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S1 Parameter values for the introductory model885

In this section, we provide the parameter values of the introductory model Eqns. (3) and (4) used886

to illustrate the adjoint method. As a reminder, the model describes a population in a sink habitat887

that is currently maintained through immigration, but the habitat is being restored so eventually the888

population will become self-sustaining. We use the abbreviation PU for the arbitrary population unit,889

and VU for the arbitrary value unit.890

• Unregulated per-capita birth rate: We choose b=1/year.891

• Per-capita loss rate: We want µ(t) to decrease as a sigmoid, so we choose892

µ(t)=µ0+(µ1−µ0)/(1+e(t−t0)/τ), (S1)893

where µ0 = 1.5/year and µ1 = 0.5/year are the pre- and post-restoration per-capita loss rates,894

t0 = 10 years the time at the inflection point of the sigmoid, and τ = 2 years a timescale that895

characterises the steepness of the sigmoid.896

• Coefficient for intraspecific competition: We choose a=0.1/PU897

• Immigration rate: We choose σ=0.2 PU/year.898

• Per-capita rate of contribution to ecosystem service: We choose w=1 VU/year/PU.899

• Per-capital terminal payoff: In this example, any perturbation will eventually decay downstream,900

so it is possible to eliminate the effects of a finite time horizon if we choose v such that it is equal901

to the ecosystem service contribution had the time horizon been extended indefinitely beyond T.902

To estimate this, we linearise Eqn. (3) about the post-restoration carrying capacity K, and find that903

any perturbation will decay exponentially at a rate µ1−b(1−2aK) and hence contribute a reward904

of w/[µ1−b(1−2aK)]. Based on this reward, we choose v=1.74 VU/PU.905

• Initial conditions: We want x(0) to be the steady-state population pre-restoration. Solving the906

equation bx(0)(1−ax(0))−µ0x(0)+σ=0 gives us x(0)=0.37 PU.907
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S2 Incorporating perturbation costs into time-dependent sensitivities908

Just like in optimal control theory, we now consider a manipulated system909

dx(t)
dt

=g(⃗x(t),u(t),t), x⃗(0)= x⃗0, (S2)910

where u(t) quantifies the external manipulation. We also define911

K≡
∫ T

0
c(⃗x(t),u(t),t)dt, (S3)912

the total cost of the manipulation, analogous to the total reward function J. If there is no manipulation,913

there is no manipulation cost, so we require that c(⃗x,0,t)=0 for any x⃗ and t. At the same time, we914

assume that the integrand f (⃗x(t),t) of the total reward J does not depend directly on u(t).915

We are interested in the effects of a small, brief manipulation at time t∗ on the net value J−K. More916

specifically, we consider u=ϵh, where h is a narrow window function centered at time t∗, normalized917

such that
∫ T

0 h(t)dt = 1. Since J is only indirectly affected by the manipulation through the effects918

on x⃗(t), if we interpret u as yet another parameter with an unperturbed value of 0, we can apply919

Eqn. (A10) from Appendix B, so920

∆J≃ϵ∑
j

λj(t∗)
∂gj(⃗x(t∗),u(t∗),t∗)

∂u

∣∣∣∣
u(t∗)=0

(S4)921

Meanwhile, since c(⃗x,0,t)=0 for any x⃗ and t, this is also true for its partial derivative in x⃗, so to order922

O(ϵ), ∆K only comes from the direct dependence of c on u. More specifically,923

∆K=
∫ T

0

∂c(⃗x(t),u(t),t)
∂u

∣∣∣∣
u(t)=0

ϵh(t)dt≃ ∂c(⃗x(t∗),u(t∗),t∗)
∂u

∣∣∣∣
u(t∗)=0

ϵ, (S5)924

where in the second step, we used the fact that h is a normalized narrow window function centered925

at time t∗. Hence, the sensitivity to a small, brief manipulation at time t∗ is given by926

lim
ϵ→0

∆J−∆K
ϵ

=∑
j

λj(t∗)
∂gj(⃗x(t∗),u(t∗),t∗)

∂u

∣∣∣∣
u(t∗)=0

− ∂c(⃗x(t∗),u(t∗),t∗)
∂u

∣∣∣∣
u(t∗)=0

. (S6)927

Note that unlike optimal control theory, we only need the linearized versions of the functions gj and928

c about u=0 and not their full functional forms in order to calculate the sensitivity.929
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S3 Change of adjoint variables under a change of state variables930

