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Supplementary Figures 1033 
 1034 

 1035 
 1036 
Figure 1 supplement: (A-B) detail of staining and quantification for pSMAD1, ISL1, and NANOG after BMP treatment 1037 
in the presence of Wnt inhibitor (IWP2) showing low correlation between fate and final BMP signaling levels in a 1038 
micropatterned colony. Solid circles indicate two amnion-like cells with high and low signaling levels respectively, 1039 
and dashed circles similarly indicate two pluripotent cells at different signaling levels. (C) A representative 1040 
micropatterned colony of RUES2 cells expressing RFP::SMAD1 at t = 30 hours after treatment with BMP4, showing 1041 
nuclear localization of SMAD1 specifically at the colony edge. (D) Kymograph of mean SMAD1 signaling in N=5 1042 
micropatterned colonies treated with BMP4. (E) Mean signaling within the clusters of signaling histories in fig 1H. (F) 1043 
Separated channel images showing the DAPI, ISL1, SOX2, and BRA stains corresponding to the colonies shown in Fig. 1044 
1J. (G) Comparison of the average profile of cell fate markers (left) and clusters of signaling histories (right) for BMP4-1045 
treated colonies. (H) kymograph showing average spatiotemporal dynamics of SMAD1 in micropatterned colonies 1046 
treated with BMP4 and WNTi (IWP2). (I) Separated channel images showing the DAPI, ISL1, SOX2, and BRA stains 1047 
corresponding to the colonies shown in Fig. 1N.(J) Scatterplot of the first two PCs of radially averaged signaling 1048 
histories, colored for cluster assignment as in Fig 1G. (K) Predicted fate map based on the clustering in (J), determined 1049 
as in Fig 1I. (L) Example of two different ways to assign the signaling histories corresponding to the ‘elbow’ of the 1050 
PCA plot in colonies treated with BMP4 + WNTi, along with the resulting radial profiles for each assignment, 1051 
compared to the profile of ISL1 and SOX2 expression in those colonies. Scale bars 50um. 1052 
  1053 
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 1054 
Figure 2 supplement: (A) Example image of nuclei with overlaid classification of cells as non-dividing 1055 
(yellow), dividing (magenta), and immediately post-division (cyan). (B) Linking live to fixed cells. Image of 1056 
live nuclei is shown in green, and fixed nuclei in magenta. Black arrows show links from the centroids of 1057 
fixed nuclei to centroids of live nuclei.  1058 
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 1059 
 1060 
Figure 3 supplement: (A) immunofluorescence staining for NANOG and ISL1 for different conditions, first number is 1061 
density, .e.g 15k = 15,000 cells / cm2, second number is BMP4 dose, e.g. B1 = 1ng/ml BMP4. (B) Quantification of (A). 1062 
(C) Heatmap plot of signaling distribution over time corresponding to Fig. 3AB. (D) Correlation of features and 1063 
principal components before denoising. (E-F) Example signaling histories before and after denoising via data 1064 
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diffusion with MAGIC, with sigmoid fits to the raw and denoised data. (G) Scatterplot of signal integral against 1065 
principal component 1, with and without denoising. (H) Variance explained in signaling distribution from (C) by the 1066 
first 10 PCs for raw and denoised signaling histories. (I) Representative single-channel IF images showing expression 1067 
of all 7 stained genes in the same field of view. (J) Contour plot of a two-component Gaussian mixture model fit to 1068 
fate marker expression, overlaid on a scatterplot of ISL1 vs. NANOG. (K) Table of values of a measure of cluster 1069 
separation. The marginal distribution of the 7D Gaussian mixture model (GMM) is taken along each axis indicated 1070 
and the separation of clusters along that direction is taken as the ratio of the difference in the means of the two 1071 
GMM components to the sum of their standard deviations. A higher value indicates better separation. (L) UMAP plot 1072 
showing the separation of cells into two clusters with Leiden clustering. (M) Table of differential expression of each 1073 
marker between the Leiden clusters, showing highest absolute value for ISL1 and NANOG. (N) mean RFP::SMAD1 1074 
signaling in amnion and pluripotent cells. (O) Scatterplots of log(ISL1 / NANOG) and signaling features under various 1075 
denoising schemes for data in Fig. 3A-M. (P) Scatter plots of signaling features vs. log(ISL1/NANOG) colored for 1076 
condition with and without denoising for data in Fig. 3K-P. (Q) Heatmap of kernel density estimate after denoising 1077 
of conditional distributions of log(ISL1 / NANOG) with respect to low level and high level of signaling, overlaid with 1078 
