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Related literature

Infection processes in closed spaces were first examined by Wells. In his pioneering work (1), Wells
introduced the concept of quantum, defined as “the number of infectious airborne particles required to
infect”. Later, the work by Riley (2) studied disease transmission in a confined space exploring the
impact of different control measures and ventilation rates. In a subsequent work by Riley, Murphy and
Riley (3) extended Riley’s previous model with Wells’ definition of the quanta of infection. The Wells-Riley
model incorporates a probabilistic process of infection based on the average quanta of infection inhaled
by susceptible individuals. They show an exponential increase in the number of new infections occurs
when the quanta-level is assumed at a steady-state during the school day, and in the absence of biological
virus decay. In contrast to the aforementioned work, our modeling framework focuses on transmissions
between consecutive meetings with potentially varying schedules, such that infected individuals and a
certain volume of virus particles could be carried over from one meeting to another. We incorporate the
transient dynamics over meetings, the disease dynamics over the population across days, and the efficiency
of non-pharmaceutical interventions (NPIs), i.e. mask wearing. In addition, our modeling framework
incorporates several parameters grounded in physical conditions of the venue and in individual behavior,
that enables us to quantify and compare the effects of several policy measures such as room size, crowd
size, mask mandates, reductions in meeting times, lengths of breaks between successive sessions.

Gammaitoni and Nucci (4) studied indoor disease transmission assuming that both, the virus exhalation
per infected and, the rate of viral stocks removal by ventilation are constants. Further, the infection risk
is assumed homogeneous across the group, and effectiveness of masks are considered in decreasing the
infection probability. This model was applied recently to study superspreading indoor events of SARS-
CoV-2 (5). While our model incorporates a similar infectious mechanism, the time-scale implicit in the
problem we address differs from the Gammaitoni and Nucci paradigm. In particular, we investigate the
stationary disease dynamics attained over subsequent meetings for which the viral load can be carried over.
In contrast, Gammaitoni and Nucci focus on weekly meetings for which no prior source of quanta in the
space is assumed during each meeting.

The role of viral load has been studied from different perspectives and scales. For instance the work
by Dodd and Watts (6) consider a group where each susceptible person meets one other person at a time,
and from each infected person met, the susceptible host picks up a random viral load. In this work, the
authors assumed that if the load exceeds a threshold, the person’s likelihood of getting the disease increases
sharply. Thus the probability of infection depends on the number of people one meets. Our modeling
framework differs in this regard, while in our model the environmental viral load increases as more infected
individuals exhale virus in the meeting room, the within host’s viral load does not increases by meeting
individuals. Instead, we envision the viral load as an intrinsic characteristic of the environment where
individuals sojourn.

Jang et al (7) consider infections like MRSA (methicillin-resistant Staphylococcus aureus) or C-diff
(Clostridium difficile) that spread via contaminated surfaces, mostly in medical facilities. They model a
dialysis unit with movement of healthcare workers from one patient to another and to and from dialysis
chairs and nurses’ stations that can carry the organisms. In our setting the transmission is airborne, and
individuals directly contaminate this air like a “public bad” without any human intermediation.

Hekmati et al. study the spread of airborne disease in enclosed space under individual-level behavioral
response (e.g., mask-wearing and vaccination). There are key differences between the work by Hekmati et
al. (8), and the proposed model: (i) the scale of Hekmati’s work considers a spatially structured population
(a school campus), while our proposed model focus on the disease dynamics observed in a particular group
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having multiple meetings; (i) moreover, the time-scale of the disease dynamics in Hekmati’s work is
slower by considering a unit time of a week, our model aims to address faster disease dynamics with a
time unit of a meeting (that can vary in duration with unit time of hours); (7i7) for simplicity our model
assumes homogeneous individual viral shedding, and homogeneous infection probabilities; finally, (iv) the
main difference between our modeling framework and the one by Hekmati et. al., is the formulation of the
room-scale airborne virus concentration assumed at the steady state, without assuming virus removal due to
settling.

Buonanno et al. (9) derive quanta emission rate of infected individuals under the assumption that droplets
and sputum have the same viral load. They then characterized quanta concentration of the disease and
transmission risk based on the emission rate. Zafarnejad and Griffin (10) study the spread of COVID-19 in a
closed environment (e.g., classrooms). They extend the viral-load model by Buonanno et al. (9), where the
transmission risk are now heterogeneous such that it depends both on accumulated viral load and vicinity
of infected individuals. Different from both models, our framework incorporates individual behavioral
responses and accounts for the effectiveness of mask wearing in discounting viral emission and inhalation.

Loy and Tosin (11) consider a network model where vertices are spacial locations and edges represents
connection between locations. Specifically, the disease transmission happens in each location which contains
a number of individuals, and the transmission rate depends on the viral load of each individual. Different
from their model, the infection rate in our model is a function of the accumulated viral load in a spacial
location. Further, we accounts for the efficiency of NPIs such as mask wearing in hindering the spread of
disease.

Frazier et al. (12) propose a multi-group simulation framework to study spread of COVID on college
campuses. In particular, individuals are divided into different groups, and the disease transmission within and
between each group is modeled by a Markov chain. Further, the individual-level disease progression consists
of multiple compartments (e.g., Susceptible, Exposed, Quarantine, Isolation). Based on this framework,
Frazier et al. study the selection of COVID-19 interventions (e.g., a symptomatic screening program) and
model sensitivity to various input parameters. Different from their approach, our model considers epidemic
processes within spatial locations, and the disease transmission happens between locations and individuals.
Further, we explore the impact of ventilation and class sizes on the disease dynamics.

Bazant and Bush (13) study indoor disease transmission with a focus on sizes of respiratory droplets
exhaled by infected individuals. They characterize a critical drop size below which the drops can be sustained
in a room for a long time. Based on the findings, they further suggest indoor safety guideline such that
one is safer in large rooms with efficient ventilation system. Noakes et al. (14) combined the Well-Riley
model with the SEIR model to account for incubation periods for many diseases. They study the impact of
model parameters (e.g., the ventilation rate, the occupancy level, incubation period) on disease outbreaks.
Issarow (15) There are many other works that study indoor infection from various perspectives (15-18).
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Table S1. Model parameters and variables

Parameter | Description Baseline value
G Group size 100
A Air-mass 9,000 ft3
n Mask efficacy reducing virus exhalation 0.1
o Mask efficacy reducing virus inhalation 0.3
P Proportion of the population using face masks 0.5
p Ventilation system efficiency 0.1
1) Coefficient linking hazard rate to virus load 0.226
o) Recovery rate for infected individuals 0.1
€ Relative viral shedding of exposed individuals —

o Incubation period 1/9
A Rate of loss of immunity for recovered individuals 0.01
T Dummy variable of integration over time
K Per-person viral shedding
w Linear approximation of the likelihood of infection
A Recruitment probability
v Flow of virus exhalation by infected individual
V(t) Virus stock in the space at time ¢

W(T) Cumulative virus quantity inhaled over time T'

P, (T) Infection probability of non-masked susceptible individuals

P, (T) Infection probability of masked susceptible individuals

Table S2. Variations in room parameters

Room size (ft.) | Distancing (ft.) | Group size
20 x 20 3 25

20 x 20 6 4

30 x 30 3 81

30 x 30 6 16

Table S3. Scenarios, control variables and policy insights.

(a) Group size, (b) air mass (room size), (¢) mask compliance, (d) ventilation, (e) break times, (f) testing. We
discuss scenarios of meeting periods of 50 minutes (short meetings), and 120 minutes (long meetings). For our
simulations we used the baseline parameter values.

Scenario Description Control variables | Policy insights

For short meetings, ventilation and masking have similar effects.

Short time-scale Single meeting at a single day a,b,c,d

For long meetings, ventilation has a greater impact than masking.
For short meetings, break times of 10 — 15 minutes have a similar

impact than 50% mask compliance.

Medium short time-scale | Multiple meetings at a single da; b,c,d
Iu : e g "9 Y SHHEHE For long meetings, break times of 20 — 25 minutes have a similar

impact than 50% mask compliance.