Let x⃗ be the original state variables, and y⃗ be the new state variables. For simplicity, assume that the931

transformation is invertible and also has no explicit time dependence, so we can write each new variable932

yi as a function yi(⃗x) of the old variables, and each old variable as a function xi(⃗y) of the new variables.933

When taking partial derivatives, it is important to keep track of what other variables are being held934

constant. We will use the notation ( ∂
∂xi
)x to mean holding all other xj̸=i constant. The old and new935

variables satisfy the dynamic equations936

dxi

dt
=gxi (⃗x(t),t),

dyi

dt
=gyi (⃗y(t),t). (S7)937

Since the transformation does not contain any explicit time dependence, chain rule tells us that938

dyi

dt
=∑

j

(
∂yi

∂xj

)
x

dxj

dt
=∑

j

(
∂yi

∂xj

)
x
gxj , (S8)939

so we have the relation and inverse relation940

gyi =∑
j

(
∂yi

∂xj

)
x
gxj , gxi =∑

j

(
∂xi

∂yj

)
y
gyj (S9)941

Let the reward function be942

J=
∫ T

0
f (⃗x(t),t)dx+Ψ(⃗x(T)). (S10)943

The old adjoint variables satisfy the adjoint equations and terminal conditions944

dλxi

dt
=−

(
∂ f
∂xi

)
x
−∑

j
λxj

(
∂gxj

∂xi

)
x
, λxi(T)=

(
∂Ψ
∂xi

)
x

∣∣∣∣⃗
x=⃗x(T)

, (S11)945

while the new adjoint variables satisfy946

dλyi

dt
=−

(
∂ f
∂yi

)
y
−∑

j
λyj

(
∂gyj

∂yi

)
y
, λyi(T)=

(
∂Ψ
∂yi

)
y

∣∣∣∣∣⃗
y=⃗y(T)

. (S12)947

In the remainder of this section, we will prove the relation948

λyi =∑
j

(
∂xj

∂yi

)
y
λxj . (S13)949
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First, we define950

λ′
i≡∑

j

(
∂xj

∂yi

)
y
λxj . (S14)951

Our strategy is to show that λ′
i satisfies the same adjoint equations and terminal conditions as λyi , so952

we can then conclude that λ′
i=λyi , hence proving the relation. Consider953

dλ′
i

dt
=

d
(

∑j

(
∂xj
∂yi

)
y
λxj

)
dt︸ ︷︷ ︸

definition of λ′
i

=∑
j

(
∂xj

∂yi

)
y

dλxj

dt
+∑

j
λxj

d
(

∂xj
∂yi

)
y

dt︸ ︷︷ ︸
from product rule

=∑
j

(
∂xj

∂yi

)
y

[
−
(

∂ f
∂xj

)
x
−∑

k
λxk

(
∂gxk

∂xj

)
x

]
︸ ︷︷ ︸

from adjoint equations Eqn. (S11)

+∑
j

λxj∑
k

gyk︷︸︸︷
dyk

dt

(
∂2xj

∂yi∂yk

)
y︸ ︷︷ ︸

from chain rule

=−∑
j

(
∂xj

∂yi

)
y

(
∂ f
∂xj

)
x︸ ︷︷ ︸(

∂ f
∂yi

)
y

−∑
j
∑

k

(
∂xj

∂yi

)
y
λxk

(
∂gxk

∂xj

)
x︸ ︷︷ ︸

(∗)

+∑
j
∑

k
λxj gyk

(
∂2xj

∂yi∂yk

)
y

.