a scatterplots of data points before (circles) and after denoising (dots). Dashed lines show separation of cells into 1079 
amnion-like and pluripotent based on log(ISL1 / NANOG) or on signaling features. The percentage of cells in each 1080 
quadrant is indicated, with correct assignments in the top right and bottom left quadrant of each heatmap. 1081 
  1082 
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 1083 
 1084 
Figure 4 supplement:  (A) GFP::SMAD4 images corresponding to data in Fig. 4H, showing sparsely seeded cells 1085 
treated with 50ng/ml BMP4 and different doses of LDN193189 (BMPRi). (B) Kernel density estimate (KDE) of the 1086 
log(ISL1/NANOG) distribution in each condition shown in 4D. (C) Kernel density estimate (KDE) of the 1087 
log(ISL1/NANOG) distribution in each condition shown in 4E. Legend in (B). (D) KDE of the log(ISL1 / NANOG) 1088 
distribution after 42h of differentiation for conditions in 4H. (E) KDE of the log(ISL1 / NANOG) distribution after 42h 1089 
of differentiation for conditions in 4I. Legend in (D). (F) Average level of SMAD4 signaling before BMP inhibition as a 1090 
function of distance from the colony edge for different durations of BMP signaling. (G) Integral of SMAD4 signaling 1091 
at 42h as a function of distance from the colony edge for different durations of BMP signaling. (H) GFP::SMAD4 for 1092 
a BMP treated micropatterned colony treated with 200ng/ml BMP4 shown before (29h, left) and after BMP signaling 1093 
inhibition (31h, right). (I-M) Kymographs of average SMAD4 signaling in N=3 micropatterned colonies each for five 1094 
signaling durations. (N-O) Representative IF images showing the spatial extent of ISL1 and NANOG expression in 1095 
micropatterned colonies exposed to different durations of BMP signaling. (P) Quantification of percentage of 1096 
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differentiated cells (ISL1+NANOG-) as a function of distance from the colony edge for different durations of BMP 1097 
signaling. (Q) Percent amnion differentiation vs. level of BMP signaling as in Fig. 4P, colored for distance from the 1098 
colony edge. (R) Representative IF images showing the spatial extent of GATA3 expression in micropatterned 1099 
colonies exposed to different durations of BMP signaling. (S) GATA3 expression in radial bins as a function of SMAD4 1100 
level before removal of BMP4 for each signal duration. Error bars are standard deviation over the same radial bin in 1101 
N = 3 replicate colonies. (T) GATA3 expression in radial bins as a function of total SMAD4 integral. Error bars are as 1102 
in E. Scale bars 50um.  1103 
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 1104 
 1105 
Figure 5 supplement: (A) Normalized expression of TFAP2C, NANOG, HAND1, and OCT4 over time for different 1106 
signaling levels, measured with time-series IF. Error bars are standard deviation across N = 6 replicate images. (B) 1107 
Average SMAD4 dynamics measured in the treatment conditions for which time-series IF was performed. (C) NANOG 1108 
and TFAP2C expression at 12 hours, plotted against SMAD4 signaling level. (D) ISL1, HAND1, and OCT4 expression at 1109 
48 hours, plotted against SMAD4 signaling level, showing switch-like reliance. (E) Histogram of the cumulative log2 1110 
fold change over all genes in the time-series bulk RNA seq data. Genes with a fold change between the two dotted 1111 
lines were not included in hierarchical clustering or subsequent analysis. (F) Expression over time for example genes 1112 
measured with bulk RNA seq. Expression of amnion (left) and pluripotency (middle) genes that were also measured 1113 
with time series IF, and additional amnion genes (right). (G) Idealized SMAD4 dynamics used as input to the ODE 1114 
model, with level inferred from data in fig 4D. (H) GFP::SOX2 dynamics over the course of 42 hours of differentiation 1115 
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with indicated treatments applied for 42 (left) or 32 (right) hours, overlaid with fits of the simple ODE model 1116 
described by the equation above it for SOX2, and the equation for ISL1 as in Fig. 4K. (I) Representative IF images 1117 
showing expression of SOX2 and NANOG after 12 hours in pluripotency conditions with or without doxycycline. (J) 1118 
Violin plot of SOX2 expression after 12 hours with or without doxycycline in pluripotency conditions. (L) 1119 
Representative IF images showing ISL1, SOX2, and NANOG expression after 42 hours of treatment with BMP4 + WNTi 1120 
with or without doxycycline. (M) Violin plots of ISL1, NANOG, and SOX2 expression with or without doxycycline in 1121 
differentiation conditions. 1122 
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Algorithm for automated single-cell tracking