For short meetings, masking and testing shows a trade-off of 2:1

Medium long time-scale Single meeting at a multiple days a.b,c.d, f For long meetings, masking and testing shows a trade-off of 1:1

For short meetings, a 60% testing reduction is balanced

by around 20 minutes breaks.
Long time scale multiple meetings at multiple days | a,b,c,d, e, f

For long meetings, a 40% testing reduction is balanced
by around 20 minutes breaks.

« Within-meetings dynamics formulation

s We let the group size to be determined based on the room size and the targeted physical distancing with the
s following assumptions; (7) each individual is a point in the plane that takes zero space and, (iz) individuals
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are positioned in a grid layout. We consider two potential scenarios for the viral dynamics across meetings:
(7) having a single meeting per day and (i7) having multiple meetings per day.

Cumulative viral load and infection probabilities formulation. In this section we show the formulation
of the cumulative viral load (W (¢)) and the infection probabilities (P, (t), Py, (t)) for the scenarios having a
single meeting per day. Analogous derivations work for the computation of the cumulative viral load and
the infection probabilities for the scenarios having multiple meetings in a single day.

Recall from the main text that the virus exhalation rate is given by v = k(n/™ + I"), where the
superscripts denote the masked and unmasked population, respectively. The virus stock V' evolves according
to dV/dt = v — pV. Given the initial condition is V' (0) = 0, and the solution for V'(¢) is of the form

v(l— e‘pt)‘

V(t) = p

[1]

Solving Eqn. (2) in the main text and using equation (SI-1) for V'(¢), we have
dIn(1 — P,(t 4]
n( n ))__l(l_efpt)’

(2]

dt pA
and integrating we get
ov 1-— ept>
In(l—P,(t)) =—— |t — , [3]
Y
or 5 ,
v 1—e?
P,(t :1—exp[— <t— )], (4]
(1) A p

where we have used the initial condition P(0) = 0 that applies to the S-types. The analogous solution can
be obtained for P, (), except that ¢ is replaced by a0, due to masks efficacy. The cumulative virus quantity
W (t) available to be inhaled over the meeting period [0, ¢] is given by

W= | V(r)dr,
=2 [(1=e)an,

_—pt
:U[t—l ] [5]
p p

Then, the probabilities of infection up to time ¢ € [0, 7], for the masked and unmasked susceptible
individuals, can be expressed in terms of the cumulative virus inhalation:

P,(t) =1—exp[-d W (t)/4], Pn(t)=1—exp[—adW(t)/A]. [6]

Moreover, consider the limit scenario of the cumulative amount of virus available to be inhaled over the
whole meeting period [0, 77, this is given by
v

W(T) Z/OTV(T)CZTZIO [T—

=T
w] (7]

p

consequently, the probabilities of infection during the whole meeting for no masked and masked individuals

P,(T)=1—exp[-0W(T)/A], P,(T)=1—exp[—ad W(T)/A]. [8]
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Properties of the cumulative virus stock during the whole meeting, W (T'). In order to study the impact of
the meeting length on the probabilities of infection, we study the properties of the cumulative virus stock
(W(T)) available for inhalation during the meeting time [0, 7']:

[9]

W(T):/OT V(r)dr = v [T—M].

p

Differentiating equation (SI-9),

Wi(T)=V(T) = ——=, [10]

and
W'T)=V'(T)=ve " >0. [11]

Therefore, W (T') is an increasing and convex function of ¢, with 17 (0) = 0, but equation (SI-5) shows that
for any given {, it is a linear function of v and therefore of G (remember we are regarding v as proportional
to G3).

Next, note from equation (SI-10) that W/(T) is an increasing function of v, i.e. 9*W/9vdT > 0.
Therefore, T" and v (or equivalently, ) are complements: the marginal increase in W (T') resulting from
a marginal increase in the meeting length 7, is worse if G is higher. Finally, from equation (SI-1) and
equation (SI-5), we have

T 1 —ePT

W) =v | —

and for any ¢,

therefore

ow(r) /T 0 |[1—e"
dp o Jdp p

]d7'<0.

Thus, W (T) is a decreasing function of p; consequently higher efficiency of filtration lowers the cumulative
virus inhalation during the meeting. This is intuitively obvious, but the exact expression enables us to find
the interaction with meeting length:

o [ow)] _ o [L-e
[ dp 1_ 5,0[ p 1<0'

o7 [12]

Thus, increasing the meeting time decreases OW (T")/0p, i.e. higher filtering efficiency is even more
important for longer meetings. Similar calculations for the mask inhalation and exhalation parameters «
and 7 show that improving these efficiencies is even more important for longer meetings.
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Properties of the unmasked/masked infection probabilities, P,,(T) and P,,(T). The dependence of P, (T')
on some parameters examined one at a time is quite obvious. For example

ov ov 1—e T
P(T)=— (1 —e*")exp [— <T—>], [13]
1) pA( ) pA p
and OP(T) & r 5 r
) _ 0 frn 1—e?” v l—e”
oD _ 2 <T : )p[ " (T : )] [14)

are both positive. Remember that v is proportional to GG, so the effects of group size can be found by using
v as a proxy for it.

The hazard rate (the probability of being infected in a small interval of time [¢, ¢ + d¢] conditional on not
having been infected before time ?) is assumed to be a function of the virus concentration in space at time ¢,
and assumed to be linear to allow simple explicit solution, included as Eqn (2) in the main manuscript:

dpP,/dt 5V(t)
1-P, A

[15]

Next consider the curvature of P,(7"). Notice that P, (7’) is an increasing function, where P, (0) = 0
and, from equation (SI-4) we see that P,,(T") — 1 as T' — oc. Therefore the most likely shape of P, (7) is
sigmoidal. To verify this formally, we write equation (SI-15) as

J

Py(T) = 3 V(T)[1 = Bu(T)], [16]

consequently

4]
Py(T) = 2 V(D)L = Bu(T)) = V(T)P(T)} - [17]
Eq. (17) is positive if and only if

vi(r) _ _P(T)
V(T) 1= P(T) el

Further, the stock V' of the virus in the space at time ¢ evolves according to

1 74 1
i v—pV. [19]

Then, using equations SI-19 and SI-15, equation SI-18 becomes

v—pV(T) oV(T)

Vi) A [20]
or 5
v > pV(T) + Z[V(T)]?. [21]

Since as T goes from 0 to oo, V/(T') increases from 0 to v/ p, the right hand side of this inequality increases
from 0 to v + (6/A) (v/p)?. Thus the inequality is true for small 7" and false for large 7. So P/(T) starts
out positive and then turns negative, confirming that the shape of P,(T") is sigmoidal. A similar calculation
applies to P,,(7"), with the ¢ on the right hand side of equation (SI-21) changed to 7¢.

Incidentally, P/ (T') is maximized (the probability of infection rises fastest, i..e. the incremental harm
from lengthening the meeting by another minute is highest) at the inflection point, which occurs when
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v = pV(T) + 2[V(T))? Therefore it may therefore be important to keep the length of the meeting well

below this threshold. To find this value, write
Y=1-—e"T,
SO
V(T) = vY/p,
and the equation becomes
1=y + 2 Y Y Y2 where b= 22
- p2 A - 9 - 9

or
Y24+bY —b=0,

where the feasible solution is
Y = [—b+ (0 +40)'2] /2,

keeping the positive root to get Y > 0. Then
[22]
Inflection time on the infection probability

. CIn(1 45— (b*+4b)'/2/2)
40, B p

30"

T*
20

10

10 20 30 40 50
I

Fig. S1. Inflection time T of the probability of infection as a function of the number of infected individuals 1.

Now consider P, (T) for a given T as a function of v. We see from equation (SI-4) that it is a concave
function, starting at zero when v = 0, and rising to 1 as v — co. (alternatively, we can see from equation (SI-
14) that 9P, (T)/0wv is a positive and decreasing function of v.) Therefore it is not clear whether longer
time or larger crowd size are more risky. If 7" is in the region to the left of the inflection point of P, (T) (i.e.
where P/ (T) > 0), then the comparison is as it was for the cumulative virus inhalation Q(7'), i.e. splitting
a long meeting into two halves is better than splitting the crowd into two, each of the halves taking the full
meeting in one session. But if the duration is beyond the point of inflection, the comparison could go either
way.
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Next consider the interaction between 7" and v (the latter is in turn proportional to ). For brevity of
notation, write equation (SI-13) as

P/(T) = hve ™, [23]
where 5 5 .
1—eP
h:—(l—e’pT) andk:(T—e> [24]
pA pA p
are both positive and depend on 7" but not v. Then
0P,
0T — he ¥ — hkve™ = he ™ *(1 — kv). [25]

Using the full expression for k, this cross-derivative is positive (7" and G are complements) if kv < 1, that is

_ T
ov (T—”) <1. [26]
pA p

This is true if G and T are both small, and false if one or both are large. So if we conduct a thought-
experiment of starting with a small crowd that gathers for a short time, and increase these magnitudes
gradually, initially increasing one increases the marginal risk posed by the other, but eventually the effect
goes the other way. This again contrasts with the clear result (complements) we found for Q (7).

