes show more 

consistent transcription patterns than others, and some diseases are more transcriptionally similar 

to diseases in other classes. It is one of our primary results and motivations of this work to suggest 

that common phenotype classes based on disease manifestation and presentation may not fully 

capture underlying neurobiology and allow for revision.  It is also certainly the case that molecular 

level endophenotypes are not equally informative across brain disease classes as seen in 

variability results. We have now added text in the discussion to further emphasize this motivation 

and the implications of the clustering analysis. 

  

 

R2-16: Regarding the use of existing canonical modules to aid interpretation, the following 

statement is very interesting, and perhaps could be expanded in the discussion section: "Brain 

wide association of expression module profiles may potentially implicate genes without previous 

association to a given disease, particularly when that profile is highly conserved between donors". 

 

Thank you for this observation, we have expanded this application in the discussion.   

 

R2-17: In "Averaging τ over sets of genes representing a given disease, we obtain a measure of 

cell type specificity of each disease within MTG (Suppl. Fig 14C)", figure reference seems 

incorrect. 

 

We have now corrected the reference. 

 



R2-18: The analysis in Figure 4 A and B is not very clear and the associated methods are very 

sparse. The axes are not labeled. Columns and rows seem to be cell types. What profiles are 

being used to compute covariation? What does cell type interaction mean in this context? How 

can single disease and disease-pair entries be defined based on this analysis? How do you go 

from this analysis to the genes in Figure 4B? 

 

We apologize for the adequate treatment of Figure 4 and have modified and improved the content 

and presentation to more fully describe our intended results.   In particular the methods described 

were inadequate and led to confusion. Please see the main text indicating clarification of this 

description.  In particular, In Figure 4A gene expression covariation is computed as the absolute 

value of cosine distance similarity of cell type expression across MTG cell types. matrices are 

computed for each of three psychiatric diseases (Aut, Bip, Scz), and then independently 

thresholded to 1.5σ. These matrices represent a measurement of potential cell type interaction 

between MTG cell types for a given disease.  Entries are combined into a single matrix and are 

color coded if a given disease exceeds the threshold.  Figure 4B shows detail of the excitatory 

cell types.  The legend indicates individual, pairs, or all three diseases showing positive 

interaction. 

 

R2-19: In Figure 5A, in the interspecies cellular taxonomy, it is not clear what the squares in the 

bottom represent. Is it the number of matches? Additional labels and more description would help. 

 

We have now added the labels for the figure and in the description. The squares in Figure 5A 

represent the number of clusters in the mouse or human taxonomy that are mapped to the shown 

homologous consensus cluster.  We have clarified this in the text. 

 

R2-20: In Figure 5B, it is not clear what scores are being shown. What type of scores EWCE 

analysis uses? Figure 5B shows positive numbers close to 1.0, while Figure 5C shows positive 

and negative numbers. Does the permutation analysis use z-scores to quantify enrichment? Are 

the values in Figure 5B -log(p-values)? If so, the fact that most values are close to 1.0 indicates 

that disease gene expression patterns are not cell type specific (enriched) similarly in human and 

mouse? Please clarify and add figure labels. 

 

We apologize for the lack of clarity in this presentation, and we have improved this figure. We 

have modified the figure to better highlight the intended results.  Figure 5C now presents the cell 

type enrichment EWCE values co-clustered for mouse and human.  Figure 5D presentes the co-

clustered expression values,  highlighting the interesting species specific differences.  The original 

panel which appeared in this figure is now part of Suppl. Fig. 20.  This panel shows the significant 

corrected p-values in both species.  This is now clarified in the main text.  

 

EWCE compares the expression levels of the genes associated with a given disease to the 

background gene expression (all genes, excluding the disease-related genes) by performing 

permutation analysis and defining the probability for the observed expression level of the given 

gene set compared against a random set of genes.  Figure 5B shows the distribution of EWCE 

values of all diseases and cell types in mouse and human in the consensus taxonomy of Figure 



5A. These values are calculated in a given cell type for each of the 40 disorders based on the 

genes involved and the histograms presents these values across all 800 cell-disease pairs 

(40*20=800) in mouse and human dataset. Therefore an entry in the histogram is the EWCE 

value for a given disease in a given consensus cell type. A value of 1.0 indicates neither 

enrichment or deficit and so it is logical that this distribution would be centered.  We then used a 

Two-sample Kolmogorov-Smirnov test to compare them showing only marginal differences. 