(S15)954

We will first simplify the term (∗) before returning to the equation. We have955

(∗)=∑
j
∑

k
λxk

(
∂xj

∂yi

)
y

(
∂gxk

∂xj

)
x
=∑

j
∑

k
λxk

(
∂xj

∂yi

)
y
∑
m

(
∂ym

∂xj

)
x

(
∂gxk

∂ym

)
y︸ ︷︷ ︸

from chain rule

=∑
k

∑
m

λxk∑
j

(
∂xj

∂yi

)
y

(
∂ym

∂xj

)
x︸ ︷︷ ︸

δi,m

(
∂

∂ym

[
∑
n

(
∂xk

∂yn

)
y
gyn

]
︸ ︷︷ ︸

from Eqn. (S9)

)
y

=∑
k

∑
n

λxk∑
m

δi,m

(
∂

∂ym︸ ︷︷ ︸
∂

∂yi

[
∑
n

(
∂xk

∂yn

)
y
gyn

])
y

=∑
k

∑
n

λxk

[(
∂xk

∂yn

)
y

(
∂gyn

∂yi

)
y
+

(
∂2xk

∂yn∂yi

)
y
gyn

]
︸ ︷︷ ︸

from product rule

.

(S16)956

Now we replace the dummy variables k and n in (∗) by j and k respectively, and plug it back into957
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Eqn. (S15). We get958

dλ′
i

dt
=

(
∂ f
∂yi

)
y
−∑

j
∑

k
λxj

(
∂xj

∂yk

)
y

(
∂gyk

∂yi

)
y
−∑

j
∑

k
λxj

(
∂2xj

∂yk∂yi

)
y

gyk+∑
j
∑

k
λxj gyk

(
∂2xj

∂yi∂yk

)
y︸ ︷︷ ︸

cancels

=

(
∂ f
∂yi

)
y
−∑

k
λ′

k

(
∂gyk

∂yi

)
y
.

(S17)959

Comparing Eqn. (S17) to Eqn. (S12), we see that λ′
i does indeed satisfy the same adjoint equations in960

Eqn. (S12) as λyi . All that is left is to show that λ′
i also satisfy the same terminal conditions in Eqn. (S12).961

Consider962

λ′
i(T)=∑

j

(
∂xj

∂yi

)
y
λxj(T)=∑

j

(
∂xj

∂yi

)
y

(
∂Ψ
∂xj

)
x

∣∣∣∣∣⃗
x=⃗x(T)︸ ︷︷ ︸

from Eqn. (S11)

=

(
∂Ψ
∂yi

)
y

∣∣∣∣∣⃗
y=⃗y(T)

, (S18)963

hence completing the proof.964

More elegant proofs probably exist from optimal control theory, but this version is the most965

straightforward.966

S4 Parameter values for Example 1:967

Disease spillover into multi-species sink communities968

As mentioned in the main text, the parameter values have been chosen to best illustrate the qualitative969

features of interest. We explain the choices in more details below.970

• Disease-free mortality (µj): For simplicity, we assume that all species have the same µj. Without loss of971

generality, we choose the units of time so that one unit corresponds to one lifespan, so µj=1 for all j.972

• Unregulated per-capita birth rate (Bj): For the species of concern, we want there to be a substantial973

population decline despite the low infection prevalence (especially if the disease reaches the species974

of concern from the exogenous source only after a long chain of transmission), so that control975

measures are necessary. Therefore, we choose BjC =1.02 so that it is only very slightly above µjC .976

For all other species, as explained in the main text, culling an intermediate species too early in977

the season is ineffective since the population would have mostly recovered by the time the chain of978

infection reaches the species. To demonstrate this point clearly, we want Bj≫µj, so we choose Bj=5.979

• Intraspecific competition coefficient (aj) or carrying capacity (Kj): We can specify either aj or Kj since980

they are related by Kj=(1−µj/Bj)/aj. For simplicity, we assume that all species have the same Kj,981

and without loss of generality, we choose the units of population size so that Kj=1 for all j. This982

means that aj=0.8 for all species, except the species of concern, where ajC ≃0.02. In other words, the983
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large carrying capacity in the species of concern despite the low birth rate is due to low intraspecific984

competition.985

Alternatively, we could have chosen the same competition coefficient aj=0.8 for all j, in which986

case all species will have Kj=1 except for the species of concern, where KjC ≃0.02, i.e. a low carrying987

capacity. We find that most qualitative features observed in the two networks are still present under988

this alternative scenario.989

• Disease-induced mortality (νj): We want a large disease-induced mortality in the species of concern,990

so we choose νjC =5. In contrast, for all other species, we choose νj=0, so the disease has no impact991

on their populations.992

• Recovery rate (γj): Again, for there to be a substantial population decline in the species of concern, we993

need a high per-capita rate of infection in the species of concern, even after a long chain of transmis-994

sion, while still keeping R0<1. Numerically, we find that this is easiest to achieve when all species995

have comparable infectious lifetimes 1/(µj+νj+γj). Since the species of concern already has a short996

infectious lifetime due to the large disease-induced mortality νjC , we set γjC =0. For all other species997

without disease-induced mortality, we choose γj=5, so that they recover quickly from infection.998

