Supplemental information

Development of DNA aptamers for visualization

of glial brain tumors and detection

of circulating tumor cells

Anna S. Kichkailo, Andrey A. Narodov, Maria A. Komarova, Tatiana N. Zamay, Galina S. Zamay, Olga S. Kolovskaya, Evgeniy E. Erakhtin, Yury E. Glazyrin, Dmitry V. Veprintsev, Roman V. Moryachkov, Vladimir V. Zabluda, Irina Shchugoreva, Polina Artyushenko, Vladimir A. Mironov, Dmitry I. Morozov, Vladimir A. Khorzhevskii, Anton V. Gorbushin, Anastasia A. Koshmanova, Elena D. Nikolaeva, Igor P. Grinev, Ivan I. Voronkovskii, Daniil S. Grek, Kirill V. Belugin, Alexander A. Volzhentsev, Oleg N. Badmaev, Natalia A. Luzan, Kirill A. Lukyanenko, Georgy Peters, Ivan N. Lapin, Andrey K. Kirichenko, Petr V. Konarev, Evgeny V. Morozov, Gleb G. Mironov, Ana Gargaun, Darija Muharemagic, Sergey S. Zamay, Elena V. Kochkina, Maya A. Dymova, Tatiana E. Smolyarova, Alexey E. Sokolov, Andrey A. Modestov, Nikolay A. Shepelevich, Anastasia V. Ozerskava, Tokarev. Nikolay V. Natalia G. Chanchikova, Alexey V. Krat, Ruslan A. Zukov, Varvara I. Bakhtina, Pavel G. Shnvakin, Pavel A. Shesternya, Valery A. Svetlichnyi, Marina M. Petrova, Ivan P. Artyukhov, Felix N. Tomilin, and Maxim V. Berezovski

	SEL		Select	Patient and tissue information					
EX		ion			Gend		А	Histologic type,	Tumor location
	Rou			er		ge		grade	
nd									
	1		Positi		Femal		5	Astrocytoma,	The left temporal
		ve		e		6		Grade IV	lobe of the brain
	2						~	0.1	
	2	ivo	Negat		Male	1	С	Colon cancel	the brain
		Ive			Mala	4	5	Lung concor	The left periotel
					Male	9	5	metastases	lobe of the brain
					Male)	6	metastases	The left occipital
					Whate	0	U	Meningioma	lobe
			Positi		Male	0	3	Astrocvtoma.	
		ve				5		Grade II	The right occipital
									lobe of the brain
	3		Negat		Male		5	Parasagittal	The parietal lobe of
		ive				6		meningioma	the brain
			Positi		Male		2	Astrocytoma,	The left lateral and
		ve				3		Grade IV	third ventricle of the
	1		Nacat		Famal		2	Malanama	Drain The left terms and
	4	ivo	Negat	0	Femal	0	3	metanoma	loba of the brain
		Ive		e		9		metastases	
			Positi		Femal		5	Astrocytoma,	The right frontal
		ve		e		6		Grade III	lobe, lateral ventricle of
	5		NTo 4		East - 1		2	A <i>m</i> om 1 o = t ² -	the brain
	3		Negat		Femal	0	2	Anaplastic	I ne left parietal
		ive		e		0		meningionia	lobe of the brain
			Positi		Femal		5	Astrocytoma	The right frontal
		ve	1 0510	e	I Cillui	4	5	Grade II	lobe lateral ventricle of
				C		•			the brain
	6		Negat		Femal		6	Kidney's cancer	The temporal lobe
		ive	U	e		3		metastases	of the brain
			Positi		Male		4	Astrocytoma,	The right frontal,
		ve				3		Grade III	parietal and temporal
									lobes of the brain

Table S1. Specifications of the tissues used for the aptamer selection.