The calculation for S-types wearing a mask is similar, except ¢ is reduced by a factor « to ad, where
0 < a < 1 captures the efficiency of masks in reducing virus inhalation; lower « implies higher efficiency.
At the extremes, if v =2 0 or A is large (open air), then P(¢) = 0 for all ¢; if both v and T" are positive and
one of them is large, then P(7") = 1. (Note that in the latter case even the masked are almost sure to get
infected.)

Upper bound on probability of infection.Let 7" > 0 be the length of a single meeting. Suppose the
objective is to keep the probability below some desired threshold. For this, we have to keep W (T')/A
below an appropriate threshold. This criterion depends on 7" and the other parameters, so examining this
dependence tells us how various changes make it easier or harder to meet such a target.

One can verify that W (T') is an increasing and convex function of 7', with 1/ (0) = 0. Moreover, for
any given 1", W(T') is a linear function of v and therefore of GG (recall that v is proportional to ). This
yields a trade-off between increasing the length of meeting time and increasing the number of participants.
For example, if one has to give a 2-hour lecture to 100 people, they get less cumulative virus inhalation
if the lecture is split into two 1-hour segments with the full audience (with a complete air change in the
auditorium between the halves so the second half also starts with V' (0) = 0), than if the audience is split
into two groups of 50 and subjected to the full 2-hour lecture given separately for each (2 W (7T'/2) < W (T),
and 2W(G/2) = W(Q)).

Next, W(T') is positive and an increasing function of v. Therefore T" and v (or equivalently, 7" and G)
are complements: the increase in W (T') resulting from a marginal increase in 7" is bigger if GG is higher.
Thus longer meetings are all the worse for keeping the probability of infection below the desired threshold
if the group size is larger. Finally, a greater filtration efficiency p reduces W (7'), and this negative effect
becomes even larger in magnitude when 7 is larger. Therefore a higher filtering efficiency is even more
important for long meetings. Similar calculations for the mask inhalation and exhalation parameters o and
71 show that improving these efficiencies is even more important for longer meetings.

These above results apply to the cumulative virus inhalation W (7"). The probability of getting the disease
— P,(T) or P,,(T) depending on the masking type — is a nonlinear function of W (7). Therefore, if the
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objective is not simply keeping the disease probability below a specified level, but a more general function
involving some expected cost, so the magnitude, not just the direction, of the effect on the probabilities
matters, we have to look at the effects of various parameters on P, (7) and P,,(7T) directly. This is done
next.

Magnitudes of the probability of getting the disease. The shape of P,,(T") and P,,(T") as functions of
T' is sigmoidal: each starts out at 7" = 0 with zero slope, then rises as a convex function, becomes concave
at an inflection point ¢*, and then asymptotes to a unit. The inflection point is where the infection probability
rises fastest. Therefore it is useful to know this point for plausible values of the various parameters, to
reduce the meeting times below it to get the sharpest reductions in infection probabilities.

Next consider the interaction between the meeting time 7" and the group size G (or equivalently v), in
affecting the probabilities P, (1) and P,,(7"). We see from (4) that P,(7") is an increasing concave function
of v, and to the left of the inflection point it is an increasing convex function of 7". Therefore in this region
the comparison is as it was for the cumulative virus inhalation W (7T'), i.e. splitting a long meeting into two
halves is better than splitting the crowd into two, each of the halves taking the full meeting in one session.
But if the duration is beyond the point of inflection, the comparison could go either way.

Are the two complements, i.e. is %P, JOvIT positive? We find that to be the case, if G and T" are both
small, and false if one or both are large. So if we conduct a thought-experiment of starting with a small crowd
that gathers for a short time, and increase these magnitudes gradually, initially increasing one increases the
marginal risk posed by the other, but eventually the effect goes the other way. This again contrasts with the
clear result (complements) we found for Q(7"). Again, a similar analysis applies to Py, (7).

Our results fit well within the range of typical meeting times for lectures or theater performances or
dinners. Reducing these times by even a little would pay big dividends in reduced probabilities of infection.
For example, consider a 60-minute lecture with an audience of 100. If one infected student gets in, the
probability that one of the rest is exposed by the end of the lecture is 1.248%. However, if the lecture were
only 50 minutes long, this would be reduced to 1.001%. Which translates in a a significant reduction of the
basic reproductive number Ry.

Modeling multiple time-scale scenarios

In this section we explore the multiple scenarios that our model formulation can address, the difference
between them is the variation of the time-scales involved. The scenarios we consider address potential
meeting scenarios occurring at different time-scales. We consider two short time-scale scenarios and two
long time-scale scenarios. In the short time-scale scenarios, individuals gather for a single or multiple
meetings during a single day. At this time-scale there are no dynamics at the population’s scale. We track
the dynamics of the viral load in the meeting room and, ultimately the expected number of newly exposed
individuals. In the long time-scale scenarios, individuals gather for a single or multiple meetings, during
multiple days. At this time-scale we track the “fast dynamics” of the viral load and, the “slow dynamics” of
the disease spreading in the population. We assume the contagion process starts with a single unmasked
infected individual attending the first meeting.

Short time-scale: Single meeting on a single day. In this scenario, we capture the dynamics of events
happening in a single meeting at a single day, for instance people attending a bar or a party. We assume
individuals meet at a single day for a determined period of time and, we focus on the number of secondary
cases generate during the meeting. We let, the number of infected individuals attending the meeting to be
constant. Moreover, due to the short time-scale involved, we do not address population-level dynamics.

10 of 30 Avinash K. Dixit, Baltazar Espinoza, Zirou Qiu, Anil Vullikanti, Madhav V. Marathe
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In order to compute the number of secondary cases generated during the meeting, we incorporate the
room conditions stated in our model. The probabilities of getting exposed during the meeting depend on
the number of masked/unmasked infected individuals present in the meeting and, are given by the viral
load attained during the meeting, and described by Eqns. (3) and (5) of the main text. We let the number of
susceptible/infected individuals, as well as the masked/unmasked individuals to be given as initial conditions,
and we track the number of exposed individuals for different group sizes and mask wearing compliance.
Since newly exposed individuals take several days in order to become infectious, we assume the number of
individuals shedding virus is constant. In this scenario, the potential interventions include, the ventilation
system efficiency (p), the room size or equivalently the group size or population density (G), mask wearing
and compliance (d).

A B

7 New exposed p=0.5 7 New exposed p=0.25

6 eb o

5} — (=100 — Unmasked 5l g—;go &nn;a?ed
b --- G=80 Masked .. = aske

4 4

3 3 e

2 20 e

1 1

010 015 020 025  0.30 010 045 020 025 030

P p

Fig. S2. The impact of improving ventilation system efficiency (p), for group sizes G = 100 and G = 80, when 50% and 25% of the participants use masks, for a meeting
length of " = 50 minutes. For our selected simulations we assume I,, = 10 and I,,, = 0.

Figure S2 show the number of newly masked and unmasked exposed individuals after a single meeting,
as a function of the ventilation system efficiency (p), for the scenarios of group sizes G = 100 and G = 80,
assuming a 50% and a 25% of the attendants use face masks. Intuitively, increasing the ventilation system
efficiency plays a bigger role as less attendants wear face masks.

50 minutes Infected 120 minutes Infected
1.0 1.0 ]
10 40
0.8 9 0.8 36
8 32
0.6 7 0.6 28
P 6 7 24
0.4 3 0.4 20
4 16
0.2 3 0.2 12
. 2 : 8
\ 1 \\ 4
0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05

p p

Fig. S3. Trade-off between the ventilation system efficiency (p) and mask compliance (d).

