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Supporting Information Text12

A. Structure details. To map the patchy particle design into a SAT problem it is necessary to translate it into boolean variables13

and then impose constraints such that the structures in Fig. 1 are formed.14

The boolean variables can be divided into four major groups. The first group is the colour interaction variables, xintci,cj
,15

where ci and cj are the colour of particle i and j respectively. If this variable is true then colours ci and cj interact and can16

form a bond, otherwise not. There are a total of (Nc)(Nc + 1)/2 of these variables. The second group is the patch colouring17

variable, xpcolp,s,c, where p ∈ [1, Np] refers to particle species, s ∈ [1, V ] to patch number and colour c ∈ [1, Nc]. If true, particle18

specie p has the patch number s of colour c. There are NpV Nc of these variables. Then the placement variables, xLl,p,o, where19

l ∈ [1, L] refers the position of a particle in the polyhedron, p ∈ [1, Np] to particle specie and orientation o ∈ [1, R]. If true,20

a particle of species p occupies position l in the polyhedron according to orientation o. There are NpLR of these variables.21

Lastly, there is an auxiliary variable, xAl,s,c. If true, the particle in position l is oriented such that the patch s has a colour c.22

There are V LNc such variables.23

The orientation mapping is given in Table I, while Tables II, III and IV present the polyhedron topology map for the24

icosahedron, snub cube and snub dodecahedron respectively. The patches are labeled as in Fig. 1. For the icosahedron, all25

patches are indistinguishable and thus they can be mapped with Table I.26

There are seven main groups of clauses solved by SAT. The first guarantees that each colour can only interact with only one27

other colour:28

Cintci,cj ,ck
= ¬xintci,cj

∨ ¬xintci,ck
[1]29

The second ensures that patch number s of particle specie p will have exactly one colour only:30

Cpcolp,s,ck,cl
= ¬xpcolp,s,ck

∨ ¬xpcolp,s,cl
[2]31

The third guarantees that position l is occupied by exactly one particle specie with one orientation:32

CLl,pi,oi,pj ,oj
= ¬xLl,pi,oi

∨ ¬xLl,pj ,oj
[3]33

The fourth enforces that the neighboring positions li and lj connected by the patches si and sj (given by the tables bellow)34

have colours in those patches, ci and cj , which interact:35

Clintli,si,lj ,sj ,ci,cj
= ¬xAli,si,ci

∨ ¬xAlj ,sj ,cj
∨ xintci,cj

[4]36

The fifth ensures that for a position l that is occupied by particle specie p with orientation o, the patch s has the right37

colour attributed to it:38

CLSl,p,o,c,s =(¬xLl,p,o ∨ ¬xAl,s,c ∨ xpcolp,φo(s),c)

∧ (¬xLl,p,o ∨ xAl,s,c ∨ ¬xpcolp,φo(s),c)
[5]39

The two last groups define multiple clauses each, the first enforces that all particle species are used, while the second enforces40

that all colours are used:41

∀p ∈ [1, Np] : Callp.p =
∨

∀l∈[1,L],o∈[1,R]

xLl,p,o [6]42

∀c ∈ [1, Nc] : Callc.c =
∨

∀p∈[1,Np],s∈[1,V ]

xpcolp,s,c [7]43

B. Thermodynamic properties. In Fig. S1 we present a study of the phase behavior of the two colour solution, C2(1), since it44

has the least colours and still assembles all structures. For simplicity, we restrict ourselves to the parameters cos θmax = 0.9845

and γ = 90◦, a combination which favors the snub cube structure. In panel a we plot the Energy-vs-density, E(ρ), curve46

at different temperatures, where we observe a non-monotonic behavior of the average energy E(ρ) with increasing density.47