Seth Teague, Idse Heemskerk

March 29, 2023

Algorithm development

To construct tracks of single cells in time-lapse live-cell microscopy data, we took a “tracking by
detection” approach (Magnusson et al. 2015), dividing the problem into two steps: (1) segmentation
(detection) of all cells in each frame of the time-lapse, and (2) building tracks by linking segmented
cells frame-to-frame. A custom single-cell tracking algorithm, based on the approach to particle
tracking proposed in (Jaqaman et al. 2008), and similar to the implementation in the popular Fiji
plugin Trackmate (Tinevez et al. 2017), was written in MATLAB and integrated into the image
processing pipeline.

The approach taken in (Jaqaman et al. 2008) is to find an approximately optimal solution
globally by breaking the tracking problem into two steps. Following this approach, we first link
cells one-to-one or one-to-none in consecutive frames, assigning zero or one links from each cell in
one frame to cells in the subsequent frame. This is followed by a “gap-closing, merging, splitting”
(GMS) step, which addresses common segmentation and linking errors. Gap-closing connects the
end of a track in frame t1 to the beginning of a track in frame t2 > t1 + 1, and is intended to
account for nuclei leaving and re-entering the frame or that fail to be segmented in one or more
frames. Merging connects the end of a track to the middle of another track, and accounts for two
nuclei in frame t being segmented as a single nucleus in frame t+1. Conversely, splitting connects
the beginning of a track in frame t to the middle of a track in a previous frame, and accounts for
two nuclei in frame t being segmented as a single nucleus in frame t − 1 or to a cell dividing in
frame t− 1. These two steps are each cast as a linear assignment problem (LAP), in which a cost
is assigned to each possible assignment and the globally optimal solution of the LAP minimizes the
sum of possible costs. Fast algorithms have been developed to find the optimal solution for a given
cost matrix, so the essential problem is to determine an effective way to assign costs to possible
assignments, generally based on the proximity and morphological similarity of nuclei to be linked.

In addition to the general difficulty of robustly tracking through a time-lapse with segmentation
errors, an additional challenge is tracking through cell division. To account for this, we modified
the approach in Jaqaman to account for both segmentation errors and cell division. To facilitate
the identification of dividing cells, we used the object-classification pipeline in Ilastik (Berg et al.
2019) to label all nuclei as dividing (M-phase, with chromosomes aligned along the metaphase plate
immediately prior to cell division) or non-dividing. In the original algorithm, at the frame-frame
linking stage each cell in frame t is linked to at most one cell in frame t + 1, and splits are only
assigned later. We maintain this general framework, looking for only one daughter cell for each cell
marked as dividing during frame-frame linking, and aiming to identify the second daughter cell at
the merging, splitting, gap closing step. Additionally, the cost function for linking or splitting from
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dividing nuclei are modified to facilitate identification of progeny cells, as described below.

In addition to modifying the frame-frame linking and GMS steps to better handle cell divisions,
we add a step for merge resolution. This is motivated by the observation that merging events occur
purely due to segmentation errors and so our final tracks should not incorporate the merging of
two cells into a single object. To resolve merges, we first look for a split from the merged track,
indicating that two nuclei moved close together and then apart again, and determine which of the
input tracks to the merge more closely matches each of the output tracks from the split. If there
is no subsequent split, we assume that either a merge was followed by separation of the two nuclei
that failed to be detected as a split, or that the merge was assigned in error. In either case, we
determine which input track to the merge more closely matches the track after the merge, and
discard the other link.