Figure S3 shows that during short meetings the impact of increasing the ventilation system efficiency
is comparable to the impact of increasing mask compliance. However, during long meetings, the overall
impact of having a better ventilation system overcomes the impact of increasing mask compliance. This is
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an intuitive result since our model formulation shows that even with high mask compliance, the role of the
ventilation system efficiency is critical on maintaining the viral load at low levels, see Eq. (12).

Medium short time-scale: Multiple meetings on a single day. This scenario resembles the meeting
dynamics of single day events hosting multiple meetings with breaks between one meeting to another, for
instance at a conference or a single day at school. We focus on the number of expected secondary cases
generated after each meeting. At this medium short time-scale, we let the number of susceptible/infected
individuals, as well as the masked/unmasked individuals to be given as initial conditions. Similar to the
single meeting scenario, we assume the number of individuals shedding virus is constant.

In this scenario, in addition to the previously discussed potential interventions, managing the break time
between meetings to let the viral load decrease due to the ventilation system represents another potential
intervention.

A B
1000 Viral load . 1.0 Newly exposed  _ ..o
. a JOY St il
800/ ,'"'. . '.I ," l'. 0.8+ .- : — Unmasked
600! ", ,L ": ',,,' ' 0.6 . K Masked
400 0.4
200 0.2;
: : : 0.0“ : : ‘ : :
0 100 200 300 1 2 3 4 5 6
Time (Mins.) Meetings
Breaks time
--- 5 mins — 15 mins

Fig. S4. Viral load for multiple meetings in a single day, for inter meetings break times of 5 and 15 mins. For our selected simulations we assumed G = 100, I,, = 10,
I, =0,andd = 0.5.

Our simulations in Figure S4A show that for break times of 5 minutes, the highest cumulative viral
load (attained at the end of each meeting) follows an increasing trajectory during the first six meetings.
In counterpart, for break times of 15 minutes, the highest cumulative viral load reaches an steady state
after the second meeting. The divergence in the viral load trajectories is ultimately reflected in the number
of secondary cases generated over the meetings series. Figure S4B shows that break times of 5 minutes
would continue to generate secondary cases after the sixth meeting. The unmasked population is expected
to generate more than a single newly exposed individual after the sixth meeting. On the other hand, the
bounded viral load attained for meetings with 15 minutes breaks, makes the expectation of the newly exposed
individuals to stay below 1.
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Fig. S5. Trade-off between the break time (b, ), and mask compliance (d), on the number of secondary cases produced in 6 subsequent meetings in a single day.

Figure S5 shows that, in the subsequent meetings schedule, break times are effective interventions to
avoid reaching high viral load levels and therefore high infection probabilities. For instance, break times
of 15 — 20 minutes, after each meeting of 50 minutes, lead to similar infection levels than a meetings
schedule with no breaks with mask compliance of 50%. Moreover, for schedules where the meeting period
is extended to 120 minutes, break times of 20 minutes are required in order to attain the infection levels

corresponding to 50% of mask compliance.

Medium long time-scale: Single meetings on multiple days. In this scenario, we assume individuals
meet once per day, during multiple days. This scenario was also discussed in the main manuscript.

Extreme scenarios: All uses masks versus no one uses masks. Figures S6 and S7 show the graphs of
the two cases; assuming the time-scale scenario of hosting a single meeting per day, during multiple days.
By assuming the epidemic starts with a single unmaked infected individual, we simulate 200 meetings, by
which time the dynamics in both cases have reached an stationary state with initial small oscillations.

No mask scenario

100 150
Meetings

200

100 150
Meetings

Fig. S6. Dynamics of the unmasked population (S, , I.,, R,) and their infection probability (P,,) over iterative meetings.
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Fig. S7. Dynamics of the masked population (S, , I, R, ) and their infection probability (P,,,) over iterative meetings.

The most striking feature of these cases is the dramatic difference made by mask-wearing. Without
masks, and assuming a single index individual the disease propagates into an epidemic that at its peak (by
meeting 10) has over two-thirds of the population infected and another quarter who have been previously
infected and have now recovered. At the first meeting, the index case creates a 1% probability of infecting
the 99 others susceptible. Which is in expectation almost one new infection.

This for the small probability that the index case will have recovered before entering the second meeting,
that meeting will have in expectation 1.89 infected people, generating a probability 1.88% of infecting a
susceptible at the second meeting, resulting in almost 2 new infections from the 98 susceptibles. This almost
geometric growth continues, until sufficiently few susceptibles are left, and sufficiently many of the infected
have recovered with immunity, to dampen the spread. However, around meeting 15 even though there are
almost no susceptibles, there are over 50% infected, and almost 50% recovered, so they had been infected in
the past. That is, almost the whole population has experienced the disease. Moreover, as the recovered start
to lose their immunity, they become susceptible again, and the epidemic continues, albeit with somewhat
less force.

The scenario where everyone wears masks is quite different. The index case in meeting 1 has only
a 0.03% probability of infecting someone else. We see the reason from the expression for P,,(7") and
P,(T). The argument for the exponential on the right hand side of P,,(T") has a factor «, and since we are
considering here a scenario where everyone wears a mask (/,, = 0), it also has a factor 1 coming from the
v. In equation (SI-4), since no one wears a mask, P, (7’) lacks both these factors; and, for small positive
x, 1 —exp(—x) = x. Therefore P,,(T") ~ an P,(T): the risk of infection is reduced by the efficiency
factors of both the infected exhaler and the susceptible inhaler of the virus. Then the infected seed is almost
harmless; in fact the small (in expectation) entry into the second meeting, of a person newly infected by
the index case, is more than offset by the less-small probability of recovery of the index case. Therefore,
in expectation, the meeting 2 has only 0.93 infected instead of the index case at the first meeting. This
continues, and the infection dies down. In fact, experiments using the same parameters show that even with
50% of the population infected at the first meeting, the number of infected dies down around the meeting 33.

In general, although we have not included differential susceptibility in our framework, the parameters ¢
and A could be different for the masked/unmasked people, some individuals may get more severe disease
that has slower recovery and shorter (or perhaps longer) immunity.

Steady state when all or none wear masks. We focus on the extreme cases where all or none of the
participants wear masks, we omit the subscripts m and n for convenience. In the no-mask case, we have
v = k I, and the expression for probability of infection in one meeting is P(7") = 1 — exp(—w/), where for
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simplicity we define w = % (T - 1’6_’”).

Sipn = (1= P(T))S; + Ap(G = 5; = I)) 271
Lis1 = P(T)S; + (1 = ép)I;.

A similar equation will hold in the all-masked case except that its w will have additional factors 7 and a.

The steady state for the scenario when no one uses mask in Eq. (27) involves transcendental functions and

cannot be analytically computed. Therefore we use a linear approximation of the probability of infection in

order to get analytic insights P(7T') = 1 — exp(—wl) = wl. The disease dynamics over the sequence of

meetings is then described by the following set of difference equations

Sj+1 = (1 — (,«.)I)Sj + )\P(G — Sj — IJ)

[28]
Ij+1 = UJ[S]‘ + (1 - qbp)lj.

with steady states (S*, I*) = (G,0) and (S*,[*) = (%, ﬁ(ﬁ(G - %)) In order to compute the disease
persistence threshold we use the second generation matrix (19), where Ry = G % In other words, the
disease persists whenever Ry > 1, which defines a condition in terms of w* > %

Figure S8 shows the phase planes of Eq. (28) parameterized to low recovery/removal probability (A)
which leads to a steady state with high disease levels and; middle ( B) and high recovery/removal probabilities
(C), which lead to intermediate and low disease levels at the steady state, respectively.

0.8
NI
Y YO IRD

0.6( Y\ \1 ]/
I e
0.4

0.

N

02 04 06 08 1.0 02 04 06 08 1.0
S* S*

Fig. S8. Existence and stability of the interior equilibrium. Our simulations show that the steady state in the presence of disease may reach states of high, medium and low
infectiousness among the population depending on the recovery probability ¢ p.