Fa mily	The abundant	most	Sequence	Frequency/Num ber of members in a	EC5 0, nM	Fluoresc ent intensity/
	member			Tamity		% OI
A	Gli-2		CTC CTC TGA CTG TAA CCA CGC CTG ACT ATT CCA	1517/63	26	33/26
			CTG CAA CAA CTG AAC GGA CTG GAA ACA CTG GTC ATA			
			ATC ATG GTG GCG CAT AGG TAG TCC AGA AGC C			
	Gli-22	5	AAA CAC TGG TCA TAA TCA TGG TGG C	-	35	45/20
	Cli-23	3	ACT ATT CCA CTG CAA CAA CTG AAC GGA CTG GAA	-	27	52/47
В	Gli-55	66	CTC CTC TGA CTG TAA CCA CGG TCC GGT TCA CCT	631/18	17	30/43
			CTA GCA TTC CTG GCG TTA TTA ACG GAG CAG TCC TGT			
			GGA GTG GGT GACG CAT AGG TAG TCC AGA AGC C			
	Gli-55		GTC CGG TTC ACC TCT AGC ATT CCT GGC GTT ATT	-	11	60/55
			AAC GGA GCA GTC CTG TGG AGT GGG TGA			
С	Gli-21		CTC CTC TGA CTG TAA CCA CGA TCC TGG TAA CCG	111/16	103	12/26
			ATA GCG TTC CTG AAG TGA GTA ACG TCT CAG TCC TTT			
			GGA ATG GGT AAG CAT AGG TAG TCC AGA AGC C			
D	Gli-78		CTC CTC TGA CTG TAA CCA CGG TGC ATG TAA AGG	83/2	78	31/25
			CGC ACA TAC CTC TTA CAT TTG CTT GCG GAG ATG CTT			
			AAT GTA TTT ATG CAT AGG TAG TCC AGA AGC C			
	Gli-78	20	TAG AGG CGC ACA TAC CTC TT	-	108	32/16
	Gli-78	19	TGC TTA ATG TAT TTA TGC A	-	N/A	12/5
E	Gli-23		CTC CTC TGA CTG TAA CCA CGT AAC CAC GCA CAT	26/2	N/A	16/43
			CTC CTC TGA CTG TAA CCA CGA TTC TTG AAT TCG TCC			
			GGG GGC ATA GGT AGT CCA GAA GC C			
F	Gli-41		CTC CTC TGA CTG TAA CCA CGA ACC ACG GAG TAT	25/2	N/A	17/42
			GAA TTT AAA TAT ATT TCT TCT GAA TGT GCA TGC GGC			
			ATA GGT AGT CCA GAA GCC			

Table S2. Sequences of DNA aptamers binding to glioblastoma.

G	Gli-42	CTC CTC TGA CTG TAA CCA CG G ACT GTA ACC ACG	24/2	N/A	15/46
		GTG AGG ATC TCA ATG TCC GCG CGG GGC GCA TGC GTC			
		ATG GTG CGC GTG G CAT AGG TAG TCC AGA AGC C			
No	Gli-19	CTC CTC TGA CTG TAA CCA CGT GAC TAC TCC TCT	14/1	N/A	17/50
n		GAC TGT AAC CAC GAT TCT TGA ATT CGT CCG GGG TTT			
Family		GAA ATC GGG TAG CAT AGG TAG TCC AGA AGC C			
	Gli-13	CTC CTC TGA CTG TAA CCA CGT ATG AAT CTG GGT	13/1	N/A	15/42
		ACG GGC TTG CAG TAT GTG TAT TAT GGT GTA CGC GCC			
		ATA CGTA CGT GCA TAG GTA GTC CAG AAG CC			
No n Family	Gli-19 Gli-13	GIC CIC TGA CIG TAA CCA CGT GAC TAC TCC TCT GAC TGT AAC CAC GAT TCT TGA ATT CGT CCG GGG TTT GAA ATC GGG TAG CAT AGG TAG TCC AGA AGC C CTC CTC TGA CTG TAA CCA CGT ATG AAT CTG GGT ACG GGC TTG CAG TAT GTG TAT TAT GGT GTA CGC GCC ATA CGTA CGT GCA TAG GTA GTC CAG AAG CC	14/1 13/1	N/A N/A]

	Aptam	er Protein ID	Protein name r	Numbe of series	Post-translationalCmodificationswith	o- localization antibodies
		P14136	Glial fibrillary acidic protei	3 n	Oxidized methionines at positions 73, 74, 342; phosphorylated serines at positions 247 and 248	+
233	Gli-	Q9BQE3	Tubulin alpha-1C chain	. 3	Polyglycylation and polyglutamylation of the C-terminal tail of glutamic acid at various positions: glycylation (position 433); biglutamylation (445), glutamylation (447), 5-link polyglutamylation (448); triglycylation (433), 6-link polyglycylation (443), 4- link polyglycylations (447 and 448)	+++
	-	P02686	Myelin basic proteir	2	Deamidated glutamine at positions 237 and 281	
	-	P08670	Vimenti	in 2	No	+
55t	Gli-	P14136	Glial fibrillary acidic protei	2 n	Oxidized methionines at positions 73, 74	++-
	-	Q17RR3	Pancrea lipase-relate protein 3	tic 2 d	No	

Table S3. Protein targets of aptamers identified by mass spectrometry.

Table S4. Properties of the aptamer binding sites on the alpha-tubulin 1C surface.