Frame-frame linking

To link cells in consecutive frames, we define the pairwise linking cost between each cell in
frame t and each cell in frame t+1, as well as the cost for ‘disappearance’ of cells from frame t and
‘appearance’ of cells in frame t + 1; that is, the cost for a cell in one frame to fail to be linked to
any cell in the other. The cost for linking cell i in frame t to cell j in frame t + 1 is based on the
cells’ xy positions, as well as the areas and intensities of the nuclei, and whether cell i is marked as
dividing. The base cost for linking two cells is the squared euclidean distance between them, given
by

Dij = (xi − xj)
2 + (yi − yj)

2

To obtain the final cost, we multiply this distance by weights based on the similarity of the two
nuclei in area A and intensity I. If we define

dA =
2|Ai −Aj |
Ai +Aj

, dI =
2|Ii − Ij |
Ii + Ij

,

the the final cost is given by
cij = Dij (1 + dI) (1 + dA) .

If cell i is labeled as dividing, an additional multiplicative weight is calculated based on the stereo-
typical rapid movement of daughter nuclei in opposite directions orthogonal to the orientation of
the metaphase plate. This weight favors linking to prospective daughter cells found in a direc-
tion orthogonal to the metaphase plate. During image processing, the major and minor axes and
orientation of an ellipse approximating the nucleus are calculated for each cell, and we use the
orientation of cell i’s major axis as the orientation of the metaphase plate. We define a normalized
vector v̂ orthogonal to that orientation. We additionally define the vector pointing from cell i to
cell j,

u⃗ =

[
xj − xi
yj − yi

]
,

and normalize it to û = u⃗/∥u⃗∥. The additional weight for linking cell i to cell j is then

w =
3

2
− |⟨û, v̂⟩|3,

and the resulting overall cost is

cij = w ·Dij (1 + dI) (1 + dA) .

2
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The inner product ⟨û, v̂⟩ depends on the angle between û and v̂ and varies from −1 (antiparallel) to
0 (orthogonal) to 1 (parallel). Our weight then varies from 3/2 (orthogonal) to 1/2 (either parallel
or antiparallel as daughter cells travel in both directions). Note that the range of values taken by
w is unaffected by cubing the inner product, but results in a wider range of angles close to π/2
producing close to the maximum weight.

We may then construct the cost matrix A with rows corresponding to prospective links from
the nt cells in frame t and columns corresponding to prospective links to the nt+1 cells in frame
t+ 1, so that A(i, j) = cij , i.e.,

A =

 c11 . . . c1nt+1

...
. . .

...
cnt1 . . . cntnt+1

 .

For computational efficiency, we additionally take as an input a maximum linking distance that
defines the maximum distance a cell is expected to move between consecutive frames. We treat
links between cells at a distance greater than this cutoff as impossible by setting the linking cost
to Inf (arbitrarily large). In practice, we used a maximum linking distance of about 15 µm. We
additionally define the alternative costs for appearance and disappearance for each cell to be 105%
of the maximum finite linking cost. Cost matrices for link rejection are constructed as follows: B1

is an nt × nt diagonal matrix, with the cost for no link to be made to cell i in frame t at entry
B1(i, i). All off-diagonal entries are set to Inf. Likewise, B2 is an nt+1 × nt+1 diagonal matrix
storing the costs to reject links to cells in frame t+1 and off-diagonal costs set to Inf. The resulting
overall cost matrix is constructed as a block matrix as:

C =

[
A B1

B2 AT

]
.

Assignments are made by choosing one cost in each row such that no two costs come from the same
column and the sum of the costs is minimized. This optimization is performed with the Jonker-
Volgenant algorithm for LAPs (Jonker and Volgenant 1987) implemented in MATLAB (Cao 2023).
Note that the inclusion of the transpose of A in the lower corner ensures that the number of
assignments is the same along the rows and columns so that C is a square matrix, and column
indices of the assignments in the first nt rows will match the row indices of the last nt columns.
Likewise, row indices of the assignments to the first nt+1 columns will match the column indices of
the last nt rows.

Gap closing, merging, splitting

The GMS step aims to tie up loose ends (and beginnings) from the frame-frame linking step.
Track ends are cells without a link to a cell in a subsequent frame and track beginnings are those
without a link from a cell in a previous frame (note that these are not mutually exclusive: if a
cell has no link in the previous or in the subsequent frame it is both the beginning and end of its
own one-cell track). Unlike in frame-frame linking, this step is not local in time and optimizes over
possible assignments in the entire time series at once. Each track end is matched to either a track
beginning (gap closing), a mid-point of another track (merging), or is given no assignment (track
termination). Conversely, each track start is matched to a track end (gap closing), a mid-point
of another track (splitting), or is not linked (track initiation). The structure of the cost matrix
constructed to handle these possible assignments is more complex, and is constructed as a block

