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Supporting Information Text 
 
 
SI Methods 
 
Participant Exclusion Criteria  
 
Data for this study was collected online via the online participant platform Prolific. To ensure high 
quality of the collected data, multiple in- and exclusion criteria were defined.  
On Prolific, we applied the following criteria for participation: age between 18 and 35 years old, 
fluent in English language, normal or corrected to normal vision and no color blindness. We also 
restricted participation to participants who did not participate in any other Hebb experiments we 
had collected on Prolific.  
After reading the instructions and before starting with the main part of the experiment, participants 
had to answer four questions about the experiment to make sure that all relevant information was 
understood. Participants were only allowed to participate if all questions were answered correctly. 
When failing the instruction check for the first time, participants were redirected to the instruction 
pages and given a second chance. In case of two consecutive failures, the study was ended. 
During the study, we controlled that participants stayed on the experiment screen by tracking the 
visibility of the browser window. If the current browser window was hidden more than three times, 
participants were excluded from the study. 
After completion of the study, participants were asked if they 1) participated seriously in the study 
and 2) used any aids to help improve their performance during the study (cheating). Participants 
were only considered for the data analysis if they indicated a serious participation and no use of 
aids. Additionally, we excluded participants from the data analysis whose performance in the 
working memory task was at chance level during at least one half of the experiment. Chance level 
performance was assessed by comparing participants’ average performance in Filler trials in one 
half of the experiment to the 99% quantile of the binomial distribution, with guessing probability 
set to one divided by the number of possible responses (verbal: 1/18, visual: 1/9) and number of 
events set to the number of responses within one half of the experiment (verbal: 270; visual: 360). 
For the verbal experiment, this resulted in a threshold of at least 8.5% correct responses, and for 
the visual experiment to a threshold of at least 16% correct responses.  
Overall, these criteria led to the exclusion of 3 participants in the verbal experiment and 27 
participants in the visual experiment.   
 
 
Creation of Memory Sets 
 
Verbal Experiment. Memory sets in the verbal experiment consisted of 9 consonants. 
Consonants were sampled from the set of all consonants except for “W” and “Y” because “W” is 
the only consonant containing two syllables and “Y” has the same function as a vowel in English 
language. Consonants were presented in a row of nine boxes in the center of the screen. Boxes 
were quadratic with widths and height set to 14% of the vertical screen height. Font size of 
consonants was set to 8% of the vertical screen height.  
All consonant lists were generated randomly anew upon starting the experiment but with the 
following constraints: 1) All stimulus lists needed to differ in at least three item-position 
combinations to avoid random duplication of Filler lists; 2) Filler lists were not allowed to share the 
first two consonants with the Hebb list; 3) Lists were not allowed to contain well known acronyms 
to avoid effects of semantic chunking. For this, a list of 81 well know 2- and 3-letter acronyms was 
collected (e.g., “PDF”, “BMW”, “CV”) and acronyms were not allowed to be part of any lists; 4) 
The consonants “M” and “N” were not allowed to be part of the same list because of their high 
degree of phonemic similarity. 
 
Visual Experiment. Memory sets in the visual experiment consisted of 6 colored squares 
(square side corresponding to 50x50 viewport scaled pixels) presented at random locations 
against a grey (RGB 128 128 128) background. Colors were selected from a set of nine discrete 
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colors (RGB): white (255 255 255), black (0 0 0), blue (0 0 255), cyan (0 255 255), green (0 255 
0), yellow (255 255 0), orange (255 128 0), red (255 0 0), and magenta (255 0 255). Locations 
were selected from a set of 49 locations spanned by a 7x7 invisible grid (grid cell size 
corresponding to 50x50 viewport scaled pixels) centered in the middle of the screen. Again, all 
visual arrays were generated randomly anew upon starting the experiment but with the following 
constraints: 1) All squares within an array were separated by at least one grid cell so that squares 
were not allowed to touch each other; 2) All created arrays had to differ in at least two color-
location combinations. 
 
 
Bayesian Hierarchical Mixture Modeling:  
 
All models described in the following section are Bayesian hierarchical mixture models. The 
hierarchical implementation of the models allows to estimate both, population-level parameters to 
describe the sample as a whole, and individual-level-parameters for each participant individually. 
The mixture structure of the models incorporated the assumption that the observed data was 
generated by different data generating processes. We describe this mixture process in more 
details below when explaining the models. The model script for the exact implementation of all 
models is available at https://osf.io/dpkyb/ (1).  
 