This behaviour is characteristic of the self-assembly of finite-size aggregates (1): at low densities the system is in a gas phase48

of mostly monomers (unbounded particles); with increasing density particles start to aggregate and the energy decreases49

approaching the value E = −5/2 (in units of ε) which corresponds to an ideal gas phase of fully formed aggregates; for larger50

densities the gas phase competes with a percolated liquid phase that, due to geometric constraints originating from the patches51

arrangement on the surface of the particle, cannot form all available bonds and has thus higher energy than the gas phase. A52

thermodynamic motivation for the link between a E(ρ) minimum and phase separation is discussed in Ref. (2). Fig. S1b shows53

shapshots of Monte Carlo simulations of increasing densities and at three different temperatures, displaying the transition54

between a gas of monomers, to a gas of snub cubes, to a percolated liquid phase.55

In Fig. S1c we plot the fraction of monomers as a functions of density for the same state points as above, and additionally56

for the designs C4(1) and C5 at T = 0.1. From this, we measure the critical micelle concentration (CMC), defined as the57

number density at 50% of particles are in a monomeric state (ρ1 = 0.5). The CMC is plotted with (green) squares in Fig. S1d,58

2 of 14 Diogo E. P. Pinto, Petr Šulc, Francesco Sciortino, and John Russo



where it is seen to have an exponential behaviour as a function of the inverse temperature, 1/T . We also plot the points59

corresponding to the minima of the energy, which also show a similar exponential increase. The slope of these curves is well60

captured by the mean-field prediction (blue symbols) (3)61

ρ1 = 1
Vb

exp[ c(n)
(n− 1)

ε

kBT
] [8]62

where Vb is the bonding volume for the Kern-Frenkel interaction and c(n)/(n− 1) is the average number of bonds per particle63

in the clusters. Using c(n)/(n− 1) as a fitting parameter (4), we employ a least-squares minimization to fit the simulation64

results for the CMC. We find a value of c(n)/(n− 1) ≈ 1.728± 0.006 best approximates the line shown in Fig. S1.65

C. Yields of designs with multiple species. In Fig. S2 we show the yields measured for the designs with multiple species66

presented in subsection C of the SAT designs section. We show three different yield curves for the three different shells. Each67

curve corresponds to a different value of cos θmax.68
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a) b)

c) d)

Fig. S1. a) Average potential energy per particle as a function of density for different isotherms. For clarity, the x-axis is in log-scale. We observe a non-monotonic behaviour of
the average energy characteristic of self-assembly systems. b) Frontal snapshots of the system for different densities and temperatures. Images were obtained with OVITO,
where the colours represent particles that belong to the same cluster. For low densities, some colours repeat themselves even though particles are not bounded due to the
large number of unbounded particles which count as clusters of size one. c) Fraction of monomers as a function of the density. The color coding is the same as in a). Two new
curves were added at T = 0.1, with a different solution (as shown in Fig. 4). d) Inverse temperature as a function of density for the point at which the fraction of monomers is
equal to 50% (critical micelle concentration). A theoretical curve is drawn to estimate the CMC, it is calculated using Eq. Eq. (8). Emin corresponds to the energy minimum
in a). All results were simulated with the one specie and two colour design (except for the two curves in the top right plot), with γ = 90◦ and a cos θmax = 0.98.

4 of 14 Diogo E. P. Pinto, Petr Šulc, Francesco Sciortino, and John Russo



a) b) c)

Fig. S2. Average yield of the icosahedron, snub cube and snub dodecahedron (in Fig. 1) as a function of γ (a, b and c plots respectively). These yields correspond to the
results shown in Fig 5 for the designs with multiple species and mutual exclusions.
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Orientation o Mapping φo

1 (1,2,3,4,5)
2 (5,1,2,3,4)
3 (4,5,1,2,3)
4 (3,4,5,1,2)
5 (2,3,4,5,1)

Table S1. Mapping of the orientation to the patche numbers for the icosahedron.
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Position li Patch si Position lj Patch sj