3
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matrix as

C =


A1 A2 A3 Inf
B1 Inf Inf B4

C1 Inf AT
1 BT

1

Inf D2 AT
2 Inf


Here A1 contains costs for gap closing, A2 for merging, A3 for track termination, B1 for splitting,
and C1 for track initiation. B4 is a diagonal matrix with costs to reject splits and D2 likewise has
costs to reject merges. As in the frame-frame linking step, the cost matrix C is constructed to be a
square matrix with the same possible assignments found along columns as along rows to satisfy the
topological structure of the LAP. For instance, it can be seen that the first row of block matrices
determines assignments from track ends, as does the third column of block matrices.

In constructing cost matrices, we again impose thresholds for computational efficiency, so links
are only considered between cells within a maximum distance δxymax (in practice, about 22.5 um)
and a maximum number of time steps apart δtmax (in practice, five frames).

The matrix A1 with costs for gap-closing is similar to the matrix of pairwise linking costs in
the frame-frame linking step. Each entry of A1 stores the cost to link a track end at nucleus i in
frame t1 to a track beginning at nucleus j in frame t2 with t2 > t1. If the nuclei are within the
threshold distances of one another, t2 ≤ t1+ δtmax and ∥[xj −xi, yj − yi]

T ∥ ≤ δxymax, then the cost
is given by

cij =
[
(xi − xj)

2 + (yi − yj)
2 + (t2 − t1)

2
](

1 +
|Ai −Aj |

Ai

)
.

As in the frame-frame linking step, if cell i was labeled as dividing, this cost is multiplied by an
additional weight w based on the angle between the normal vector to cell i’s major axis and the
vector between cell i and cell j. Similar to the frame-frame linking step, we build a diagonal cost
matrix A3 to reject links from each track end (cost for track termination) and C1 to reject links
to each track start (cost for track initiation). Like in the frame-frame linking step, these costs are
taken to be slightly larger than the maximum finite gap-closing cost.

The matrix A2 holds costs to merge track ends to midpoints of other tracks, where a track
midpoint is any cell that is neither a track end nor a track start, i.e., that has a link both before
and after it. Given cell i in frame t1 that is a track end, we find all track midpoints within the time
and distance cutoffs of the track end. For a given midpoint cell j in frame t2 ≤ t1 + δtmax, the cost
to merge cell i into cell j is given by

mij =
[
(xi − xj)

2 + (yi − yj)
2
](

1 +
|Ai +Ajprev −Aj |

Aj

)
,

where Ajprev is the area of the nucleus preceding cell j in its track, so that the cost of accepting a
merge is lowest when the area of the merged nucleus is the sum of the areas of the two input nuclei.
The alternative cost matrix to reject merging holds the cost of rejecting merges for each midpoint
for which at least one merge is considered, and is given by

bj = Davg

(
1 +

|Ajprev −Aj |
Aj

)
,

where Davg is the averaged squared frame-frame displacement for tracks constructed in the frame-
frame linking step. Then, the cost for rejecting a merge is lower than the cost of accepting the
merge if |Ajprev −Aj | < |Ajprev +Ai −Aj |, and if Davg < (xi − xj)

2 + (yi − yj)
2.

4
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The matrix B1 holds costs to split track starts from midpoints of other tracks. Similar to the
construction of the cost matrix for merging, we take a track start cell i in frame t1, and find all
track midpoints within the time and distance cutoffs. For a given midpoint cell j in frame t2 with
t1 > t2 ≥ t1 − δtmax that is not marked as dividing, the cost to split cell i from cell j is given by

sij =
[
(xi − xj)

2 + (yi − yj)
2
](

1 +
|Ai +Ajnext −Aj |

Aj

)
,

so the cost is lower if the area before the split is closer to the sum of the areas of the two cells after
the split. If cell j is marked as dividing, however, we assume that the first link is to one daughter
cell and attempt to find and link to the other daughter cell. The position of the first daughter
cell is used to find the expected position of the other, based on the observation that immediately
after division, sibling cells move symmetrically away from the location of the parent nucleus prior to
division. To find the expected position of the remaining sibling nucleus, the displacement of the first
sibling from the parent is found, and the expected position is taken to be at the same displacement
but in the opposite direction. The linking cost then uses the distance of each prospective cell from
this expected position instead of the distance from the parent cell itself. The resulting linking cost
is

sij =
[
(xi − xexp)

2 + (yi − yexp)
2
](

1 +
2|Ai −Ajdaughter|
Ai +Ajdaughter

)
,

Where Ajdaughter is the area of the first daughter nucleus in the same frame as the track start.
Much like for merging, the alternative cost to reject splits is

dj = Davg

(
1 +

|Ajnext −Aj |
Aj

)
.