Binding site	1	2	3
Avg. # caged Na+	12.5	7.6	11.9
Avg. # h-bonds	3.9	2.7	4.8
Avg. RMSD vs lone aptamer in water	9.16	8.49	7.75

	0.9% NaCl		The preparation of DNA-aptamers			The preparation of DNA- aptamers		
				40 µI 100 mVI			200 µl 1000) nM
Males	SD	Mean ±	n SD	Mean ±	n	SD	Mean ±	1
Day 1, body weight, g	15.4	301.4 ±	5 14.0	301.6 ±	5	20.1	$300.2 \pm$	4
Day 7, body weight, g	17.7	$312.0 \pm$	5 16.8	313.0 ±	5	20.0	$310.6 \pm$:
Day 14, body weight, g	18.1	$324.0 \ \pm$	⁵ 16.2	329.0 ±	5	20.3	$323.0\pm$:
Day 7, increase,%		3.5 ± 1.1	5	3.8 ± 1.3	5		3.5 ± 1.4	:
		7.5 ± 1.2	5	9.1 ± 1.1	5		7.6 ± 2.0	
Day 14, increase, %								
Females	SD	Mean \pm	n SD	$Mean\pm$	n	SD	$Mean\pm$	
Day 1, body weight, g	11.8	207.6 ±	5 13.8	207.2 ±	5	17.5	212.6 ±	
Day 7, body weight, g	9.9	$212.4 \pm$	⁵ 15.3	213.4 ±	5	10.5	$213.0 \pm$	
Day 14, body weight, g	6.1	$213.8 \pm$	5 16.4	218.0 ±	5	11.8	$215.0 \pm$	
Day 14, increase,%		2.4 ± 3.9	5	3.0 ± 1.9	5		0.5 ± 4.9	

Table S5. Acute toxicity study of the aptamers in rats. The average values of body mass and weight gain.

 Table S6. Acute toxicity study of the aptamers in rats. The average values of feed consumption.

	0.9%	The preparation	The
	NaCl	of DNA-aptamers	preparation of
			DNA-aptamers
		40 µl 100 nM	
Males			200 µl 1000
			nM

Day 7, g / kg / day	Mean \pm	n Mean ±	n	$Mean \pm SD$
	SD	SD		n
	$65.4 \pm$	5 64.8 ± 4.2	5	67.1 ± 3.2 5
	2.7			
	$63.9\pm$	5 66.6 ± 3.4	5	68.0 ± 15.5
Day 14, g / kg / day	13.0			5
Females	Mean ±	n Mean \pm	n	Mean \pm SD
Females	Mean ± SD	n Mean± SD	n	$\frac{Mean \pm SD}{n}$
Females Day 7, g / kg / day	$\frac{Mean \pm}{63.0 \pm}$	n Mean \pm SD 5 62.1 ± 5.2	n 5	$Mean \pm SD$ n $63.7 \pm 4.8 5$
Females Day 7, g / kg / day	$\frac{Mean \pm}{63.0 \pm}$	n Mean \pm SD 5 62.1 \pm 5.2	n 5	$Mean \pm SD$ n $63.7 \pm 4.8 5$
Females Day 7, g / kg / day Day 14, g / kg / day	$ Mean \pm SD 63.0 \pm 3.2 72.3 \pm $	n Mean \pm SD 5 62.1 \pm 5.2 5 75.2 \pm 6.0	n 5 5	Mean \pm SD n 63.7 \pm 4.8 5 76.8 \pm 11.3
Females Day 7, g / kg / day Day 14, g / kg / day	$\begin{array}{r} \text{Mean} \pm \\ \text{SD} \\ \hline \\ 63.0 \pm \\ 3.2 \\ 72.3 \pm \\ 4.5 \end{array}$	n Mean \pm SD 5 62.1 \pm 5.2 5 75.2 \pm 6.0	n 5 5	$Mean \pm SD n 63.7 \pm 4.8 5 76.8 \pm 11.3 5$

Table S7. Acute toxicity study of the aptamers in rats. The average values of motor activity.

	0.9% NaCl	The preparation of DNA- aptamers	The preparation of DNA- aptamers
Males		40 µl 100 nM	200 μl 1000 nM
	$Mean \pm SD$	$Mean \pm SD$	Mean \pm SI
Distance traveled cm	(n=5)	(n=5)	(n=5)
Distance traveled, elli	616 ± 154	797 ± 182	800 ± 183
Time of immobility, s	99 ± 16	85 ± 18	85 ± 10
Movement time, c	81 ± 16	95 ± 18	95 ± 10
Number of counters	14.6 ± 1.7	14.8 ± 3.1	12.8 ± 0.8
Females	$Mean \pm SD$	$Mean \pm SD$	Mean \pm SI
	(n=5)	(n=5)	(n=5)
Distance traveled, cm	564 ± 238	663 ± 230	684 ± 108
Time of immobility, s	110 ± 24	101 ± 13	98 ± 8
Movement time, c	70 ± 24	79 ± 13	82 ± 8
Number of counters	11.2 ± 2.2	12.4 ± 1.5	12.2 ± 1.3

	0.9% NaCl	The preparation of DNA- aptamers	The preparation of DNA- aptamers
Males		40 µl 100 nM	200 µl 1000 nM
	$Mean \pm SD$	$Mean \pm SD$	$Mean \pm SD$
Heart rate, beats / min	(n=5)	(n=5)	(n=5)
	380 ± 44	376 ± 51	422 ± 30
Blood pressure, mm, Hg,	100 ± 9	114 ± 7	114 ± 8
Females	$Mean \pm SD$	Mean \pm SD	$Mean \pm SD$
	(n=5)	(n=5)	(n=5)
Heart rate, beats / min	403 ± 48	438 ± 37	423 ± 50
Blood pressure, mm, Hg,	112 ± 17	98 ± 18	108 ± 23

Table S8. Acute toxicity study of the aptamers in rats. The average values of blood pressure and heart rate.