Modeling of Working Memory Data. For the working memory task, we assumed that the 
observed data could have been produced by one of two different generative processes: a 
learning process in which memory for the repeated Hebb set improves over trials, or a non-
learning process in which no learning effect for the repeated Hebb set is produced. For both 
components of the model, we assumed that the number of correctly recalled items on each trial 
followed a binomial likelihood with latent parameter 𝜃, leading to the two following likelihood 
components: 
 

𝑁𝑜𝑛 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙1𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠! 	5𝑡𝑟𝑖𝑎𝑙𝑠! , 𝜃"#"$%&'(")"*!,#) 
𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙1𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠! 	5𝑡𝑟𝑖𝑎𝑙𝑠! , 𝜃%&'(")"*!,#) 

 
In both models, the latent parameter 𝜃),! reflects the ability of the ith participant to recall the 
current memory set in trial j. The learning and the non-learning process differed in how 𝜃),! was 
modeled. 
For the non-learning process, we assumed that the ability of recalling a memory set does not 
differ between Filler sets and Hebb sets over the experiment. Therefore, we modeled 
𝜃"#"$%&'(")"* as a linear function of the mini-blocks of trials without distinguishing between Filler 
and Hebb sets. Each mini-block included the presentation of one repetition of the Hebb set and 
three unrepeated Filler sets. The linear effect of mini-block allowed the model to account for slight 
changes in memory performance over the experiment which might be caused by fatigue or 
practice effects. To make sure that 𝜃"#"$%&'(")"* is a probability, a logit-link was applied. This led 
to the following model equation for 𝜃"#"$%&'(")"* 
 

𝜃"#"$%&'(")"*!,# =	 𝑙𝑜𝑔𝑖𝑡
$,1𝛼) +	𝛽-%#./! ∗ 𝑏𝑙𝑜𝑐𝑘!@ 

 
with 𝛼)  reflecting the intercept of the ith participant and 𝛽-%#./! reflecting the slope of the linear 
effect of mini-block for the ith participant in trial j.  
For the learning process, we assumed that, at a certain point in the experiment, a person’s ability 
to recall the repeated Hebb set improves over repetitions compared to the ability to recall an 
unrepeated Filler set. For this, we used the non-learning model as a baseline to describe 
participants’ working memory performance in unrepeated Filler sets and before learning had 
started. On top of this, we added a linear term which allowed performance on the repeated Hebb 
set to increase after an estimated onset point of learning. Again, a logit-link was applied to make 
sure that 𝜃%&'(")"* is a probability. 
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𝜃%&'(")"*!,# =	 𝑙𝑜𝑔𝑖𝑡

$,1𝛼) +	𝛽-%#./! ∗ 𝑏𝑙𝑜𝑐𝑘! + 𝑠𝑒𝑡𝑇𝑦𝑝𝑒! ∗ 	𝛽%&'(")"*! ∗ max10, 𝑏𝑙𝑜𝑐𝑘! −	𝛽#"0&1!@@ 
 
In this equation, 𝑠𝑒𝑡𝑇𝑦𝑝𝑒! codes if the presented memory set in trial j was a Filler set (= 0) or the 
Hebb set (= 1), and 𝛽%&'(")"*! reflects the rate of the learning effect of participant i on the repeated 
Hebb set. The “max” function allows to offset the onset of learning on the time scale of the 
experiment so that no learning benefit is added before the onset of learning is reached. The onset 
of learning for each participant i is reflected in 𝛽#"0&1!.  
In the formula stated above, the model predicts that performance on the Hebb set approaches 
perfection once the learning process has started (upper asymptote of 1). Although this is in 
principle plausible once the Hebb set was learned, the hard constraint on the upper asymptote 
can still cause sampling problems when participants make mistakes on the Hebb set after 
learning it (e.g., by clicking the wrong button or having an attentional lapse). To account for this 
sort of errors, we loosened the constraint on the upper asymptote and introduced an additional 
parameter which estimates the upper asymptote in the boundaries between 0.85 and 1: 
 