 

  

R2-21: The abstract mentions that comparisons with mice somehow indicate "where human data 

is needed to further refine our understanding of disease-associated genes". However, there is no 

data related to this point in the manuscript. 

 

We apologize for indicating that this data was used in the manuscript.  We have changed this to 

“will be needed to further refine our understanding of disease associated genes.” 

 

 

R2-21:  I would suggest revising the title, in particular the word foundations does not provide any 

information. 

 

This is a good suggestion. We have modified the title of the manuscript to “Anatomic and cellular 

transcriptome structure of human brain disease.” 

  



Reviewer #3: This paper claims that 40 common brain diseases can be aggregated into 5 groups 

according to the anatomical expression of the genes associated with these brain diseases in the 

adult brain. 

 

In this manuscript, gene sets for 40 brain diseases are collated from DisGenNET database, then 

the expression of these gene sets is examined in adult RNA-seq data from the Allen Human Brain 

Atlas across 104 structures and single-nucleus data for 75 cell types from the medial temporal 

gyrus. Gene expression data were averaged across gene sets for each disease and brain 

structure, then the gene expression data were clustered to define 5 Anatomic Disease Groups. 

Mean differences across groups and each structure were then calculated to quantify expression 

differences, so Mean of Mean analysis (a statistician should evaluate the merits of this analysis). 

By investigating the co-expression modules initially reported for the Allen brain dataset, distinct 

modules are noted for brain regions. Brain disorder genes with high cerebral cortex expression 

were then examined for cell type enrichment in the MTG dataset. They also compare to mouse 

cell types. 

 

We thank the reviewer for this summary.   We would like to reiterate that the overarching goal of 

this study was to investigate and describe the large-scale anatomic and cell type patterning of 

disease risk-associated genes in the brain.  It is clear that any attempt to summarize profiles and 

differences at this level of organization will necessitate an average analysis which will of course 

obscure the finer molecular structure.  We would like to reiterate that we analyze expression patterns 

for risk genes in post mortem brains without, for example, neuropsychiatric illness and that we can 

not infer differential gene expression in brains of patient populations.. The primary results presented 

in Figure 1 and Figure 3 use an average expression profile and comparison across anatomic 

structures will result in comparing differences of means.  This type of comparison is not 

uncommon in statistics, such as in the use of an omnibus statistic where a statistically significant 

significant difference is observed but the test does not specify exactly where the difference 

occurred, or specify which parameter is significantly different from another, but determines that 

there is a difference. We agree that while this approach is unable to identify disease-specific gene 

expression changes, the novelty here is precisely in describing brain-wide anatomic and 

transcriptomic structure across a broad class of diseases, which we do not believe has been 

elucidated elsewhere.  

 

R3-1: The authors pose the following hypothesis: spatial and temporal co-expression of disease 

genes is indicative of a potential interaction between genes associated with brain diseases. Since 

the RNA datasets included in the analysis are derived from samples of adult brains, they provide 

no context for temporal relationship with gene expression. Similarly, co-expression is not a proxy 

for interaction, as RNA-protein are often not expressed at the same time or in the same cells (e.g., 

PMID: 35288716). 

 

This critique was appropriately raised by another reviewer and is of course correct that the 

diseases presented have very different temporal genetic signatures and thus this is likely to 

confound associations or even make the proposed association not meaningful.  However, we 

observe that even genes that likely act mostly in development causing pathology may continue to 



contribute to disease state in adulthood since those genes are still expressed.  While we do not 

claim to capture particularly the developmental aspects of the disorders with our approach, it will 

still provide  information about adult pathophysiology.  Further, it remains useful, we believe, to 

elucidate these patterns in adults in comparison with other brain diseases.  We have examined 

the presented set of diseases in the BrainSpan (https://www.brainspan.org) data using donors 

from 60 days old to 39 years.  The results highlight the expected temporal patterning and onset 

of expression in many of the diseases, while many of the adult associations presented in Figure 

1 remain.  We have placed this analysis in Suppl. Fig. 7 and comment on these issues in the 

main text.  