	0.9% NaCl	The	The
		DNA-aptamers	preparation of DNA-
		40 μl 100 nM	aptamers 200
		· .	µl 1000 nM
	$Mean \pm SD$	$Mean \pm SD$	Mean ±
Urea, mmol / l	(n=5)	(n=5)	(n=5)
Cholesterol, mmol	03+16	01+12	0.4 ± 1.1
/ 1	9.5 ± 1.0	J.1 ± 1.2	J. 4 ± 1.1
Triglycerides	3.18 ± 0.29	3.13 ± 0.28	3.48 ±
	1.04 + 0.15	1.22 + 0.07	0.18
mmol/1AL1, U/1	1.24 ± 0.1 /	1.33 ± 0.07	1.29 ±
AST, U / L	03.4 ± 24.1	84 1 + 12 3	0.18
General, bilirubin, µmol / l	<i>93.</i> 4 ± 24.1	04.1 ± 12.5	5.0
Creatinine, µmol/	86.8 ± 15.8	89.1 ± 7.3	$89.7 \pm$
L Alkaline			4.4
phosphatase, U / I Albumin,	5.4 ± 1.4	3.7 ± 0.9	3.4 ± 1.7
g / 1	77 ± 5	72 ± 2	72 ± 3
Total protein, g / l	227 ± 44	257 ± 35	240 ± 40
Globulins, g / l	44.4 ± 1.5	43.8 ± 2.0	45.2 ±
			1.7
	73.8 ± 1.8	72.1 ± 2.0	74.3 \pm
			2.0
	29.4 ± 1.4	28.4 ± 0.4	29.1 ±
			0.5

Table S9. Acute toxicity study of the aptamers in rats. The average values of clinical chemistry indices, males.

Table S10. Acute toxicity study of the aptamers in rats. The average values of clinical chemistry indices, females.

	0.9%	The	The
	NaCl	preparation of	preparation of
		DNA-	DNA-
		aptamers	aptamers
		40 µl 100	200 µl 1000
		nM	nM
	Mean ±	Mean \pm	Mean ±
Urea, mmol /	SD	SD	SD
l Cholesterol, mmol	(n=5)	(n=5)	(n=5)
/ 1 Triglycerides.			
	$7.9 \pm$	7.9 ± 0.4	7.8 ± 1.0
mmol / I ALT, U / I	1.1		
AST, U / L	3.53 ±	3.54 ±	3.18 ±
	0.46	0.21	0.37

Bilirubin, µmol / l	1.13 ±	1.05 ±	1.02 ±
Creatinine umol	0.31	0.11	0.20
	71.8 ±	$80.0 \pm$	$69.2 \pm$
/ L	17.1	7.3	7.9
Alkaline	85.0 ±	91.4 ±	$83.1 \pm$
phosphatase, U / l	7.9	14.2	3.2
Albumin $\alpha/1$	$6.4 \pm$	6.0 ± 1.2	5.6 ± 1.4
Albumin, g / I	0.9		
Total protein, g / l	71 ± 3	67 ± 7	70 ± 4
Globulins, g / l			
	$180 \pm$	163 ± 19	158 ± 47
	45		
	$43.5 \pm$	42.7 ±	$43.3 \pm$
	1.5	1.1	1.1
	$72.0 \pm$	$70.8 \pm$	$70.8 \pm$
	1.8	2.8	1.0
	$28.5 \pm$	$28.0 \pm$	$27.5 \pm$
	1.4	2.3	1.2