𝜃!"#$%&%'!,# =	𝛽#()*+,+" ∗ 𝑙𝑜𝑔𝑖𝑡
-.+𝛼& +	𝛽/!,01! ∗ 𝑏𝑙𝑜𝑐𝑘2 + 𝑠𝑒𝑡𝑇𝑦𝑝𝑒2 ∗	𝛽!"#$%&%'! ∗ max+0, 𝑏𝑙𝑜𝑐𝑘2 −	𝛽,%("+!<< 

 
Given the non-learning and the learning part of the model, we first computed the likelihood for 
each participant under both models: 
 

𝐿"#"$%&'(")"*! =	 H 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙1𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠! 	5𝑡𝑟𝑖𝑎𝑙𝑠! , 𝜃"#"$%&'(")"*!,#)
"1()'%

!2,

 

 

𝐿%&'(")"*! =	 H 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙1𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠! 	5𝑡𝑟𝑖𝑎𝑙𝑠! , 𝜃%&'(")"*!,#)
"1()'%

!2,

 

 
Given the two likelihood components for each participant, we then computed the mixture 
likelihood with mixing proportion 𝜆 on the participant level for each participant i as 
 

𝐿)~	𝜆 ∗ 𝐿%&'(")"*! + (1 − 𝜆) ∗ 𝐿"#"$%&'(")"*! 
 
The mixture proportion 𝜆 is applied on the participant level and therefore indicates the proportion 
of learning participants in the full sample. The posterior probability of belonging to the learning or 
the non-learning process for a single participant can be recovered by the following equation: 
 

𝑝%&'(")"*! =	
𝐿%&'(")"*! ∗ 𝜆	

𝐿%&'(")"*! ∗ 𝜆 +	𝐿"#"$%&'(")"*! ∗ (1 − 𝜆)
	 

 
For fitting the model, all data variables were scaled prior to modeling so that all parameters could 
be fitted roughly on unit scale. The indicator for the set type was dummy coded with Filler = 0 and 
Hebb = 1. The mini-block variable was scaled into a range of [0, 1]. Consequently, the parameter 
for the onset of learning 𝛽#"0&1 was also restricted to the range of [0, 1]. We further restricted the 
position of the onset point to a maximum of the last minus one mini-block to ensure identifiability 
of the two model components. Otherwise, the learning model could, in principle, mimic the non-
learning model by setting the onset of the learning curve to the very last data point. A similar 
issue applies to the parameter for the learning rate 𝛽%&'(")"*! . This parameter needs to be larger 
than 0 to ensure identifiability of the two model components. Here, the lower boundary of this 
parameter was set to 3, which is an arbitrary choice based on visual explorations of the 
implemented model function. Additionally, we set an upper boundary of 500 to this parameter 
which roughly corresponds to the point at which the learning curve approaches a step function. 
All bounded parameters were logit-transformed to allow the sampler to operate more efficiently in 
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an unbounded space and to estimate parameters roughly on unit scales. Weakly informative 
priors following the recommendations from the Stan Development Team were used for all 
parameters. The exact prior specifications are shown in Table S1. 
 
Modeling of Awareness Ratings. The same modeling approach described above was applied to 
the data of the awareness rating task. Again, we assumed that the data could have been 
produced by one of two different data generating processes: an aware process in which 
participants become aware of the repetition of the Hebb set, or a not-aware process in which 
participants do not become aware of the repetition. The only difference from the memory model is 
that another likelihood function is needed because awareness ratings were assessed on a visual 
slider scale. Defining an appropriate likelihood function for data obtained from a visual slider 
scale, however, is not as straightforward. This is because this sort of data can be treated as a 
continuous measure, but it is bounded by the limits of the scale. Therefore, continuous but 
unbounded distributions like the normal distribution do not provide an appropriate description of 
the data generating process as it can lead to predictions outside the boundaries of the scale. 
However, the use of bounded continuous distributions like the Beta distributions has also found to 
be problematic, as it is only defined for values between the boundaries but not for values which 
are equal to the boundaries (i.e., 0 and 1). Recently, a new approach for modeling this sort of the 
data has been proposed which is the ordered beta model (2). The ordered beta model combines 
the beta distribution (which handles continuous outcomes between the boundaries) with ordered 
cut points. These ordered cut points define at which point the bounds of the scale become more 
likely than the continuous values in between, and hence when the observed response would lie 
on the scale boundaries (in our case, 0 or 1). Unlike other approaches, like the zero-one-inflated 
beta model, this approach comes with the benefit that the latent variable of interest is still only 
reflected in a single parameter, which here is 𝜃'3'(& and 𝜃"#1$'3'(& respectively. In the ordered 
beta model, the two likelihood components of the model are defined as follows: 
 
