**Supporting Information** 

Dual molecules targeting 5-HT<sub>6</sub> and GABA-A receptors as a new approach to

combat depression associated with neuroinflammation

Monika Marcinkowska, \*a Barbara Mordyl, a Agata Siwek, a Monika Głuch-Lutwin, a Tadeusz Karcz, Alicja

Gawalska, a Michał Sapa, a Katarzyna Szafrańska, a Bartosz Pomierny, a Karolina Pytka, a Magdalena

Kotańska, a Kamil Mika, a Marcin Kolaczkowski a,b

<sup>a</sup>Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna St., 30-688 Krakow,

**Poland** 

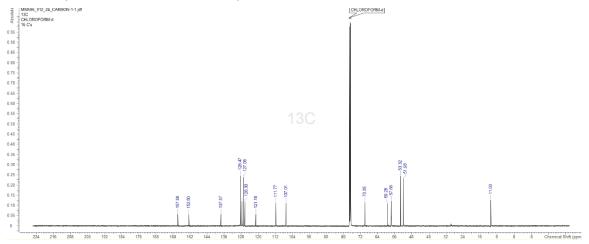
<sup>b</sup>Adamed Pharma S.A., Pienkow, 6A Mariana Adamkiewicza St., 05-152, Czosnow, Poland

\*Corresponding Author Information:

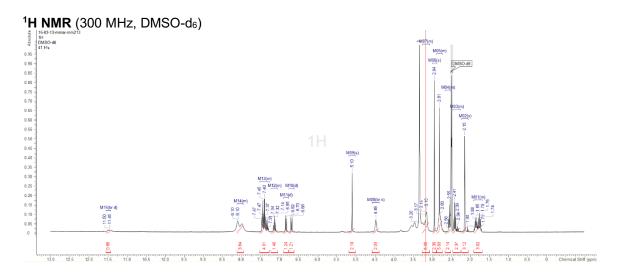
Phone: (+48)126205460

E-mail: monika.marcinkowska@uj.edu.pl

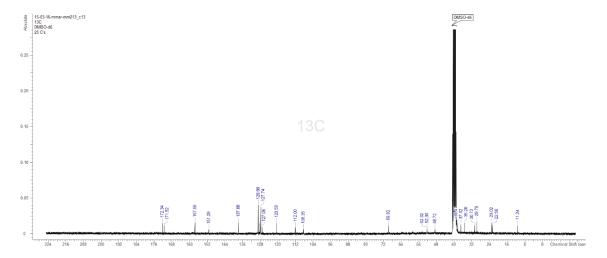
**S1** 


### 1. NMR and UPLC-UV-MS spectra of selected compounds

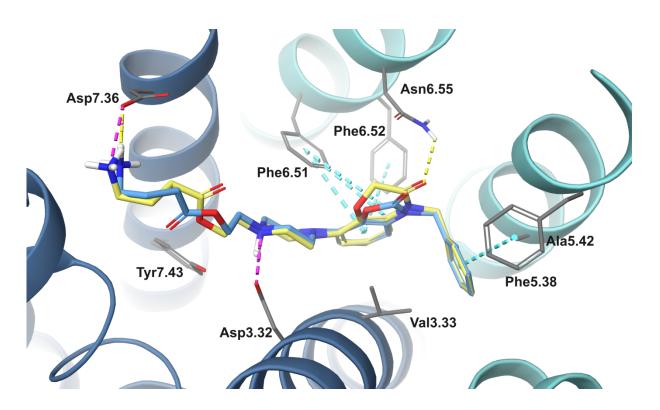
### 2-(4-(3-(benzyloxy)-2-methylphenyl)piperazin-1-yl)ethan-1-ol (6)