	0.9% NaCl	The preparation of DNA- aptamers	The preparation of DNA- aptamers
Males		40 µl 100 nM	200 µl 1000 nM
	$Mean \pm SD$	$Mean \pm SD$	$Mean \pm SD$
	(n=5)	(n=5)	(n=5)
Number of white blood cells (WBC), g / l	15.4 ± 1.8	17.6 ± 4.0	14.7 ± 1.2
The number of red blood cells (RBC), T / L $$	9.34 ± 0.17	9.13 ± 0.32	9.69 ± 0.25
The level of hemoglobin (Hb), g / l	175 ± 4	172 ± 8	179 ± 5
Hematocrit (HCT), 1/1	$\begin{array}{c} 0.534 \pm \\ 0.009 \end{array}$	0.517 ± 0.023	$\begin{array}{c} 0.537 \pm \\ 0.006 \end{array}$
The mean volume of the erythrocyte (MCV), fl	57.2 ± 0.4	56.6 ± 1.3	56.0 ± 0.9
The mean hemoglobin content in the erythrocyte (MCH), pg	18.8 ± 0.5	18.9 ± 0.6	18.5 ± 0.8
The average concentration of hemoglobin in the erythrocyte (MCHC), g / l	328 ± 9	333 ± 5	329 ± 11
Latitude of distribution of red blood cells by volume - coefficient of variation (RDW),%	11.5 ± 0.3	11.6 ± 0.4	11.5 ± 0.5
The width of the distribution of red blood cells by volume - the standard deviation (RDW-SD), fl	32.4 ± 1.1	30.9 ± 1.1	31.3 ± 1.4
Number of platelets (PLT), g / l	787 ± 78	809 ± 81	729 ± 19
The average platelet count (MPV), fl	5.5 ± 0.2	5.6 ± 0.2	5.7 ± 0.2
Thrombote (PCT), sl / l	0.432 ±	0.449 ± 0.045	0.415 ±
Latitude of platelet distribution by volume - coefficient of variation (PDW),%	15.4 ± 1.1	15.8 ± 1.5	17.1 ± 1.6
Leukogram			
Staphylococcal neutrophils,%	0.2 ± 0.4	0.4 ± 0.9	0.4 ± 0.9
Staphylococcal neutrophils, g / l	0.03 ± 0.07	0.06 ± 0.14	0.05 ± 0.12
Neutrophils segmentonuclear,%	3.8 ± 1.5	4.4 ± 2.3	4.2 ± 2.5
Neutrophils segmented, G / L	0.58 ± 0.25	0.77 ± 0.41	0.61 ± 0.35
Eosinophils,%	0.6 ± 0.9	0.4 ± 0.5	0.8 ± 0.4
Eosinophils, g / l	0.08 ± 0.11	0.06 ± 0.09	0.12 ± 0.07
Basophils,%	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Basophils, g / l	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

Table S11. Acute toxicity study of the aptamers in rats. The average values of hematologic parameters and hemogram, males.

Lymphocytes,%	93.8 ± 1.6	93.8 ± 2.8	93.6 ± 2.7
Lymphocytes, g / l	14.45 ± 1.76	16.57 ± 3.95	13.77 ± 1.41
Monocytes,%	1.6 ± 0.9	1.0 ± 0.0	1.0 ± 0.0
Monocytes, g / l	0.26 ± 0.16	0.18 ± 0.04	0.15 ± 0.01

	0.9% NaCl	The preparation of DNA- aptamers	The preparation of DNA- aptamers
Females		40 µl 100 nM	200 μl 1000 nM
	$Mean \pm SD$	$Mean \pm SD$	$Mean \pm SD$
	(n=5)	(n=5)	(n=5)
Number of white blood cells (WBC), g / l	11.4 ± 2.3	10.3 ± 1.6	11.2 ± 1.5
The number of red blood cells (RBC), T / L	8.55 ± 0.47	8.27 ± 0.26	8.52 ± 0.35
The level of hemoglobin (Hb), g / l	170 ± 8	164 ± 5	166 ± 5
Hematocrit (HCT), 1/1	$\begin{array}{c} 0.492 \pm \\ 0.022 \end{array}$	0.476 ± 0.015	$\begin{array}{c} 0.487 \pm \\ 0.022 \end{array}$
The mean volume of the erythrocyte (MCV), fl	57.7 ± 1.3	57.5 ± 1.0	57.2 ± 0.5
The mean hemoglobin content in the erythrocyte (MCH), pg	19.9 ± 0.5	19.8 ± 0.3	19.5 ± 0.2
The average concentration of hemoglobin in the erythrocyte (MCHC), g $/l$	345 ± 4	344 ± 5	341 ± 6
Latitude of distribution of red blood cells by volume - coefficient of variation (RDW),%	11.6 ± 0.2	11.3 ± 0.4	11.0 ± 0.2 *
The width of the distribution of red blood cells by volume - the standard deviation (RDW-SD), fl	30.5 ± 0.2	29.9 ± 1.1	30.5 ± 0.1
Number of platelets (PLT), g / l	843 ± 96	854 ± 74	775 ± 61
The average platelet count (MPV), fl	5.2 ± 0.1	5.2 ± 0.2	5.3 ± 0.2
Thrombote (PCT), sl / l	0.441 ±	0.448 ± 0.056	0.410 ±
Latitude of platelet distribution by volume - coefficient of variation (PDW),%	0.060 13.4 ± 0.6	13.8 ± 0.8	0.045 14.0 ± 0.5
Leukogram Staphylococcal neutrophils.%	0.2 ± 0.4	0.2 ± 0.4	0.0 ± 0.0
Staphylococcal neutrophils. $g/1$	0.03 ± 0.06	0.02 ± 0.04	0.00 ±
Neutrophils segmentopuclear %	34+05	36+25	0.00 2 8 + 1 3
Neutrophils segmented, G / L	0.39 ± 0.09	0.40 ± 0.34	$0.32 \pm$
Eosinophils,%	0.4 ± 0.5	0.6 ± 0.5	0.16 0.2 ± 0.4
Eosinophils, g / l	0.05 ± 0.07	0.06 ± 0.06	$\begin{array}{c} 0.02 \pm \\ 0.05 \end{array}$