𝐿"#1$'3'(&! 	~		

=

⎩
⎪
⎨

⎪
⎧1 − 	𝑙𝑜𝑔𝑖𝑡

-. C𝑙𝑜𝑔𝑖𝑡 C𝜃%,+-#3#$"!,#D −	𝑘.D																																																																																																																						 ; 𝑦2 = 0				

F𝑙𝑜𝑔𝑖𝑡-. C𝑙𝑜𝑔𝑖𝑡 C𝜃%,+-#3#$"!,#D − 𝑘.D − 𝑙𝑜𝑔𝑖𝑡
-.(𝑙𝑜𝑔𝑖𝑡 C𝜃%,+-#3#$"!,#D − 𝑘4)I ∗ 𝐵𝑒𝑡𝑎(𝑦2 	|	𝜃%,+-#3#$"!,# , 𝜙); 𝑦2 	𝜖(0,1)

𝑙𝑜𝑔𝑖𝑡-. C𝑙𝑜𝑔𝑖𝑡 C𝜃%,+-#3#$"!,#D −	𝑘4D																																																																																																																															 ; 𝑦2 = 1				 ⎭
⎪
⎬

⎪
⎫%+$&#!

25.

 

 
𝐿'3'(&! 	~		  

=

⎩
⎪
⎨

⎪
⎧1 − 	𝑙𝑜𝑔𝑖𝑡

-. C𝑙𝑜𝑔𝑖𝑡 C𝜃#3#$"!,#D −	𝑘.D																																																																																																						 ; 	𝑦2 = 0				

F𝑙𝑜𝑔𝑖𝑡-. C𝑙𝑜𝑔𝑖𝑡 C𝜃#3#$"!,#D − 𝑘.D − 𝑙𝑜𝑔𝑖𝑡
-.(𝑙𝑜𝑔𝑖𝑡 C𝜃#3#$"!,#D − 𝑘4)I ∗ 𝐵𝑒𝑡𝑎(𝑦2 	|	𝜃#3#$"!,# , 𝜙);	𝑦2 	𝜖(0,1)

𝑙𝑜𝑔𝑖𝑡-. C𝑙𝑜𝑔𝑖𝑡 C𝜃#3#$"!,#D −	𝑘4D																																																																																																															 ; 	𝑦2 = 1				⎭
⎪
⎬

⎪
⎫%+$&#!

25.

 

 
The likelihood for each model is split into three parts, depending on whether the observed rating y 
in a trial j was at the bounds of the scale (i.e., 𝑦! = 0 or 𝑦! = 1) or somewhere between the 
bounds (i.e., 𝑦! 	𝜖(0,1)). The latent variable 𝜃),! reflects the strength of the familiarity signal which 
is elicited in participant i by the memory set presented in trial j and thereby determines the rating 
which is chosen on the slider. The parameters 𝑘, and 𝑘4 reflect the ordered cut points at which 
the strength of the familiarity signal would translate into a discrete 0 or 1 response on the slider, 
with 𝑘, <	𝑘4. The two cut points are estimated for the whole sample and do not vary between 
participants. 
From here on, 𝜃'3'(& and 𝜃"#1$'3'(& were modeled in the same way as described for the learning 
model. For the not-aware process we assumed that participants do not distinguish between 
Hebb- and Filler-sets, because they don’t recognize the repetition. Therefore, 𝜃"#1$'3'(& is again 
modeled as: 
 

𝜃"#1$'3'(&!,# =	 𝑙𝑜𝑔𝑖𝑡
$,1𝛼) +	𝛽-%#./! ∗ 𝑏𝑙𝑜𝑐𝑘!@ 

 



 
 

6 
 

For the aware process, we assumed that participants would, at a certain point, recognize the 
repeated Hebb set, because a higher familiarity signal is elicited compared to the non-repeated 
Filler sets. This should lead to an increase in a participant’s rating scores after they became 
aware. For that case, 𝜃'3'(& was again modeled with the same equation as described in the 
learning model: 
 