### <sup>1</sup>H NMR (500 MHz, CHLOROFORM-d)

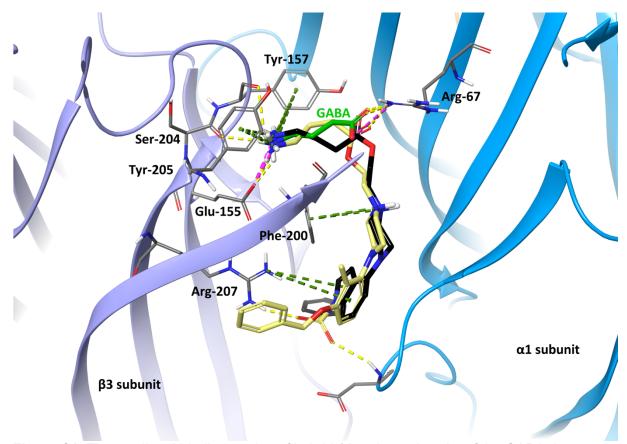



### <sup>13</sup>C NMR (126 MHz, CHLOROFORM-d)




# 1-(2-((4-ammoniobutanoyl)oxy)ethyl)-4-(3-(benzyloxy)-2-methylphenyl)piperazin-1-ium dichloride (16)




## <sup>13</sup>C NMR (75 MHz, DMSO-d<sub>6</sub>)



### 2. Predicted binding modes of selected molecules



**Figure S1.** The predicted binding mode of hybrids **18** (blue) and **19** (yellow) at the binding site of 5-HT<sub>6</sub> receptor. Both ligands were aligned and formed crucial interactions – the ionic bond with Asp3.32 and  $\pi$ - $\pi$  stackings with Phe6.51/Phe6.52 residues. The benzyl moieties formed  $\pi$ - $\pi$  stackings with Phe5.38 in a hydrophobic pocket between Val3.33 and Ala5.42 residues. The extra carbon atom in the heterocyclic fragment of **19** changed the arrangement of the carbonyl group, leading to the formation of an important hydrogen bond with Asn6.55 side chain. This is believed to result in a 5-fold higher affinity of hybrid **19** ( $K_i$  = 25.0 ± 1.0) compared to **18** ( $K_i$  = 130.0 ± 12.0 nM). GABA-fragments occupied the site between TMH1, TMH2 and TMH7, forming ionic interactions with Asp7.36 by protonated amine groups.



**Figure S2.** The predicted binding modes of hybrid **16** at the active site of the GABA-A receptor in comparison to the hybrid **3B**, the 1-(phenylsulfonyl)-4-(piperazin-1-yl)-1H-indazole derivative with high 5-HT6 receptor and GABA-A receptor agonistic activity (light yellow–16; green–GABA; black – 3B). The acyl fragments of both hybrids adopted a similar binding pose to the natural agonist in the GABA-A receptor and their analogous protonated piperazine rings formed cation- $\pi$  interactions with β3Phe-200. The 1-(phenylsulfonyl)-1H-indazole moiety of hybrid **3B** created additional interactions with possibly significant β3Arg-207 residue: hydrogen bond interactions (sulfonyl group) with β3Arg-207 and cation- $\pi$  interactions, as well as α1Asp-184 (hydrogen bond with sulfonyl group). However, in the case of hybrid 16, only the cation- $\pi$  interaction with β3Arg-207 (2-methylphenyl ring) was preserved.

#### 3. Hepatotoxiticy assay

Table 1. The viability of cells

| CONCENTRATION | 100 μΜ |    | 50 μΜ |    | 10 μΜ |    | 1 μΜ |    | 0,1 μΜ |    |
|---------------|--------|----|-------|----|-------|----|------|----|--------|----|
| COMPOUND      | MEAN   | cv | MEAN  | cv | MEAN  | cv | MEAN | cv | MEAN   | cv |
| 16            | 14%    | 2% | 102%  | 0% | 104%  | 0% | 102% | 0% | 100%   | 0% |

MEAN - The value are expressed as percentage of control (live cells).

CV- % Coefficient of variation