 

 

R3-2: Thus, the data do not address the stated hypothesis. Rather, the data reflect the following 

question: Do various brain diseases aggregate based on the anatomical location of associated 

gene expression in the adult brain? The authors should address these limitations in their 

manuscript and edit their stated hypothesis, or include data (e.g. BrainSpain) that would allow for 

temporal analysis. In this context, there are many references to the patterning of the cortex in the 

results and discussion sections which seems to refer to the enrichment of gene expression 

patterns in the cortex which is different from enrichment in neuronal patterning, which is a 

developmental process. Thus the complete manuscript should be reviewed and edited for clarity. 

 

We thank the reviewer for this observation and agree that the primary goal of this work is 

addressing the question of whether brain disease exhibits similarities based on anatomic location 

of associated gene expression in the adult brain.  We thought we had been clear that this was the 

intended goal and have endeavored to revise the manuscript to present this more clearly.  We 

apologize for having confounded enrichment in neuronal patterning with enrichment of expression 

patterns and have revised the manuscript in an attempt to make clear that we are not able to 

make concrete statements about developmental patterning,  beyond basic inclusion of the 

BrainSpan analysis. 

 

 

R3-3: Among the diseases included in the analyses, several are known to impact an overlapping 

set of brain structures - it would be helpful if the results were placed into this context of the known 

structures that are impacted. As already noted, many of the diseases investigated have known 

origins in early brain development, which is not addressed/discussed. 

 

We appreciate this comment and agree it would be informative to compare the present results 

with known brain structure involvement.  We investigated the possibility of including this analysis 

and conducted a literature survey to tabulate regional brain involvement in diseases based on the 

major brain structures used in Figure 1, cortex, hippocampus, amygdala, etc. The results 

however indicate literature reference to essentially any major structure of the brain in connection 

with a given brain disease. This made highlighting comparison with transcriptomic structural 

profiles difficult.  The results for MTG cell type specific data are new and their is insufficient 

literature reference.  We agree that a systemic analysis would be valuable and would like to 

investigate this in a separate study. 

https://www.brainspan.org/


 

R3-4: Cerebrovascular diseases, despite being the most burdensome brain diseases, were 

excluded from analysis due to the limited representation of relevant cell types in the datasets 

utilized. It would be helpful to provide a power calculation of the sample size needed for the RNA-

seq datasets to be suitable for analysis. Despite this stated limitation, the non-neuronal MTG cell 

types were included in analysis for those brain diseases that were retained for analysis. More 

generally, it would be helpful to calculate the power for each analysis since the data and gene 

expression vary by region (number of genes expressed per region). Similarly, if the authors 

deconvolute the bulk cortex samples based on the MTG data, do they achieve similar results? 

 

This is a good point although potentially very challenging to implement in practice. The analyses  

employed are identifying statistically significant differences and which evidently take into account 

sample number, mean values and variances.   With respect to the MTG cell type data,  

identification of cell types and minimum number of cells to identify types of given frequency of 

occurrence was accomplished in the reference Hodge et al, 2019 which the present work uses. 

This power calculation was achieved using the tool https://satijalab.org/howmanycells/ and we 

are confident that the observed types are valid based on that work. 

 

R3-5: In the discussion, the authors should describe the novelty and implications of their results, 

which is not clearly described in the current version. Overall, the current manuscript requires 

significant revision for clarity and context to be suitable for publication. 

 

We appreciate the reviewer’s perspective that the writing in the manuscript, while attempting to 

be technically precise, does not adequately describe the novelty and implications of the results.  

We have substantially revised the manuscript with the reviewer’s comments in mind and hope 

this new presentation is more convincing and appropriate.  
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