• Length of active season (T): Even though both networks were meant to be hypothetical, we designed999

them with pollinators in mind. Since the average lifespan of a bee is of order 20–30 days, we choose1000

T=5 so that the active season would correspond to a realistic period of 100–150 days.1001

• Coefficients in the reward function (WSjC
, WIjC

, VSjC
, VIjC

): Without loss of generality, we choose the1002

units of value so that WSjC
=1. We assume that infected individuals are just as capable of providing1003

the ecosystem service, so WIjC
=1 as well. (One possible scenario is that most infected individuals1004

in the species of concern start off as asymptomatic carriers, but quickly die once the symptoms set1005

in. Therefore, the fecundity of infected individuals as well as the ecosystem service they provide1006

remain unaffected before they die.) For the terminal payoffs, we arbitrarily choose VSjC
=VIjC

=1.1007

We find that most qualitative features observed in the networks are still present under other choices1008

of WIjC
, VSjC

and VIjC
.1009

• Transmission coefficients (bj,k): We parametrize bj,k according to the network structure and then1010

rescale them so that the dominant eigenvalue of the next-generation matrix is R0. Below, we present1011

the values of bj,k before rescaling.1012

– Network 1: We take the c→∞ limit of the trait-matching model, which gives1013

B=



1 1 0 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 0 1 1


. (S19)1014
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– Network 2: We first define resource utilization rj,k as the relative frequency an individual of1015

species k chooses to utilize resource type j. As explained in the main text, there are two resource1016

types, and bridge species 3 (the species of concern) is less specialized, so we choose1017

r=

1 1 0.2 0 0

0 0 0.8 1 1

 (S20)1018

We then assume that B is given by B=rTr. To enhance intraspecific transmission in species 5,1019

we also double the value of b5,5.1020

• Basic reproduction number (R0): We choose R0=0.9 for Network 1, and R0=0.95 for Network 2.1021

• Spillover coefficient (σj): In both networks, only the first species receive exogenous spillover. We1022

choose σ1=0.2 for both networks.1023

• Initial conditions (Sj(0), Ij(0)): We choose Sj(0)=Kj and Ij(0)=0 for all j. In other words, we assume1024

that each species starts the current season disease-free at the carrying capacity. This is mainly for sim-1025

plicity, so that the transient dynamics mostly reflect disease transmission and not population growth.1026

S5 More details on Example 2:1027

Leopard frogs as reservoirs of the amphibian chytrid fungus1028

S5.1 Functional forms and parameter values1029

The load-dependent functions ℓ(x), G0(x) and G(x′|x) are assumed to take the form1030

ℓ(x)=1−Φ(x|µl,σl),

G0(x′)=ϕ(x′|a(t),σ0),

G(x′|x)=ϕ(x′|a(t)+bx,σ0).

(S21)1031

Here ϕ and Φ are the probability density and cumulative distribution functions of the normal distri-1032

bution, with mean and standard deviation given by the two parameters after the vertical bars.1033

The temperature-dependent functions a(T) and sZ(T) are assumed to take the form1034

a(T)=a0+a1(T−Tbase),

sZ(T)=
sZ,0

1+e(T−TZ)/σZ
,

(S22)1035
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The temperature is assumed to vary sinusoidally across the year, and is given by1036

T(t)=Tmin+
Tmax−Tmin

2

[
1−cos

(
2πt
52

)]
, (S23)1037

where t here is in weeks, and it is assumed that one year has exactly 52 weeks.1038

Wilber et al. (2022) fitted separate Bd transmission models at four geographic locations (Louisiana,1039

Tennessee, Pennsylvania, and Vermont), and at three possible values of the parameter K controlling1040

density dependence in recruitment: e10 (low density), e8 (medium density) and e4 (high density). Most1041

parameter values can be found in Table S2 from Wilber et al. (2022); we chose parameter values for1042