The scenario in Eq. (28) corresponds to nobody using masks. Analogous analysis for the scenario where
everybody uses masks gives the steady states (S, I¥)) = (G,0) and (S}, I}}) = (i 2 (G — %)) In

m’ - m m’-m anw?’ A+
the scenario where everybody uses masks, the steady state supporting infections exists whenever anGw > ¢,
therefore the threshold condition using masks as a control measure can be expressed as R (o, 1) = Gom%.

¢
anG*

In agreement with our previous simulations, we show that there exists a set of conditions for which
scenarios supporting infections are possible. In Figure S9, we show the bifurcation diagram corresponding
to the extreme scenarios where no one uses face mask and, where everybody uses face mask.

That is, the critical infectiousness is given by R («v, 7) > 1 which implies w*(ar, ) >

Avinash K. Dixit, Baltazar Espinoza, Zirou Qiu, Anil Vullikanti, Madhav V. Marathe 15 of 30



383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

4

o

2

Reduced system

100, 100,
No one mask Everybody mask

8o0f 8ol

60 60/
I*

a0/ I* 40 m

n
20+ 20
0000 0002 0004 0006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
w w

Fig. S9. Bifurcation diagram of the steady states for the extreme scenarios when no one uses face masks (I™), and when everybody uses face masks (I, ), as functions of
the parameter w. Low w values does not support infected individuals at the steady states, while w > w™ values support the presence of infected individuals in both scenarios.
Higher w value is required for an epidemic to propagate in the extreme scenario of everybody wearing face masks.

Figure S9 shows the double impact of face masks usage: the level of infections attained at the steady
state for similar infectious probabilities (w) is lower when everybody mask, relative to the analogous no
masks scenario; and, the infection probability required to sustain infections at the steady state is higher than
the one in the absence of masks (w* < w*(a, n)).

Stability of the extreme scenarios steady states: only mask users and, no one uses masks The Jacobian
of system Eq. (28) evaluated at the non-trivial steady state is

_ AA+Gw) —(A+¢)

MG ) 0 [29]
Ao
with characteristic polynomial
A+ Gw)
P+ 2+ AMGw — ¢). 30
Nto + AGw — ) [30]

The sum of the roots is negative, and the product of the roots is positive when Gw* > ¢ which is the
condition for an endemic state with disease (I > 0). Then the roots cannot be real and both positive, or
real with opposite signs — they must be either real and both negative, or complex conjugates with negative
real parts. In either of these possibilities, the steady state is stable. With our basic parameter values, the
complex conjugate case (cyclic stability) prevails. Therefore, the steady state (S*, [*) = (%, ﬁ(G — %))
is stable whenever it exists.

General model: mixed group scenario. In the general model, we let v = k (1 I,,, + I,,) and the infection
probabilities linear approximations become P, (1) = w (n I, + I,,) and P,,,(T) = wa (n Ly, + I,,).
= (1-— w(vy[}” + l']”))S;1 + Ap((1 —p)G — S — IJ")
Ty =wlt+17)ST 4+ (1 — ¢p)I7.
Y= —awnl* + 17))S]" + Ap(pG — S" — I3")
Iy = aw(nIl" + IM)ST + (1 — ¢p) 17"

[31]

The general model in Eq. (31) has the set of disease-free equilibria (S™, I, S™, I") = ((1—-p)G, 0, pG, 0),
which depend on the proportion of the group using masks (p), and the following two steady states supporting
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where z = (1 — a)?¢? + @*w?((1 — p)G + npG)? — 2(1 — a)awg((1 — p)G — npG).

Finally, the threshold condition for the full model can be obtained by solving I = I from Eq. (32).
Thus, the condition for a mixed steady state supporting infection (with or without face masks), is given by
w

¢

which in terms of the probability of infection is w*(d, a, ) > m. Due to the complexity of the
endemic equilibria expressions, we explored their stability numerically. Notice that Eq. (33) reduces to
the threshold conditions for the scenarios where all or none uses masks, as a function of d. Figure S10
shows that, similarly to the reduced systems, the full model exhibit a classic forward bifurcation for the
infected subpopulations wearing and not wearing masks, as the infectiousness potential (w) increases. Our
simulations show the impact of the mask efficacy on reducing the virus inhalation («) and virus exhalation
(n), by increasing the threshold condition for the infectiousness potential (w) needed to produce and endemic

state.

Re(d,a,n) = —(ampG + (1 = p)G) > 1 [33]

Full system

100 100 100

8ol p=04 sl p=0.6 wl p=0.8
60" 60" 60"
40 40 40+
20+ 20+ 20+
0.000 0.602 0.604 0.606 0.608 0.610 0.000 0.602 0.604 0.606 0.608 0.610 0.000 0.602 0.604 0.606 0.608 0.610
w w w
p = Proportion of mask users s —1I

Fig. S10. Bifurcation diagram of the endemic equilibria for the infectious subpopulations (I, I ), as functions of the parameter w. The gray dashed lines correspond to the
bifurcation trajectories for the reduced scenarios where no one and where everybody uses face masks.

Long time-scale: Multiple meetings on multiple days. In this extreme scenario, we assume individuals
meet multiple times per day, during multiple days, for instance students attending school (where in the class
composition is fixed), or nursing homes. In this scenario, we track dynamics within consequent meetings
(short time-scale dynamics) in a single day, and we compute the number of newly infected individuals.
Moreover, we track the dynamics of disease progression over multiple days (long time-scale dynamics), so
that the number of infected individuals shedding virus during the daily meetings vary over time.

We compute the meeting-i probability of infection by using the cumulative viral load (W (¢)), at the
end of each meeting. In order to couple short time-scale dynamics we compute the overall probability of
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infection during a single day, which is given by the cumulative probability of infection during each meeting.
Let the meeting-¢ probability of infection be p;, therefore the probability of infection during the day ¢ (after
n meetings), is given by

k=n—1 k=n
Po=pi+p(l—p)+-+p, J[[ Q=pe)=1- ] —px). [34]
k=1 k=1

Figure S11 and figure S12 show the interaction between the inter-meetings viral load (short time-scale
dynamics), and the population-level disease dynamics (long time-scale dynamics). We assume a scenario
resembling school attendance, that is 6 daily 50 minutes meetings during 7 days, for scenarios of 5 and 15
minutes breaks between meetings. Figure S11A shows a viral load dramatically increasing over meetings,
consequently increasing the probability of infection, which ultimately impacts on the number of newly
infected individuals. This in turn, results in more infected individuals shedding virus on the room during the
subsequent days. The increasing tendency on this feedback loop continues until the population dynamics
attain a maximum number of infected individuals, so that the viral shedding over meetings “follows” the
population level disease dynamics.

5 minutes breaks

A Daily viral load B Probability of infection ¢ Infected individuals
35kr 1.0 i
30k| osl Unmasked 0 Unmasked ;
25kt ©F 30}
20kl 06l Masked Masked
15Kk| ol 20/
10k}
5k 0.2} 10¢
0 50 100 150 200 250 300 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Time (Mins.) Time (Days) Time (Days)
Days —_ % - i - 2 —_7

Fig. S11. Viral load, daily probability and infected individuals dynamics, for the scenario of 5 minutes breaks between meetings

In counterpart, the feedback loop shown in Figure S12 exhibit different dynamics across scales. In this
scenario, the 15 minutes breaks are long enough to allow the ventilation system clean the environment
better. Thus, preventing the daily probability of infection to increase dramatically and, finally ameliorating
the impact of the epidemic at the population scale.

15 minutes breaks

A Daily viral load B Probability of infection ¢ Infected individuals
8k 0.6/ 35/
ekl 0.5 30
04 Unmasked 25t — Unmasked
4kt 0.3 Masked fg Masked
2kr 02 10
0.1 50
0 100 200 300 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Time (Mins.) Time (Days) Time (Days)
Days —_ % - Z - 2 —_—7

Fig. S12. Viral load, daily probability and infected individuals dynamics, for the scenario of 5 minutes breaks between meetings
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Modeling testing
In this section we consider an extension of the baseline model in the main manuscript to include testing. We
assume infected individuals are tested and isolated after being identified (Q)), until the infected individuals
recover. The model incorporating testing becomes

Sty =0-PNT)) S} + Ap R}

];L+1 = F)JH(T> S]n + (1 - (bp)(l - Ptest) I]n

Ri, = (1= Ap) R} + ép (I} + QF)

b1 = (1= 0p)Pestl] + (1 — 6p)Q}
[35]
S = (1= FP™T)) Si"+ Ap R}
[;'11 = P]m<T) S]T” + (1= ¢p)(1 = Prest) []’,”
Ry = (1= Ap) BY' + ¢p (I} + Q)
;-er =(1- ¢P)Ptestfjm +(1 - <Z5P)Q§n

Notice that, in the absence of testing (FP;..s; = 0) model Eq. (36) reduces to the baseline model (7) in the
main manuscript.