𝜃#3#$"!,# =	𝛽#()*+,+" ∗ 𝑙𝑜𝑔𝑖𝑡
-.+𝛼& +	𝛽/!,01! ∗ 𝑏𝑙𝑜𝑐𝑘2 + 𝑠𝑒𝑡𝑇𝑦𝑝𝑒2 ∗	𝛽!"#$%&%'! ∗ max+0, 𝑏𝑙𝑜𝑐𝑘2 −	𝛽,%("+!<< 

 
Again, we first calculated the likelihood under both model components for each participant 
according to the likelihood function of the ordered beta model as specified above and then 
computed the mixture likelihood with mixing proportion 𝜆 with 
 

𝐿)~	𝜆 ∗ 𝐿'3'(&! + (1 − 𝜆) ∗ 𝐿"#1$'3'(&! 
 
Here, the mixture proportion 𝜆 defines the proportion of participants in the sample who became 
aware of the repetition. By using the same equation as shown above, we can recover the 
posterior probability of belonging to the aware or not-aware process for each participant with 
 

𝑝'3'(&! =	
𝐿'3'(&! ∗ 𝜆	

𝐿'3'(&! ∗ 𝜆 +	𝐿"#1$'3'(&! ∗ (1 − 𝜆)
	 

 
Again, all data variables were scaled in the same way as described for the learning model. 
Additionally, awareness ratings were scaled to a range of [0,1] to fit them with the ordered beta 
model.  
 
Combined Analysis of Learning and Awareness Data. To assess the relationship between the 
learning and the awareness process, both data sets were jointly modeled in a multivariate model. 
For this, both models described above were combined in the same model script and a joint 
covariance structure between the parameters from the learning and the awareness model was 
specified. This allowed us to estimate the correlations between the learning and the awareness 
process. Parameters between the two processes were directly comparable as both models 
included the exact same set of parameters on the same scale. The correlation results for all 
parameters are presented in Figure S1.   
 
Comparison Model: Continuous Learning Process. The modeling approach described above 
is at odds with the common assumption of repetition learning as a continuous process which 
starts from the first repetition. This divergence is reflected in the 𝛽#"0&1! parameter, which allows 
learning to start at any point during the experiment. To assess the evidence in favor of including 
this parameter in our model, we specified an alternative model in which we fixed the onset of the 
learning process to the first occurrence of the repeated memory set. This was achieved by 
removing the 𝛽#"0&1! parameter from the formula for modeling  𝜃%&'(")"*: 
 

𝜃%&'(")"*!,# =	𝛽'0561#1& ∗ 𝑙𝑜𝑔𝑖𝑡
$,1𝛼) +	𝛽-%#./! ∗ 𝑏𝑙𝑜𝑐𝑘! + 𝑠𝑒𝑡𝑇𝑦𝑝𝑒! ∗ 	𝛽%&'(")"*! ∗ 	𝑏𝑙𝑜𝑐𝑘!@ 

 
Additionally, the constraint on 𝛽%&'(")"*! was loosened to a minimum of 0.5 so that even smaller 
and more gradual effects could be captured by the model while still ensuring identifiability 
between the learning and the non-learning model. The rest of the model was identical to the 
learning model described above. To perform model comparisons based on the pointwise 
likelihood, the expected pointwise likelihood from the two likelihood components of the mixture 
model for each data point was computed as follows: 
 

𝐿),! =	𝑝%&'(")"*! ∗ 	𝐿%&'(")"*!,# + 11 −	𝑝%&'(")"*!@ ∗ 	𝐿"#"$%&'(")"*!,# 	 
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Here, the pointwise likelihood under the learning model (𝐿%&'(")"*!,#) and under the non-learning 
model (𝐿%&'(")"*!,#) gets weighted by the posterior probability of participant i belonging to one or 
the other model (𝑝%&'(")"*!). Finally, model comparisons were conducted by using leave-one-out 
(LOO) cross-validation of the expected log pointwise predictive density (ELPD) of the two models 
(3). Model comparisons results are displayed in Table S2. 
 
