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Fig. S1: Parallel computing first requires splitting the input dataset for each parallel task. Good load distribu-
tion requires even distribution of input data. A näıve approach can be to distribute load based on evenly spaced
genomic windows. However, CpG density and coverage are not even across an entire chromosome, leading to an
uneven distribution of methylation calls per parallel task. MetH5 stores methylation calls in a chunked fashion.
Definining parallel operations over MetH5 chunks results in an even load distribution across all parallel tasks.
Methylation call density plotted here is computed as the total number (from all mapped reads) of methylation
calls in a 1000bp window on HG002.
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Fig. S2: Benchmark on a simulated 2-sample dataset with lower coverage (15x). A) Compares the metrics
analyzed in Figure 4A for 30x coverage simulated data with a lower coverage simulation of the same methylation
profile at 15x. PycoMeth segmentations are largely unaffected, while MethCP and methylKit segmentations
suffer from the drop in coverage. B) and C) show DMR calling recall, precision and F1-score for low coverage
simulated data, analogous to Figure 4B-C, where each bar group corresponds to the respective interpretation of
the y-axis: recall as a measure of test power, precision as a measure of false discovery, and F1-score (harmonic
mean of recall and precision).
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Fig. S3: Permutation test on segmentations. In a permuted segmentation the original predicted segments retain
their sizes but are shuffled in their order. This simulates a random segmentation with the same granularity.
A) Distance from a discovered (predicted) changepoint to the nearest ground-truth changepoint. B) Distance
from each ground-truth changepoint to the nearest predicted changepoint.
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Fig. S4: Agreements between segmentations, setting one segmentation as reference and visualizing how many
of the reference segments can be identified by other segmentations. Full match: both sides of a segment
have been found. Partial match: one side of the segment has been found. No match: neither side of the
segment has been found. A-B use pycoMeth coarse segmentation as a reference in simulated and GIAB parent
comparison, respectively. C-D use MethCP as a reference and E-F use methylKit as a reference.
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Fig. S5: Percent positive agreement of different segmentations measured as intersection of CpGs in DMRs
called in the simulated data (A-B) and on chromosome 20 in the GIAB data parent comparison (C-D).
Segmentation on the simulated data was overall more consistent, potentially due to the more homogeneous
distribution of effect sizes. Agreement between pycoMeth coarse and pycoMeth segmentations is 79.3% in the
simulated analysis and 66.5% in the GIAB parent analysis.
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Fig. S6: Percent negative agreement of segmentations measured as intersection of CpGs not in DMRs called
in the simulated data (A-B) and on chromosome 20 in the GIAB data parent comparison (C-D).
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Fig. S7: Percent positive agreement of different tests measured as intersection of CpGs in DMRs called in the
simulated data (A) and on chromosome 20 in the GIAB data parent comparison (B).
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Fig. S8: Randomization test results for comparison between HG003 and HG004. For the randomized dataset,
for each sample and each chromosome LLRs have been shuffled to remove any read or site-dependent information.
A) False discovery rate computed as the number of CpGs in DMRs in the randomized dataset divided by
the same number for the real HG003 and HG004 comparison, plotted over the minimum segment differential
methylation rate. We observe high FDR in segments with less than 0.1 differential methylation. The most
conservative test implemented in pycoMeth (BS Diff) shows best FDR overall, and IHW appears to slightly
reduce FDR in general. B Distribution of segment differential methylation (represented by CpGs in the segment)
in called DMRs between the real and randomized dataset, from pycoMeth coarse with BS Diff test hypothesis
and IHW. C) Distribution of calls per segment in called DMRs between the real and randomized dataset, from
pycoMeth coarse with BS Diff test hypothesis and IHW.
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Fig. S9: Investigating over-calling of low-effect size methylation calls. A-B) Precision and recall for effect-size
capped DMR predictions with and without IHW on the high coverage simulation example. C-D) Matching
analysis on the low coverage simulation example.
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predicted positive (PP) = 0.25

 = Positive percent agreement (PPA)

Expected PPA for 2 independent callers is calculated as:

P*TPR^2+(1-P)*FPR^2

1- P*(1-TPR)^2 - (1-P)*(1-FPR)^2

Assume TPR=0.8 and FPR=0.08 (from simulation)
Assume P ~ PP (above)

Then E[PPA] = 46.4%
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In GIAB data (parent comparison, chr20):

Fig. S10: Illustrating how percent positive agreement is computed and how it relates to distribution of labels
(DMR CpG versus non DMR CpG), as well as how expected PPA is computed for evaluation of DMR calling
consistency. With the true positive rate (TPR) and false positive rate (FPR) estimated from the simulation
benchmark, and assuming 25% DMR CpGs as predicted by pycoMeth, the expected PPA would be 46.4%.
Comparing both pycoMeth segmentations yields a PPA of 66.5%, showing good consistency between DMRs
called on both segmentations.
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ACGTCGTACGTCGTATACGTACGT (grouped call by Nanopolish)

Pseudo-bulk conversion

pycoMeth read-level 
beta score difference test 
(more conservative)

Power depends 
on read depth

pycoMeth 
LLR-difference test
(less conservative)

Power increased 
by both dimensions

Read/segment rate computation

B C

Fisher test used on pseudo-bulk dataA

Additional power from  grouped Nanopolish call

pycoMeth Fisher exact testD

Power increased 
by both dimensions

Power increased 
by both dimensions

Unmethylated Methylated
Methylation calls

← certainty →

Fig. S11: Illustration of where different differential methylation testing methods draw their power. A) In
attempting to analyze Nanopolish methylation calls with tools developed for bulk bisulfite sequencing data, we
create pseudo-bulk data. Tests generated for pseudo-bulk comparison (such as MethCP which we evaluated in
this work) test based on CpG-level methylation rates and coverage across all reads and therefore draw power from
the segment size and read depth. Furthermore, since Nanopolish generates grouped calls for nearby CpG-sites,
some calls are therefore not independent and thus artificially generate more testing power. B) PycoMeth with
the parameter ”–hypothesis llr diff” performs a less conservative test implemented in the pycoMeth package,
where each individual methylation call is treated as independent and samples are compared based on their
LLR distribution. Here discovery power is determined also by a combination of segment length and sequencing
depth. C) PycoMeth with the parameter ”–hypothesis bs diff” instead computes a methylation rate per read
per segment and draws power only from the independent information (sequencing depth). D) Fisher Exact test
as implemented in pycoMeth for two-sample tests with the parameter ”–hypothesis count dependency”.
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