--- No testing — Testing (ptest = 0.15)
— S, I, R, — S I, R, Isolated
505 50 10
40 40\//\_’ 8 — Unmasked
30 PN 30 '.‘\ 6 Masked
20 | / N— 20 et 4
10 '.‘\ O 10 f 2
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (Days) Time (Days) Time (Days)

Fig. S13. Disease dynamics of group meetings assuming a single meeting during multiple days, for the scenario of no testing and testing probability P;.s¢ = 0.15.

The impact of including a testing strategy is shown in the dynamics of the viral load attained over meetings,
by reducing the number of infected individuals shedding virus.

Steady state when all or none wear masks. In these extreme scenarios, and using a linear approximation
for the probability of infection, the model Eq. (36) becomes

Sj—i—l == (1 - OJIj) Sj + /\P Rj

Ij+1 = U.)Ij Sj + (1 - ¢P)(1 - Ptest) Ij

Rjpr = (1=Ap) Rj+ ¢p (I; + Q)

Qjt1 = (1- ¢P)Ptestfj + (1 — <Z5P)Qj
The non-trivial steady state of this model is given by

sy = {2525 (9) (0-8) 12 (0 8) oy (M2 (o jj)iﬂ

[36]
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where ¢ = ¢ + piest(1 — ¢). Notice that, the non-trivial steady state is meaningful whenever G — ¢/w > 0,
that is the threshold condition for an epidemic to propagate is given by Ro(piest) = G m.
Which in the absence of testing py.s; = 0, it reduces to the threshold condition of our baseline S/ R model
Ro=G %

Here we show simulations for the scenario of hosting a single meeting during multiple days, where the
model formulation includes the role of testing.

50% mask compliance  Infected 25% mask compliance  Infected
120 120
220 220
200
100 180 100 180
140 160
80 80
T T -
100
60 60 100
40 40 60
20 40

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Dtest

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Dtest

Fig. S14. Trade-off between testing (p:es:), and meeting length (77), on the cumulative number of secondary cases produced in 60 days having a single meeting, for the
scenarios of 50% and 25% mask compliance.

Figure S14 suggest that, for meetings longer than 30 minutes, for each increment on the meeting time of
around 10 minutes, it would require to increase the testing and isolation probability of infected individuals
by around 5%, in order to get similar number of cumulative cases during the 60 days of meetings.

50 minutes Infected 120 minutes Infected
1.0 1.0
220 220
08 180 0.8 180
p 0.6 140 p 0.6 140
0.4 100 0.4 100
0.2 60 0.2 60
\\\\\\\ 20 20
0.0 0.0
00 01 02 03 04 05 00 01 02 03 04 05
Dtest Dtest

Fig. S15. Trade-off between testing (p+.st ), and mask compliance (d), on the cumulative number of secondary cases produced in 60 days having a single meeting, for the
scenarios of meeting lengths of 50 and 120 minutes.

Figure S15 shows that the trade-off between testing/isolation and mask compliance follows a linear-like
relationship. Moreover, our simulations show that that the trade-off between these control measures depends
on the meeting length (7'). For short meetings (50 minutes length), reducing 20% mask compliance would
require to increase around 10% the probability of detecting and isolating infected individuals. In counterpart,
for long meetings (120 minutes length), a reduction of 20% mask compliance would require to increase
around 20% testing.

Finally, in this scenario we explore the trade-off between inter-meetings break times and testing.
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Fig. S16. The trade-off between testing (p:.s+) and break times (b+) on the cumulative cases generated over 60 days assuming 6 daily meetings.

Figure S16 shows the non-linear trade-off between allowing break times between subsequent meetings,
and the probability of detection/isolation of infected individuals. Notice that identifying and isolating all the
infected individuals does not eradicate the epidemic. The reasoning behind this is that our model assumes
only currently infected individuals are being tested, therefore newly infected individuals keep the viral
load in the environment. Finally, our simulations suggest that, depending on the meeting length, there is
a critical trade-off between testing and breaks time so that the number of cumulative cases dramatically
increases. Particularly, for short meetings (50 minutes long), decreasing testing capacity by around 60%
for a no breaks scenario, would be balanced by having breaks time of around 20 minutes. In counterpart,
for long meetings (120 minutes long), the trade-off translates into a testing reduction of 40% of testing by
increasing the break time to 20 minutes.

More complex epidemic models

In this section we show that the proposed framework can be coupled with more complex epidemic models.
Specifically, we incorporate the role of exposed (pre-symptomatic individuals) and asymptomatic individuals
in order to illustrate our modeling framework. The results of expanding the baseline SIR model to include
exposed and asymptomatic health-states are consistent with literature as expected. Consequently, we do
not expect our results to change qualitatively — we can expect our results would change quantitatively as
different epidemic models are formulated.

Summary of observations. Although exposed individuals might exhibit a reduced viral shedding relative to
symptomatic ones, incorporating infectious exposed individuals in our model (SEIR model), increases the
viral load contribution of a typical infected individual by increasing its viral shedding time. This produces
more secondary cases and increases the effort required to contain an outbreak. In contrast, the impact of
assuming a fraction of the infected population become asymptomatic depends on both: (%) the relative
infectiousness of asymptomatic individuals and, (#7) the fraction of asymptomatic cases. For COVID-19, it s
possible to argue that asymptomatic individuals would exhibit an increased likelihood of infection, however
we assume its viral shedding in the absence of symptoms is reduced, relative to symptomatic individuals.
Finally, it is noteworthy that, while we consider discrete-time models in this work, similar formulation can
be used to couple different modeling frameworks like continuous-time models and/or stochastic models.

SEIR model. Assume the within host disease progression is given by the following health-states: susceptible
(S), exposed and infectious (E), infected and infectious (I), and fully immune recovered (R) individuals.
We let the population to be composed of unmasked individuals ((1 — p)G = S™ + E" + I" + R"), and
masked individuals (pG = S™ 4+ E™ + I"™ + R™). Susceptible individuals become infected by inhaling the
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viral droplets exhaled by infectious exposed and symptomatic individuals. Infectious exposed individuals
(E), are assumed to have a reduced viral shedding rate cw, relative to infectious symptomatic individuals.
Following the formulation of Eq. (4), the overall virus exhalation rate is given by

v=k(nI™m+I" + e(mE™+ E")),

Viral shedding Relative viral shedding
symptomatic ind. exposed ind.

where 7 stands for the reduced virus exhalation rate for masked individuals and, ¢ is the relative viral load
of exposed individuals (£). Then, the infection probabilities’ linear approximations become

P(T)=wnI™+I"+enE™+ E")) and P,(T)=awnIl™+ 1" +c(nE™ + E")),

where masked individuals are assumed to have a reduced virus exhalation of nw and, a reduced virus
inhalation aw, where 0 < 1, @ < 1. Infectious exposed individuals (F£), are assumed to have a reduced
viral shedding rate sw relative to infectious symptomatic individuals and, to become symptomatic with
probability o. Symptomatic individuals (/) produce a baseline viral shedding, recovering with probability
(¢). Finally, immune individuals are assumed to become fully susceptible with probability (). The
previously described model of disease progression is shown schematically in Figure S17 and formalized by
the sets of equations Eq. (38) and Eq. (39).

W, € o 10)

S|— |E|—|I|—|R

Fig. S17. Susceptible, infectious exposed (pre-symptomatic), infectious symptomatic and, recovered individuals. Infectious exposed individuals are assumed to have a reduced
viral load relative to symptomatic individuals 0 < e < 1.