Model Fitting and Convergence Diagnostics. All models were implemented using the statistical 
programming language Stan (4) and fitted with R v4.2.1 (5) and the R-package rstan v2.26.13 (6). 
Models were fitted on four chains with 1000 warmup and 2500 post-warmup iterations per chain 
(10000 post-warmup iterations in total). For the multivariate learning-awareness model, 4000 
post-warmup iterations were run (16000 post-warmup iterations). Convergence of models was 
evaluated by using Stan’s convergence and efficiency diagnostics for Markov chains (7). These 
include improved R-hat metrics as a measure of within- and between-chain variability for model 
parameter estimates, bulk effective sample size as a measure of sampling efficiency from the 
bulk of the posterior distributions and tail effective sample size as a measure of sampling 
efficiency from the tails of the posterior distributions. For all fitted models, we aimed for Rhats < 
1.05 and bulk and tail effective sample sizes > 100 times the number of chains (= 400).  
Criteria were generally met for all fitted models. Only for the learning model fitted to the No 
Information group of the visual experiment and for the multivariate model fitted to the Awareness 
Rating group of the verbal experiment warnings for low bulk and tail effective samples sizes were 
obtained. Investigations of these issues revealed that in both cases, warnings were related to 
individual parameter estimates of a single participant. In the multivariate model, warnings were 
only related to the obtained awareness parameters for one participant. Refitting both models 
without the problematic participant confirmed that issues were only related to parameters of the 
removed participant as warnings did not occur any longer. Yet the inclusion of these participants 
did not affect the model estimates, and hence both participants were still considered for further 
analyses.   
 

SI Results 
 
Learning without Awareness 
 
The results of classifying participants from the Awareness Rating condition into aware / not-aware 
and learning / non-learning showed that three participants were classified as learning without 
awareness. Data of these participants would therefore be diagnostic for showing an implicit 
learning process. The working memory and awareness rating data of these participants are 
plotted in Figure S2, separated into participants belonging to the verbal and the visual 
experiment.  
For the two participants from the verbal experiment, we can see that both participants show a 
clear learning effect. However, by visual inspection, we can still see indications of awareness for 
the repeated Hebb set, which also align with the trial-by-trial performance in the working memory 
task. Although this was not captured in our model’s classification process, a close relation 
between trial-by-trial memory performance and trial-by-trial awareness ratings was still observed. 
In contrast, the awareness ratings of the participant from the visual experiment (Example 3) 
clearly show no signs of awareness for the repeated Hebb set. However, here, the learning 
process is associated with a lot of uncertainty. Although performance for the repeated Hebb set 
seems to increase at the end of the experiment, there is still high variability in performance, and 
the range of model predictions with parameters sampled from their 95% highest density interval 
still includes performance levels equal to Filler trials.  
Overall, none of these participants provides convincing evidence for the presence of an implicit 
learning effect. 
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Awareness without Learning 
 
Compared to the three participants who were classified as learning without awareness, a larger 
number of participants was classified as aware without showing a learning effect. This was 
especially pronounced in the visual experiment with 22 participants falling in this category, but not 
so much for the verbal experiment with only 6 participants in this category. Figure S3A shows 
examples of the working memory and awareness rating data from four of these participants. All 
presented examples clearly  
show that participants became aware of the repetition but did not produce any learning effect. At 
this point, we can only speculate about reasons why these participants did not show a learning 
effect although being aware of the repetition.  
One possibility is that these participants just became aware of the repetition very late in the 
experiment so that there was not enough time left to build a stable representation of the repeated 
memory set. Figure S3B displays the average onset point of awareness for participants who 
learned the repeated memory set and those who did not. For the visual experiment, we can see 
that participants who did not show a learning effect indeed also showed a later onset of 
awareness. However, this was not the case for all non-learning participants. Additionally, no 
difference in the onset of awareness was found for the verbal experiment. Therefore, this 
explanation can only partially account for the participants who don’t learn although being aware of 
the repetition.  
Another possibility is that these participants did not engage in learning the repeated memory set 
after becoming aware of the repetition. This would be consistent with our claim that the formation 
of a new stable knowledge structure requires an explicit strengthening process in which 
participants deliberately need to engage. Therefore, awareness of the repetition would be a 
necessary but not a sufficient condition for producing the learning effect.  
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SI Figures and Tables 
 

 