1 1 3 3
1 2 9 2
1 3 5 3
1 4 6 1
1 5 10 2
2 1 4 3
2 2 11 1
2 3 7 3
2 4 8 1
2 5 12 3
3 1 7 1
3 2 9 3
3 4 10 1
3 5 8 3
4 1 5 1
4 2 11 2
4 4 12 2
4 5 6 3
5 2 6 2
5 4 9 1
5 5 11 3
6 4 12 1
6 5 10 3
7 2 8 2
7 4 11 5
7 5 9 4
8 4 10 5
8 5 12 4
9 5 11 4
10 4 12 5

Table S2. Topology of the icosahedron.
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Position li Patch si Position lj Patch sj

1 1 14 1
1 2 24 3
1 3 20 2
1 4 5 5
1 5 6 4
2 1 13 1
2 2 21 3
2 3 17 2
2 4 6 5
2 5 5 4
3 1 16 1
3 2 23 3
3 3 19 2
3 4 7 5
3 5 8 4
4 1 15 1
4 2 22 3
4 3 18 2
4 4 8 5
4 5 7 4
5 1 20 1
5 2 9 3
5 3 13 2
6 1 17 1
6 2 10 3
6 3 14 2
7 1 19 1
7 2 11 3
7 3 15 2
8 1 18 1
8 2 12 3
8 3 16 2
9 1 23 1
9 2 13 3
9 4 20 5
9 5 19 4
10 1 22 1
10 2 14 3
10 4 17 5
10 5 18 4
11 1 24 1
11 2 15 3
11 4 19 5
11 5 20 4
12 1 21 1
12 2 16 3
12 4 18 5
12 5 17 4
13 4 23 5
13 5 21 4
14 4 22 5
14 5 24 4
15 4 24 5
15 5 22 4
16 4 21 5
16 5 23 4
17 3 21 2
18 3 22 2
19 3 23 2
20 3 24 2

Table S3. Topology of the snub cube.
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Position li Patch si Position lj Patch sj
1 1 9 2
1 2 25 1
1 3 19 3
1 4 27 5
1 5 5 4
2 1 10 2
2 2 26 1
2 3 20 3
2 4 28 5
2 5 6 4
3 1 5 2
3 2 29 1
3 3 13 3
3 4 43 5
3 5 9 4
4 1 6 2
4 2 30 1
4 3 14 3
4 4 44 5
4 5 10 4
5 1 29 2
5 3 9 3
5 5 15 4
6 1 30 2
6 3 10 3
6 5 16 4
7 1 15 2
7 2 45 1
7 3 11 3
7 4 49 5
7 5 29 4
8 1 16 2
8 2 46 1
8 3 12 3
8 4 50 4
8 5 30 4
9 1 25 2
9 5 17 4
10 1 26 2
10 5 18 4
11 1 52 2
11 2 49 1
11 4 45 5
11 5 54 4
12 1 51 2
12 2 50 3
12 4 46 5
12 5 53 4
13 1 53 2
13 2 43 1
13 4 29 5
13 5 51 4
14 1 54 2
14 2 44 1
14 4 30 5
14 5 52 4
15 1 45 2
15 3 29 3
15 5 39 4
16 1 46 2
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16 3 30 3
16 5 40 4
17 1 59 2
17 2 31 1
17 3 25 3
17 5 55 4
18 1 60 2
18 2 32 1
18 3 26 3
18 5 56 4
19 1 37 2
19 2 27 1
19 4 25 5
19 5 35 4
20 1 38 2
20 2 28 1
20 4 26 5
20 5 36 4
21 1 39 2
21 2 41 1
21 3 23 3
21 4 47 5
21 5 45 4
22 1 40 2
22 2 42 1
22 3 24 3
22 4 48 5
22 5 46 4
23 1 56 2
23 2 47 1
23 4 41 5
23 5 60 4
24 1 55 2
24 2 48 1
24 4 42 5
24 5 59 4
25 4 31 5
26 4 32 5
27 2 37 1
27 3 41 3
27 4 39 5
28 2 38 1
28 3 42 3
28 4 40 5
31 2 59 1
31 3 34 3
31 4 57 5
32 2 60 1
32 3 33 3
32 4 58 5
33 1 35 2
33 2 58 1
33 4 60 5
33 5 37 4
34 1 36 2
34 2 57 1
34 4 59 5
34 5 38 4
35 1 58 2
35 3 37 3
35 5 57 4
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36 1 57 2
36 3 38 3
36 5 58 4
37 5 41 4
38 5 42 4
39 1 41 2
39 3 45 3
40 1 42 2
40 3 46 3
43 2 53 1
43 3 48 3
43 4 55 5
44 2 54 1
44 3 47 3
44 4 56 5
47 2 56 1
47 4 54 5
48 2 55 1
48 4 53 5
49 2 52 1
49 3 50 1
49 4 51 5
50 2 51 1
50 5 52 5
51 3 53 3
52 3 54 3
55 3 59 3
56 3 60 3
57 3 58 3