The disease progression among the unmasked population is described by the following set of equations,
where the subscript tracks the evolution of states in time, while the superscript tracks the population mask
usage

(1-p)G =S+ E"+ I" + R",
;@:Q—w@m+ﬁ+dwy+@»ﬁM- A R

J
‘Waning immunity

probability
Elyy =w (I + I} + e(mE] + E})) Sp + (1 - 0)EJ,
nfection. [38]
fn= o E+Q0-91,
Probability of

developing symptoms
R!' .\ = ¢ I'+ (1 — )\p)Rn'
+1
J N~~~ J J !

Recovery
probability

similarly, the progression of the disease among the masked population is described by the following equations,
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where the mask reduces the virus inhalation, re-scaling the infection probability by a factor o
pG =S"+E"+ 1"+ R},
T = (1= aw (7 4 17+ e@E + BD) ) S 4+ AR,

By = aw (n I+ 17 + (BN + E2))S7 + (1 — o) BT, [39]
Ity =oE + (1—¢)I}".

= opl" + (1— Ap)RI.

Steady state when all or none wear masks. Assume the extreme scenario where nobody uses masks. We
compute the steady state by solving the system of equations {S; = S*, E; = E*,[; = I*, R; = R*}. The
non-trivial steady state of model Eq. (38) is given by

A A
(S B Ry =100 Mg 90 Ao 90 ) oofn 90
w(o+ep) ¢ wlo+ep)) ¢ wio+ep)) ¢ w(o +e9)
[40]
where p = 0¢ + A(0 + ¢). Furthermore, we compute the basic reproductive number by using the second
generation matrix method, Ry = Gw (é + §> Therefore, the impact of the exposed (pre-symptomatic) and
asymptomatic individuals on the within-meeting viral load depends on their relative viral shedding (¢ pw

and £ qw), and their relative incubation period (1/c). The steady state of the scenario where everybody uses
masks is similar, including the mask efficiency factors o and 7.

1.0F

S e e
» o -

Prop. of mask users (d)

e
5

0 50 100 150
Meeting length (T)

Fig. S18. Disease eradication threshold as a function of the meeting length and the proportion of the population wearing masks, for the SIR and SEIR disease models.

Figure S18 shows the comparison of the effort needed in order to eradicate an outbreak for the SIR and
SEIR models. We assume exposed (pre-symptomatic) individuals are 50% less infectious than symptomatic
individuals, and an incubation period of 9 days. Notice that the presence of infectious pre-symptomatic
individuals increases the effort needed in order to eradicate an outbreak, relative to the scenario of having
no pre-symptomatic individuals.

SEIAR model. Assume the within host disease progression is given by the following health-states: sus-
ceptible (.5), exposed and infectious (F), infected and infectious (), infectious asymptomatic (A), and
fully immune recovered (1) individuals. Similar to the previous model we assume the total population is
composed by unmasked and masked individuals, (1 — p)G and pG, respectively. Susceptible individuals
get infected by inhaling droplets exhaled by: (i) infectious exposed individuals (£) at a relative shedding
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rate pw, (i) asymptomatic infectious individuals at a relative shedding rate € 4w and, (7ii) infectious
individuals at a baseline rate. Similar to the previous section, we let the virus exhalation rate to become

v=k(nIm+I" + e(nE™ + E") +ea(nA™ + A")),

Viral shedding Relative viral shedding ~ Relative viral shedding
symptomatic ind. exposed ind. asymptomatic ind.

then the infection probabilities linear approximations become

Po(T) = w (qI™ + I" + eg(E™ + E") + ca(nA™ + A™)),

[41]

Po(T) = aw (nI™ + I" + eg(E™ + E") + ca(nA™ + A™)),
where €5 and € 4 are the reduced viral shedding of exposed (£) and asymptomatic individuals (A) respec-
tively, relative to symptomatic individuals (/). The previously formulated model of disease progression is
sketched in Figure S19 and formalized by the set of equations Eq. (42).

I-Do 4| [ ¢

W,EE,€A / \
S|— |E R

PN /¢'

Fig. S19. Susceptible, infectious exposed (pre-symptomatic), infectious symptomatic, infectious asymptomatic and, recovered individuals. Infectious exposed and asymptomatic
individuals are assumed to have reduced viral shedding relative to symptomatic individuals, 0 < eg,e4 < 1, respectively.

(1-p)G = 8"+ E} + [ + A7 + R,
Si1 = (1 —w (77 I+ I} + eg(nE] + E}) + ea(nA™ + A”)))S;? + AR}

Elyy =w(nIl+ 7+ egME] + E}) + ca(nA™ + A")) ST + (1 — o) EJ,
Ity = (1= DoEr + (1 - ¢)I7,
T =loE} + (1 - ¢)A7,
= oI} + AY) + (1= Ap) ],
[42]
pG =S+ EM + I + A" + R™,

™ (1 —aw (NI + I} + ep(nEY + E}) + ea(nA™ + A”)))S;” +ART

ETy = aw (nI] + IT + ep(mE] + E}) + ea(nA™ + A™)) ST + (1 — 0) ET",

Iy =1 DoEr +(1— )1,
Ay =10E™ + (1 — ¢)AT,
Ry = (I + A™) + (1 — MR

J

A. Basic reproductive number when all or none wear masks. Assume nobody wear masks, in this

(1—1)+le o
(=)

scenario the basic reproductive number becomes Ry = Gw (%E + . The first term of R accounts
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for contributions from the mildly infectious individuals E, whereas the second term gives contributions
from the infectious individuals I and, the mildly infectious individuals A.

0.8F

0.6f

0.4r

Prop. of mask users (d)

0.21

0.0 ‘ ‘ ‘
0 50 100 150
Meeting length (T)

Fig. S20. Disease eradication threshold as a function of the meeting length and the proportion of the population wearing masks; for the SIR, SEIR and SEIAR disease models
and, G = 60.

Figure S20 shows the disease eradication threshold for a group size of G = 60, as a function of both, the
meeting length (7") and the proportion of the population wearing masks (d). The impact of asymptomatic
individuals with a reduced viral shedding (relative to the symptomatic individuals) is reflected on the relaxed
effort required to eradicate an outbreak.

SEIAR model with recruitment. Assume the within host disease progression is given by susceptible (.5),
exposed and infectious (F), infected and infectious (/), infectious asymptomatic (A), and fully immune
recovered (R) individuals. Moreover, assume individuals might decide to leave at a given time with
probability . regardless of their health-status. Additionally, assume non-symptomatic individuals (.5, F/, R),
are allowed to join to the group at a constant probability A. This might be for instance monitored by testing
before joining. In this scenario, and following similar assumptions than for the previous SEIAR model, the
model of disease progression among the masked/unmasked population is depicted in Figure and, formalized
by the set of difference equations Eq. (43) and Eq. (44)

— (1 =1lo I (1—p)o

1
A\ A\
(1 - M)(vaE’EAZ

S > | B
B\ A\

A\
A\ R
(1—mio~ | A] 71 -we H\

Fig. S21. Susceptible, infectious exposed (pre-symptomatic), infectious symptomatic, infectious asymptomatic and, recovered individuals. Infectious exposed and asymptomatic
individuals are assumed to have reduced viral shedding relative to symptomatic individuals, 0 < eg,e4 < 1, respectively. Moreover, constant recruitment into non-
symptomatic health-states and, leaving rate regardless individuals’ health states are assumed.
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(1-p)G=S}+E+1'+ A"+ R},
Sia= A + (-4 (1 —w (I + I} + ep(E] + E}) + ca(nA™ + An))>5?
Individuals  ppopapility of
joining keep meeting
)
Waning immunity

probability
Bl =AM+ (1= p)w (n I+ I} + ep(mE] + E}) + ea(nA™ + A")) 87 + (1 = p)(1 — o) EJ,

Infection

probability
549 n " n
y=0—p) (A-Do Ef+(1—p)(1l-¢)lf,
Probability of
developing symptoms
Af =A+(1—p) o, El +(1—p)(1—9¢)A7,

Probability of
becoming asymptomatic

R =M+ (L=p) & (I} + A7)+ (1= (L= Ap)E].