Table S12. Acute toxicity study of the aptamers in rats. The average values of hematologic parameters and hemogram, females.

Basophils,%	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
Basophils, g / l	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Lymphocytes,% Lymphocytes, g / l	$\begin{array}{c} 94.6 \pm 1.1 \\ 10.77 \pm 2.16 \end{array}$	$\begin{array}{c} 94.6\pm2.8\\ 9.72\pm1.38\end{array}$	96.0 ± 1.2 10.79 ± 1.48
Monocytes,%	1.4 ± 0.5	1.0 ± 0.0	1.0 ± 0.0
Monocytes, g / l	0.15 ± 0.03	0.10 ± 0.02 *	0.11 ± 0.02

* - P <0.05 based on the Kruskal-Wallis test for the control group

	0.9% NaCl	The preparation of DNA- aptamers	The preparation of DNA- aptamers
Males		40 µl 100 nM	200 µl 1000 nM
	Mean ± SD	$Mean \pm SD$	$Mean \pm SD$
	(n=5)	(n=5)	(n=5)
Blasts (including myeloblasts)	0.4 ± 0.2	0.7 ± 0.4	0.4 ± 0.1
All granulocytes	52.5 ± 2.8	53.4 ± 3.8	50.1 ± 2.3
Neutrophilous promyelocytes	1.7 ± 0.3	1.6 ± 0.3	1.5 ± 0.4
Neutrophilic myelocytes	10.5 ± 1.6	8.6 ± 1.0	9.0 ± 0.9
Neutrophilic metamyelocytes	10.8 ± 1.4	9.2 ± 0.9	10.0 ± 0.7
Stab neutrophils	15.4 ± 1.5	17.3 ± 2.2	16.2 ± 1.1
Segmented neutrophils	9.3 ± 1.2	10.3 ± 2.2	9.1 ± 1.0
Eosinophils (of all generations)	4.3 ± 1.8	5.2 ± 2.2	3.0 ± 1.1
Basophiles (of all generations)	0.6 ± 0.5	1.3 ± 0.7	1.3 ± 0.5
All erythrocaryocytes	25.3 ± 1.9	24.0 ± 1.6	27.0 ± 1.6
Lymphocytes	19.8 ± 1.2	19.8 ± 2.3	20.7 ± 1.3
Monocytes	1.4 ± 0.3	1.1 ± 0.2	1.1 ± 0.2
Plasma cells	0.3 ± 0.1	0.7 ± 0.5	0.5 ± 0.2
Reticular cells	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1
	29 + 03	3.1 ± 0.3	2.7 ± 0.2

Table S13. Acute toxicity study of the aptamers in rats. The average values of hematologic parameters and myelogram, males.

	0.9%	The	The
	NaCl	preparation of	preparation of
		DNA-	DNA-
		aptamers	aptamers
Females		40 µl 100 nM	200 μl 1000
		·	nM
	Mean ±	$Mean \pm SD$	$Mean \pm SD$
	SD		
	(n=5)	(n=5)	(n=5)
Blasts (including myeloblasts)	0.9 ± 0.2	0.8 ± 0.2	0.8 ± 0.3
All granulocytes	50.9 ± 2.4	49.9 ± 6.4	52.8 ± 3.0
Neutrophilous promyelocytes	1.8 ± 0.4	1.4 ± 0.3	1.8 ± 0.2
Neutrophilic myelocytes	7.8 ± 0.4	7.0 ± 1.7	7.5 ± 0.7
Neutrophilic metamyelocytes	10.4 ± 0.7	9.7 ± 2.4	10.5 ± 0.4
Stab neutrophils	15.0 ± 1.7	14.4 ± 1.6	16.2 ± 1.2
Segmented neutrophils	9.5 ± 1.1	9.9 ± 2.8	11.0 ± 1.1
Eosinophils (of all generations)	5.4 ± 0.8	6.2 ± 1.2	5.0 ± 1.3
Basophiles (of all generations)	1.1 ± 0.2	1.3 ± 0.7	0.9 ± 0.4
All erythrocaryocytes	25.3 ± 1.5	26.4 ± 3.9	25.0 ± 1.9
Lymphocytes	21.5 ± 1.1	21.3 ± 2.9	20.0 ± 1.3
Monocytes	1.0 ± 0.2	1.0 ± 0.3	1.0 ± 0.1
Plasma cells	0.2 ± 0.1	0.3 ± 0.1	0.2 ± 0.0
Reticular cells	0.2 ± 0.1	0.2 ± 0.0	0.2 ± 0.0
The leycoerythroblastic ratio	2.9 ± 0.2	2.8 ± 0.5	3.0 ± 0.3

Table S14. Acute toxicity study of the aptamers in rats. The average values of hematologic parameters and myelogram, females.