Table S4. Topology of the snub dodecahedron.
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N2(1)
Patch number Colour Interaction

1 A (A,A)
2 A (A,A)
3 A (A,A)
4 B (B,B)
5 B (B,B)

N2(2)
Patch number Colour Interaction

1 A (A,A)
2 B (B,B)
3 B (B,B)
4 A (A,A)
5 A (A,A)

N3(1)
Patch number Colour Interaction

1 A (A,A)
2 A (A,A)
3 A (A,A)
4 B (B,C)
5 C (C,B)

N3(2)
Patch number Colour Interaction

1 B (B,B)
2 A (A,A)
3 A (A,A)
4 C (C,C)
5 C (C,C)

N4(1)
Patch number Colour Interaction

1 B (B,B)
2 A (A,D)
3 D (D,A)
4 C (C,C)
5 C (C,C)

N4(2)
Patch number Colour Interaction

1 B (B,B)
2 C (C,C)
3 C (C,C)
4 A (A,D)
5 D (D,A)

N5
Patch number Colour Interaction

1 A (A,A)
2 C (C,B)
3 B (B,C)
4 D (D,E)
5 E (E,D)

Table S5. Different solutions used in Fig. 4. The first column indicates the patch number, the second the colour associated with it, and the
third column indicates the corresponding bond formed, the first letter corresponds to the colour of the patch and the second number to the
colour it interacts with.
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Icosahedron
Patch number Colour Interaction

Specie 1
1 C (C,B)
2 F (F,F)
3 C (C,B)
4 F (F,F)
5 D (D,A)

Specie 2
1 C (C,B)
2 B (B,C)
3 A (A,D)
4 B (B,C)
5 B (B,C)

Snub cube
Patch number Colour Interaction

Specie 1
1 F (F,F)
2 D (D,A)
3 A (A,D)
4 F (F,F)
5 C (C,B)

Specie 2
1 F (F,F)
2 D (D,A)
3 A (A,D)
4 B (B,C)
5 F (F,F)

Snub dodecahedron
Patch number Colour Interaction

Specie 1
1 K (K,K)
2 L (L,E)
3 D (D,D)
4 J (J,I)
5 H (H,G)

Specie 2
1 F (F,A)
2 A (A,F)
3 F (F,A)
4 G (G,H)
5 G (G,H)

Specie 3
1 B (B,C)
2 K (K,K)
3 A (A,F)
4 H (H,G)
5 H (H,G)

Specie 4
1 E (E,L)
2 C (C,B)
3 A (A,F)
4 H (H,G)
5 I (I,J)

Table S6. Different solutions used in Fig 5. The first column indicates the patch number, the second the colour associated with it, and the
third column indicates the corresponding bond formed, the first number corresponds to the colour of the patch and the second number to
the colour it interacts with.
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