Recovery
probability

[43]

o Similarly, the progression of the disease among the masked population is described by the following
sst - analogous equations, where the mask reduces the virus inhalation, re-scaling the infection probability by a
2 factor «

pG = S+ EP 4+ I + A7 + R,
S7 = At (L= p) (1= aw (0 I+ 17+ ep B + E}) + ea(nA™ + A")) ) S 4+ AR

5!

a

Efy = A+ (1= paw (n I+ I} + ep(E] + E}) + ea(nA™ + A")) ST + (1 — p)(1 — o) B,
T === DoES + (1 - p)(1 - 9)I,

Al =AM+ (1= p)loE + (1 — p)(1 — ¢) AT,

Ry = A+ (1= p)o(If" + AF) + (1 — p) (1 — AR

J

[44]

+ In this formulation, the total group size is not constant and, the total group size follows the difference
555 equation
556 Gj+1 =8A + (1 — M)Gj [45]

7 which implies an asymptotically constant total group size (19). By solving Eq. (45), the group size is given
8 by hmj_m, Gj = %

5

ad

o1

5!

3]

5!

o1

s Case studies

5!

a1

o In this section we illustrate the value of our framework in addressing different room types. Following (13), we
i study three scenarios of contagion: (7) a typical American classroom, with an occupancy of 20 individuals

5

o)

5

>
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and a volume of V' = 10595 ft3, meeting during 6 hours; (ii) long-term care facilities, which in New York
City are required to host a maximum of 3 persons in a shared room with a volume of V' = 1890 f¢?; and,
(7i7) the Skagit valley choir super-spreading event, which is reported to have happened in a room hosting
61 during a 2.5 hrs. We assume the individuals meeting exhibit different virus shedding rates, where the
baseline virus shedding rate (k = 1), correspond to individuals breathing at rest. Individuals speaking show
an increment of the shedding rate or infection quanta of 300% at the intermediate activity level, while at the
high activity level there is an increment of 800% for intermediate speech.

Classroom. We assume the scenario of a classroom with occupancy of 19 students and a teacher, meeting
during a week. For our baseline simulations we assumed 50% of the group use masks (p = 0.5), but we
explore the impact of varying both, mask usage and the break time. We assume the break time corresponds
to recess during which the room is empty and cleaning through a ventilation system during 30 minutes. Our
selected simulations show the disease dynamics within a classroom for low activity level (breathing at rest),
medium activity level (quiet speech) and, high activity (intermediate speech); these correspond to 8.8, 29
and 72 infection quanta /m? exhaled air (13).

A) B)
20000, Medium activity 20000, Low activity
< 15000 < 15000
< <
< <
- ! - i —_1 3 =5
'S 10000 g 10000 Days 9 ——
- >
I /\/ SOOOW
0 | . . ) | . . 0 -/v/"—/‘—‘\ /
0 50 100 150 :200 250 300 350 0 50 100 150 '200 250 300 350
— ; — .
Break Mins. Break Mins.
C . D . .
20) Cumulative cases ) Disease eradication threhsold
[ 30+
Ts cﬁl\‘f\w g %%
_8 . %\\ & . o=
© 6\ "X\I\‘QI ©n 20
L .y 2¢ o,
= 10 Lol 2 15
= —
O 10
SE=——— = e
************ _ High activity

0:2 0L4 0.6 0.8 1.0
Prop. of mask users (p)

Fig. S22. Disease dynamics within a typical US classroom during a week, for low, medium and, high activity levels. Panel A and panel B show the viral load attained during a
school day for five days, for the scenarios where individuals sustain high and low activity, respectively. Panel C shows the cumulative secondary cases generated within the
classroom over the 5 days; while panel D shows the proportion of mask users and the group size trade-off required to prevent a single infection within the classroom, for the
scenarios of low, medium and high activity levels. We assumed uncertainty boundaries corresponding to +15% of the baseline breathing activity.

High activity breathing levels within a classroom elevate the viral load in a dramatic way compared to the
viral low attained with low breathing levels, as our simulations in panels A and B show. This impact on the
expected secondary cases generated at a single day and, ultimately impacts the progression of the epidemic
(panel C). Panel D shows the disease eradication threshold as a function of both, the proportion of mask
users (p) and, the group size (G), for activity levels corresponding to breathing at rest, quiet speech and
intermediate speech. We assume students meet during 5 consecutive days and leave the classroom during a

Avinash K. Dixit, Baltazar Espinoza, Zirou Qiu, Anil Vullikanti, Madhav V. Marathe 27 of 30



582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

recess of 30 mins. after 3 hours of meeting. Our results highlight the trade-off between a decentralized
control measure (maks-wearing) and, a centralized control measure (group size and breaks time).

Long-term care facility. In this section we assume the scenario of infections among individuals in a
long-term care facility. In order to address the higher susceptibility of elderly people we let them to be four
times more susceptible than child (20, 21). Figure S23A shows the expected cumulative cases among three
persons sharing a room 24 hrs/day during 5 days, where all of them wear face masks. For medium and
high activity levels our simulations suggest that masking and the baseline air filtering are not enough to
avoid infections. Figure S23B shows the disease eradication threshold as a function of the proportion of
mask users (p) and, the group size (G). Our simulations show that for low and medium breathing levels, for
normal occupancy, on average at least two residents should use mask in order to prevent infections during a
days period.

A) Cumulative cases B) Disease eradication threhsold
3.0l High activity
= 25 S
g 17}
O on
9 2.0F 8
E 5
15
1-0 I 1 1 1 TS =l 1 I I 1
1 2 3 4 5 0.2 0.4 0.6 0.8 1.0
Days Prop. of mask users (p)

Fig. $23. Disease dynamics among three elderly people sharing room in a long-term care facility. Panel A shows that even when all are masked, it is expected to have infections
for low activity level of breathing at rest. Panel B shows the disease threshold conditions to avoid infections as a function of the proportion of mask users (p) and, the group size
sharing a room, for activity levels of low, medium and high activity levels. We assumed uncertainty boundaries corresponding to +15% of the baseline breathing activity.

The Skagit Valley Choir. Here we study the contagion process of the superspreading event during the
Skagit Valley Choir practice on March 10, 2020 (5, 22). The practice lasted 2.5 hrs and, 61 persons attended
the choir practice, after which 32 COVID-19 cases were confirmed and 20 more resulted probable secondary
cases. It is known that this event started with a single confirmed symptomatic individual and, transmission
was potentially exacerbated by the close proximity among attendants (within 6 feet) and, by the high
breathing level by the act of singing (22). Previous studies indicate that an estimation of the emission rate is
970 + 390 quanta/h (5), which in our framework it translates to & = 110, given that the baseline £ = 1
value corresponds to nose-nose breathing activity of 8.8 quanta /m? exhaled air. We assume none of the
choir members used face masks p = 0, a single symptomatic case [, = 1 and Ey = 10 pre-symptomatic
individuals potentially infected before the practice on March 10, for a detailed discussion see (5, 22).
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Fig. S24. Number of infected after the members of the Skagit Valley Choir have a single meeting for 2.5 hrs, as a function of the break time and the proportion of masked
individuals. We consider the baseline emission rate (970 quanta/h) and the uncertainty boundaries (970 + 390 quanta/h.)

Our simulations in Figure S24 shows the potential reduction on the number of secondary infections
produced during the 2.5 hr. choir meeting, as a function of the break time and the proportion of masked
individuals. In the absence of masks, a single break of would have reduced the number of infections
significantly. Moreover, combining a single break time and at least 40% of mask compliance would have
reduced the number of infections by around half.

Summary. Our results highlight the impact of the multiple components involved in our modeling framework:
breathing activity, group size, meeting schedule, inter-meetings breaks and, mask compliance. Increasing
mask compliance relax the required conditions to avoid the disease to spread; however, the activity level
shows to be highly determinant in each of the scenarios. On the other hand, under compliance uncertainty
of decentralized control measures (for instance, mask wearing or social distancing), the incorporation of
centralized measures (for instance, break times, isolation or testing), is critical to avoid high viral load levels.

Table S4. Results case studies

Case study Room size (ft.2) | Groupsize | Meetings schedule Findings
Break times play a critical role
Small group sizes also require high mask compliance.
The high vulnerability of elderly people requires

Classroom 10595 20 2 meetings / 5 days

Long-term care facility 1890 3 1 meeting /5 days high masking levels if breathing activity is medium or high.
Skagit valley choir 28605 61 1 meetin A single break time combined with medium mask compliance
9 y 9 would have reduced by half the infections.
i
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