Fig. S1. Posterior distributions of the estimated correlations between the parameters of the 
learning model and parameters of the awareness model. Points reflect the median of the 
distribution, lines the 95% highest density interval. 
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Fig. S2. Learning and awareness data of the three participants which were classified as showing 
a learning effect without showing awareness of the repetition. The dashed line indicates the 
predictions of the model with the best fitting parameters, and the colored areas indicate the range 
of model predictions with parameters sampled from their 95% highest density interval. Note: 
P(correct) = proportion of correct responses. The x-axes show the repetition number for the 
Hebb-set. For the filler sets, this corresponds to average performance in each mini-block. 
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Fig. S3. A Examples of participants from both experiments showing awareness of the repetition 
without producing a learning effect. The dashed line indicates the predictions of the model with 
the best fitting parameters, and the colored areas indicate the range of model predictions with 
parameters sampled from their 95% highest density interval. B Average onset point of awareness 
for participants classified as learning and participants classified as non-learning. Error bars 
represent 95% confidence interval. Data points represent the individual onset points of 
awareness for all participants. Note. P(correct) = proportion of correct responses. The x-axes in 
panel A show the repetition number for the Hebb-set. For the filler sets, this corresponds to 
average performance in each mini-block. 
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Table S1. Prior specifications for all parameters used in the described models. β parameters 
describe the population-level effect of a parameter, σ parameters describe the standard deviation 
of the corresponding effect, and δ parameters describe the difference of each individual from the 
population-level effect. Note that for the hierarchical implementation, a non-centered 
parametrization was used in which an individual participant effect δ is defined by multiplying the 
standardized effect zδ by the standard deviation σ of the corresponding parameter. Therefore, 
priors are applied to zδ. If transformations were applied, priors are set on the transformed scale. 
 

Parameter Prior Description Transformed 

𝜆	 𝐵𝑒𝑡𝑎(2, 2) Mixture proportion No 

𝜙 𝑁𝑜𝑟𝑚𝑎𝑙(3, 1) Scale parameter of Beta likelihood Log 

𝑘., 𝑘4 𝑖𝑛𝑑𝑢𝑐𝑒𝑑-𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1) Ordered cut points for ordered beta model No 

𝛼 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Population-level effect for intercept Logit 

𝜎6 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(4, 0	,1)7(9,;) Standard deviation of 𝛼 No 

𝑧𝛿6 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Standardized effect on 𝛼 No 

𝛽/!,01 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Population-level effect of mini-block Logit 

𝜎=$%&'( 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(4, 0	,1)7(9,;) Standard deviation of 𝛽/!,01 No 

𝑧𝛿=$%&'( 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Standardized participant effect on 𝛽/!,01 No 

𝛽!"#$%&%' 𝑁𝑜𝑟𝑚𝑎𝑙(−3, 1) Population-level effect for learning rate Logit 

𝜎=%)*+,!,- 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(4, 0	,1)7(9,;) Standard deviation of 𝛽!"#$%&%' No 

𝑧𝛿=%)*+,!,- 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Standardized effect on 𝛽!"#$%&%' No 

𝛽,%("+ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Population-level effect for onset point Logit 

𝜎=&,.)/ 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(4, 0	,1)7(9,;) Standard deviation of 𝛽,%("+ No 

𝑧𝛿=&,.)/ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Standardized effect on 𝛽/!,01 No 

𝛽#()*>+,+" 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Population-level effect for asymptote Logit 

𝜎=*.012/&/) 𝑠𝑡𝑢𝑑𝑒𝑛𝑡(4, 0	,1)7(9,;) Standard deviation of 𝛽#()*>+,+" No 

𝑧𝛿=*.012/&/) 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) Standardized effect on 𝛽#()*>+,+" No 

 
  



 
 

13 
 

Table S2. Results of the model comparisons using leave-one-out (LOO) cross-validation of the 
expected log pointwise predictive density (ELPD) of the two models. Negative ELPD-LOO values 
differences indicate a better fit of the variable-onset model compared to the continuous-learning 
model. 
 

 ELPD-LOO  
variable-onset 

ELPD-LOO 
continuous-learning 

ELPD-LOO 
Difference 

SE 
Difference 

Verbal     

     No Awareness -15817.2 -15852.6 -  35.4 16.3 
     Awareness Only -14697.3 -14775.7 -  78.4 19.6 
     Awareness Rating -14425.5 -14443.9 -  18.4 15.6 

Visual     
     No Awareness -19073.6 -19133.6 -  60.0 21.5 
     Awareness Only -19275.4 -19378.6 -121.2 24.5 
     Awareness Rating -18827.9 -19023.3 -195.4 25.6 
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