0	X	0.9% NaCl	of	The preparation DNA-aptamers		The preparation DNA-aptamers 200 µl 1000 nM	of
	Males	Mean	n	40 μl 100 nM Mean	n	Mean	n
	Testes, g	± SD	± S	SD		\pm SD	
		3.146	5	3.555	5	3.385	5
		± 0.123		$ \pm $ 0.164		± 0.173	
	Spleen, g	0.747	5	*	5	0.729	5
		0.747 ±	5 ±	0.723	3	0.728 ±	3
	Kidneys, g	0.055		0.084		0.098	
		2.223	5 +	2.228	5	2.174	5
	Adrenal glands, g	0.161	±	0.126		0.162	
		0.049	5	0.042	5	0.044	5
		4 ± 0 006	9 ±	= 0.003		0 ±	
	Liver, g	6		9		3	
		10.85	5	10.43	5	10.82	5
	Thymus, r	±		±		±	
		0.97	5	0.36	5	0.85	
	Heart, g	±	5 ±	0.403	5	±	5
		0.079		0.091		0.042	
	Brain, 9	1.153	5	1.152	5	1.220	5
	Dium, g	± 0.123	Т	0.060		± 0.086	
		1.678	5	1.705	5	1.703	5
	Females	± 0.062	±	0.021		± 0.075	
	Testes, g	0.005		0.031		0.073	
		0.113	5	0.108	5	0.109	5
	Spleen, g	1 ± 0.014	4 ±	= 0.015		4 ±	
		2		7		9	
	Kidneys, g	0.587	5	0.563	5	0.541	5
		0.025	<u></u>	0.072		0.047	
	Adrenal glands, g	1.461	5	1.462	5	1.408	5
		0.118	<u></u>	0.139		0.132	
		0.060	5	0.056	5	0.058	5
	Liver, g	7 ±	6 ±	=		3 ±	
		0.003		0.003		0.002	
	Thymus, r	6.87	5	6.53	5	6.38	5
		±	±	0.04		±	
	Heart, g	0.37	5	0.94	5	0.48	5
	, 0	± 0.302	5 ±	0.245	5	± 0.282	5
	Ducin a	0.024		0.131		0.037	
	Dialii, g	0.838	5	0.887	5	0.867	5
		т 0.078	±	0.045		± 0.068	
		1.620	5	1.629	5	1.600	5
		±	±	0.062		±	
		0.082		0.062		0.071	

Table S15. Acute toxicity study of the aptamers in rats. The average values of weight of organs (absolute values).

* - P <0.05 based on the Kruskal-Wallis test for the NaCl group.

	0.9% NaCl		The preparation of		The preparation of DNA-aptamers	of
			DNA-aptamers		200 µl 1000 nM	
Males	Mean	n	Mean	n	Mean	n
Testes, g	± SD	:	± SD	± \$	SD	
	1.021	5	1.133	5	1.096	5
	± 0.040		±	±	0.010	
Spleen, g	0.040		0.037		0.019	
1 2	0.242	5	0.232	5	0.236	5
Vidnava a	±	:	±	±		
Klulleys, g	0.012		0.030		0.032	
	0.720	5	0.710	5 +	0.703	5
Adrenal glands, g	0.017	-	0.018	-	0.032	
	0.016	5	0.013	5	0.014	5
	0 ±		6 ±	2 =	E 0.001	
Liver, g	6		7		3	
	3.515	5	3.327	5	3.499	5
Thymus, r	±	:	±	±		
	0.217		0.167		0.096	
	0.137 1±	5	0.147 0 ±	5 3=	0.157	5
Heart, g	0.021		0.024	5 -	0.010	
	6		8		6	
Durin	0.373	5	0.368	5	0.395	5
Brain, g	± 0.028		± 0.031	±	0.017	
	0.544	5	0.544	5	0.552	5
Females	±	:	±	±	0.010	
	0.015		0.032		0.018	
Testes, g						
	0.054	5	0.051	5	0.053	5
	9±		8 ±	4 =	E	U
Spieen, g	0.006		0.004		0.007	
	0.285	5	4	5	/	5
Kidneys, g	0.285 ±	5	0.270 ±	5 ±	0.204	5
	0.008		0.034		0.029	
Adrenal glands, g	0.710	5	0.701	5	0.683	5
	± 0.048	:	± 0.041	±	0.034	
	0.029	5	0.027	5	0.028	5
Liver, g	$5 \pm$,	$2 \pm$	3 =	E	
	0.002		0.002		0.001	
Thymus r	3 338	5	3 122	5	3.098	5
Tilyinus, T	±	5	±	5 ±	5.070	5
	0.197		0.239		0.067	
IIt.	0.146	5	0.118	5	0.136	5
nean, g	5 ± 0.009		0.062	5 =	0.012	
	5		9		2	
Brain, g	0.407	5	0.426	5	0.421	5
	±	:	±	±	0.017	
	0.052		0.010		0.017	