After all finite costs have been computed and the aggregate cost matrix is constructed as a block
matrix, we numerically optimize to find the best solution to the LAP.

Merge resolution

We resolve merges with the aim of separating the individual tracks that were inputs into the
merge at later time points. If a split occurs from the same track soon after a merge (within the
maximum time cutoff for gap-closing), and the nucleus from which the split occurred was not
labeled as dividing, we assign each input to the merge to one output from the split and discard the
links in between; otherwise, one of the links in to the merge is discarded, depending on which input
cell bears greater morphological similarity to the cell after the merge. These one or two assignments
to resolve each merge are made as a (very small) LAP with costs as in the frame-frame linking step.

Linking live to fixed cells

At the end of live-cell imaging, each sample was fixed and immunofluorescence stained, and we
include an additional step to link live cells at the end of the time-series to fixed cells. To ensure
a consistent frame of reference, the image of nuclei in the last live frame is aligned to the DAPI
stain of the fixed cells with phase correlation-based image registration and the positions of fixed
nuclei are adjusted accordingly. Linking of individual cells is done in the same way as the frame-
frame linking step during tracking, but with the linking cost based only on distance between nuclei
and similarity in area. We do not consider nuclear intensity, which does not necessarily correlate
between live data in which nuclei are labeled with fluorescent fusion proteins and fixed data where
they are stained with DAPI. Sparse labeling introduces a potential complication to this step: only

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 10, 2023. ; https://doi.org/10.1101/2023.04.10.536068doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536068
http://creativecommons.org/licenses/by-nc-nd/4.0/


10-20% of cells have nuclear markers in the live data, but every cell is stained for DAPI, including
those that were not labeled live, so each live nucleus has potentially many more fixed nuclei nearby
as candidates to which to link. However, we find that because there is little cell movement in the
short time between the end of the live time lapse and the time that cells were fixed, our rigid image
registration is robust to only a subset of nuclei being visible in the live data, and the alignment
results in corresponding nuclei being very close in the aligned live and fixed data. To prevent
erroneous linking to another nearby nucleus in the case that the true fixed nucleus corresponding
to a given live cell failed to be properly segmented, we use a reduced maximum linking distance of
10 µm, or about one cell diameter, at this step.

Additional implementation details

The algorithm was implemented in MATLAB, and incorporated into a larger image-processing
pipeline.

The the optimal set of assignments for each LAP in the tracking pipeline is computed numeri-
cally with a MATLAB implementation (Cao 2023) of the Jonker-Volgenant algorithm (Jonker and
Volgenant 1987).

To account for shifts in the entire field of view between consecutive time points, we implemented
a “dejittering” algorithm. We iterated over all frames in the time lapse and at each time loaded a
maximal intensity projection of the z stack of images of nuclei at time ti and ti+1 and used phase
correlation to determine a global shift between the two images. At each time point, we applied the
cumulative shift up to that time to the segmented cell positions in that time, effectively aligning
the entire time-lapse to the field of view of the first frame. These updated cell positions are then
used in the construction of cost functions for linking during tracking.

Parallelization is used to speed up the algorithm: at the frame-frame linking step, pairs of
frames are linked in parallel, and in the gap closing, merging, splitting step, costs are computed in
parallel as each block of the cost matrix is constructed.
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Mathematical model of BMP-SMAD4 integration

Seth Teague, Idse Heemskerk

March 30, 2023

Model development

We aimed to develop a mathematical model to explain how a simple gene regulatory network
(GRN) could integrate BMP-SMAD4 signaling in time. In the simplest model, the expression of an
integrator gene directly reflects the time integral of SMAD4 signaling. This is analogous to looking
for genes with a rate of change that is a linear function of BMP-SMAD4 signaling, i.e., those that
can be modeled with an ordinary differential equation (ODE) approximately as

d[GENE]

dt
= λ[SMAD4](t),

where [GENE] gives the concentration of protein and [SMAD4](t) is the (time-varying) level of
BMP signaling. Integration of the above results in production of the gene product that is directly
proportional to the signaling integral, i.e.,

[GENE](t) = λ

∫ t

0
[SMAD4](τ) dτ + [GENE]0,

where the initial concentration of protein is given by [GENE]0 = [GENE](0). More generally, we
can allow an additional constant term β for constitutive production, so that protein production
remains a linear function of signaling. Additionally, as protein products are not indefinitely stable,
we add a decay term that is proportional to the current concentration of protein. The ODE model
then becomes

d[GENE]

dt
= β + λ[SMAD4](t)− α[GENE].

Our screen for genes for which the rate of change is linear with SMAD4 signaling level found
SOX2 to be a promising candidate, as measured at the protein level with immunofluorescence,
and at the transcript level with RNA sequencing. If SOX2 is our integrator, its dynamics should
roughly follow integrated SMAD4 signaling, and it should repress late-response amnion genes so
that they are expressed only if SOX2 goes below a threshold level. We first aim to determine
whether SOX2 dynamics can be plausibly modeled with the dynamics described above. SOX2 is
negatively regulated by BMP signaling, so we rewrite the ODE as

d[SOX2]

dt
= β − λ[SMAD4](t)− α[SOX2], (1)

where λ is taken to be positive. In the absence of BMP signaling, [SMAD4] = 0 and SOX2
expression tends to a steady-state value of β/α balancing constitutive production and decay. A
model of the form

dy

dt
= f(t)− αy,
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where f is a function of t but not y has the solution

y(t) = e−αt

∫ t

0
f(t)eατ dτ + y0e

−αt.

So the concentration of SOX2 is modeled by

[SOX2](t) = β/α+ ([SOX2]0 − β/α)e−αt − λe−αt

∫ t

0
[SMAD4](τ)eατ dτ.

We assume that SOX2 is at or very near the steady state β/α in pluripotency maintenance con-
ditions prior to stimulation of BMP signaling, i.e. [SOX2]0 = β/α. We further normalize this
pretreatment expression level to one, so the expression for SOX2 as a function of time reduces to

[SOX2](t) = 1− λe−αt

∫ t

0
[SMAD4](τ)eατ dτ. (2)

We see that the level of SOX2 protein reflects an exponentially-weighted integral of SMAD4
signaling, which closely approximates a direct integral of SMAD4 signaling for small α (where
e−αt ≈ eαt ≈ 1). As a further simplification, if we consider conditions in which SMAD4 signaling
is maintained at a steady level we can find the integral of [SMAD4] analytically and see that the
SOX2 level exponentially decays towards the new steady state 1− λ[SMAD4]/α as described by

[SOX2](t) = 1− λ[SMAD4]

α

(
1− e−αt

)
.

Model fitting

To fit the model to experimental data, we measured GFP::SOX2 dynamics for 42 hours of
BMP4-driven differentiation in conditions in which we could control the level and duration of
signaling. Briefly, as described in the main text, we treated sparsely seeded hPSCs with a high
dose of BMP4 to ensure uniformly high response, and controlled the signaling level via titration of
a BMP receptor inhibitor (BMPRi). To control the duration, we shut down signaling by removing
BMP4 and adding a high dose of BMPRi. We measured GFP::SOX2 dynamics at a range of
signaling levels with durations of 42 and 32 hours (SI Fig 5H). As an indicator of differentiation
to amnion, we measured ISL1 expression at the end of 42 hours with immunofluorescence. We
approximated input SMAD4 dynamics as flat with levels measured in cells expressing GFP::SMAD4
in the same treatment conditions as the GFP::SOX2 cells (Fig 4; SI Fig 5G). We confirmed the
linear relationship between SMAD4 signaling level and rate of SOX2 decay with a linear fit to the
first 16 hours of GFP::SOX2 dynamics in each condition (Fig 5H). To determine the values of the
parameters α, β, and λ in the model, we collected values of SOX2, SMAD4, and the slope of SOX2,
averaged over short time windows to reduce the effect of measurement noise, and fit a plane defined
by

d[SOX2]