Table S16. Acute toxicity study of the aptamers in rats. The average values of weight of organs (relative values).

0.787	5	0.784	5	0.778	5
±	±		±		
0.029		0.057		0.025	

* - P <0.05 based on the Kruskal-Wallis test for the NaCl group.

Tables 17-20 can be found in Supplemental Videos and Spreadsheets

Table S17. Acute toxicity study of the aptamers in rats. The individual blood biochemistry data.

 Table S18. Acute toxicity study of the aptamers in rats. The individual hematology data.

Table S19. Acute toxicity study of the aptamers in rats. The individual hematology data.

 Table S20. Acute toxicity study of the aptamers in rats. The individual data on the mass of organs.

Figure S1. Post-translational modifications of tubulin alpha-1C (TUBA1C)

(A) Localization of PTMs in the protein sequence: monoglycylation of residue #433, and polyglutamylation of residues #445 (2x), #447 (1x), and #448 (5x). (B) A tertiary structural molecular model of TUBA1C.

Figure S2. SEC-SAXS plot representing the chromatogram for the Gli-55 aptamer

Each of the 3600 points is an individual SAXS measurement. The highest peak shows the maximum concentration of the sample flowing through the HPLC column. Values of the gyration radius (black dots), estimated from the sample SAXS data highlighted by green dots, show the decreasing slope. It means that the peak contains a contribution of different components of the solution.

Figure S3. EFAMIX decomposition of SEC-SAXS data from the Gli-55 monomer-dimer mixture

(A) SAXS profiles decomposed from the SEC-SAXS data. (B) Concentration profiles for two components and their sum.

Figure S4. The circular dichroism (CD) spectroscopy of the aptamer Gli-55 Peaks at 220 and 280 nm wavelengths indicate DNA duplex formation.

Figure S5. Astrocytoma, Grade IV staining controls

(A) Non-specific oligonucleotide $(AG)_{40}$ conjugated with Brilliant Violet 650. (B) Free dye Brilliant Violet 650. (C) Autofluorescence. Magnification $8\times$.

Figure S6. Tumor to background ratio (TBR) estimation

(A) Fluorescence microscopy of astrocytoma tissues *ex vivo*. (B) Fluorescence intensity profile of red channel. (C) The mean fluorescence intensity (MFI) for different zones of tumor and background. (D) Histological structure (1, 3) and laser scanning microscopy (2, 4) of the resected tissues defined as the tumor (1, 2) and relatively healthy brain tissue (the biopsy from the background area) (3, 4). True tumor detection is defined by a TBR>1, when tumor MFI is greater than background MFI. The average TBR calculated from MFI is 1.898 for margin zones TBR=1.4, for the tumor zones TBR=4.5.

Figure S7. Brilliant violet-650 Gli-233 & Gli-55 reveal glioma boundaries in the transition zone of the tumor

(A) Histological structure of the resected tissues from a transition zone of astrocytoma tissues.(B) Laser scanning microscopy of the resected tissues from a transition zone of astrocytoma tissues.

Brilliant Violet-650 Gli-233& Gli-55

Brilliant Violet-650 Gli-233& Gli-55 overlay with green autofluorescence

Figure S8. Biodistribution of Brilliant violet-650 Gli-233 & Gli-55 in the astrocytoma, Grade III tissues

(A) Fluorescent aptamers penetrates 6 mm deeply into the tumor. (B) Fluorescent aptamers do not stain the vasculature.

Figure S9. Controls with the unrelated aptamer for *in vivo* visualization of xenotransplantated human glioma in mice. (A) Fluorescence-assisted *in situ* visualization of the tumor in mice brain stained with the Cy5 labeled aptamer Gli-233 during the surgical intervention *in vivo* (2) supported with the light microscopy (1) of the correspondent area, laser scanning (Cy5 labeled aptamer – red channel; autofluorescence – green channel) (4) and light (3) microscopy of same tissues stained with hematoxylin and eosin. (B) PET/CT visualization (1), and histological analyses the tumor in the brain (2). Black and red arrows out astrocytoma cells. Magnification $4\times$, $10\times$, $40\times$.