dt
= β − λ[SMAD4]− α[SOX2],

to our measured values of d[SOX2]/dt, [SOX2], and [SMAD4]. Numerically integrating the model
with the fitted parameters and with measured input SMAD4 dynamics, we see generally good
agreement with measured SOX2, but with some discrepancies between model and data appearing
later in the course of differentiation in conditions with the highest levels of signaling (SI Fig 5H,
red and orange curves). In particular, the model predicts faster initial decay followed by a plateau
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at later times, and for conditions in which BMP signals are removed, the model predicts sharp
recovery of SOX2 levels. Signaling is completely shut down after addition of a high dose of BMPRi,
so SOX2 should exponentially approach the initial level in all of these conditions. Because of this,
the initial slope of recovery is expected to be highest for those with the lowest SOX2 level at the
time of BMPRi addition. In contrast, SOX2 fails to robustly recover upon addition of BMPRi
in high-signaling conditions (SI Fig 5H, right). Notably, there is a more pronounced recovery in
SOX2 levels after BMPRi addition in conditions with lower signaling. We hypothesized that failure
of SOX2 to recover after signaling shutdown in conditions with higher initial signaling reflected
commitment to exit pluripotency. Because this effect seems to be pronounced only at later times in
high-signaling conditions, we took it to be caused by repression of SOX2 by late-response amnion
genes which only turn on in those conditions, and used ISL1 as a representative example of that class
of genes. We modeled SOX2 as repressing expression of ISL1, as expected if it is our integrator
gene. We additionally modeled repression of SOX2 by ISL1 so that SOX2 expression is further
downregulated once ISL1 begins to be expressed. This fits the paradigm of mutually inhibitory
regulatory programs specifying distinct cell fates that are widespread in development (Levine and
Davidson 2005, Delás and Briscoe 2020). To implement this mutual repression mathematically, we
take each gene to act on the other with Hill function dependence:

d[SOX2]

dt
=

β − λS [SMAD4]

1 + ([ISL1]/KIS)
nS

− αS [SOX2], (3)

d[ISL1]

dt
=

λI [SMAD4]

1 + ([SOX2]/KSI)
nI

− αI [ISL1]. (4)

In the above equations, the parameters K describe the threshold for 50% inhibition of one gene
by the other and n describes the steepness of the Hill function. In our time series expression data
for ISL1 (Fig 5A, SI Fig 5F), we see that it remains close to zero until 20-24 hours, when expression
rapidly switches on, suggesting that there is a sharp threshold for regulation of ISL1. We therefore
modeled repression of ISL1 by SOX2 with a switch-like Hill function by setting nI = 4. On the
other hand, repression of SOX2 by the amnion transcriptional program appears more graded, and
we take nS = 2. We used simulated annealing to fit equations (3) and (4) to measured SOX2 and
ISL1 expression data, using the same SMAD4 input dynamics described above. Briefly, the Values
of each parameter must be initialized: we used values found with the previous fit of SOX2 alone,
i.e., λI = λS = λ, αI = αS = α, and βS = β. We further initialized the inhibition threshold
coefficients KSI and KIS at 0.5. We then numerically evaluated the system of ODEs (3) and (4)
with those parameters and the SMAD4 inputs described above, and calculated the mean squared
error E between the target and calculated expression levels. Then for a set number of iterations,
we do the following: perturb the parameters by applying Gaussian noise to each with a variance
of 10−5 and calculate the new error Enew after running the model with the new parameters. If
the new error is lower, accept these values as the new parameter values; otherwise, we may still
accept the new parameter values with probability exp (−∆E/kBT ), where ∆E = Enew − E, T is
the ‘effective temperature’ for the annealing, and kB is a tunable constant. The value of T linearly
decreases to zero over the course of the iterations so that accepting a set of parameters resulting
in a higher cost becomes increasingly unlikely as the algorithm progresses, allowing exploration
of the parameter space at early iterations to avoid becoming trapped at a local minimum in the
parameter landscape, and settling in to a specific minimum at the end.

We see that the resulting simulated SOX2 dynamics align more closely with the measured
dynamics, and resolve the discrepancies mentioned above (Fig 5I). Furthermore, we see that the
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relationship between the SMAD4 integral and ISL1 expression seen in the data is conserved for
both signaling durations in our model (Fig 5J).

To generate the results shown in Fig 5IJ, we used the following parameter values:

Parameter Value Meaning

(αS , αI) (0.0363, 0.09) protein dilution + degradation rates

β 0.0329 constitutive SOX2 production rate

(λS , λI) (0.0397, 0.1240) coefficients for regulation by SMAD4

(nS , nI) (2, 4) Hill function coefficients

(KSI ,KIS) (0.266, 0.3995) inhibition thresholds
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