Tennessee under the high-density assumption, as well as sI =1. Other parameter values that can only1043

be found in the main text or in their scripts are: Tmin=4◦C, Tmax=27◦C, aquatic calendar days 30–1501044

(so W(t)=1 for week numbers 5–21), and reproduction calendar day 90 (so R(t)=1 for week number1045

13).1046

S5.2 Discretizing the IPM1047

We discretize the IPM in Eqn. (20) into m bins each of width h. The ith bin has midpoint xi, lower and1048

upper boundaries xi and xi, and contains Ii(t) infected individuals (so Ii(t) approximates I(xi,t)h). The1049

discretized equations are then given by1050

L(t+1)=r′
N(t)

2
R(t)+L(t)sL(1−mL),

S(t+1)=L(t)sLmLe−KN(t)+S(t)s0e−βZ(t)W(t)+s0sI

m

∑
i=1

ℓi Ii(t),

Ii(t+1)=S(t)s0

(
1−e−βZ(t)W(t)

)
(G0)i+s0sI

m

∑
j=1

(1−ℓj)GijIj(t),

Z(t+1)=λW(t)
m

∑
i=1

exi Ii(t)+sZ(t)Z(t)+ω,

(S24)1051

where1052

N(t)=S(t)+
m

∑
i=1

Ii(t),

ℓi=1−Φ(xi|µl,σl),

(G0)i=Φ(xi|a(t),σ0)−Φ(xi|a(t),σ0),

Gij=Φ(xi|a(t)+bxj,σ0)−Φ(xi|a(t)+bxj,σ0).

(S25)1053
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S5.3 Deriving the adjoint equations1054

To derive the adjoint equations, we first write down the Hamiltonian1055

H=λL(t+1)·
[

r′
S(t)+∑m

i=1Ii(t)
2

R(t)+L(t)sL(1−mL)

]
+λS(t+1)·

[
L(t)sLmLe−KS(t)−K∑m

i=1 Ii(t)+S(t)s0e−βZ(t)W(t)+s0sI

m

∑
i=1

ℓi Ii(t)

]

+
m

∑
i=1

λI,i(t+1)·
[

S(t)s0

(
1−e−βZ(t)W(t)

)
(G0)i+s0sI

m

∑
j=1

(1−ℓj)GijIj(t)

]

+λZ(t+1)·
[

λW(t)
m

∑
i=1

exi Ii(t)+sZ(t)Z(t)+ω

]
−V(t)Z(t).

(S26)1056

We then obtain the adjoint equations, Eqn. (22), by taking partial derivatives of the Hamiltonian H1057

according to Eqn. (11).1058
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S6 More details on Example 3:1059

Population cycles in the pine looper and the larch budmoth1060

S6.1 Larch budmoth: Model details1061

Johnson et al. (2004, 2006) proposed a tritrophic, spatially-explicit, discrete-time model, where budmoths1062

and their parasitoids are located in patches of suitable habitats embedded within a larger landscape.1063

In each patch, which we index by i (maximum n), and at year t, the local densities of budmoths1064

and parasitoids are represented by state variables H(i,t) and P(i,t), while the local plant quality is1065

represented by the state variable Q(i,t) with a maximum value of 1. The dynamics can be represented1066

by the equations1067

H(i,t+1)=
n

∑
j=1

{
e−(dij/αH)

2

CH︸ ︷︷ ︸
budmoth
dispersal

Hjexp
[

r0

(
1−e−Q(j,t)/δ− H(j,t)

k

)]
︸ ︷︷ ︸

local budmoth growth

exp
(
− aP(j,t)

1+awP(j,t)

)
︸ ︷︷ ︸

avoiding local parasitism

}
,

P(i,t+1)=
n

∑
j=1

{
e−(dij/αP)

2

CP︸ ︷︷ ︸
parasitoid
dispersal

Hj

[
1−exp

(
− aP(j,t)

1+awP(j,t)

)]
︸ ︷︷ ︸

local parasitism

}
,

Q(i,t+1)=(1−β)+βQ(i,t)︸ ︷︷ ︸
local plant recovery

− uH(i,t)
v+H(i,t)︸ ︷︷ ︸

local herbivory

.

(S27)1068

For dispersal, dij is the distance between patches, and we assume a Gaussian kernel with dispersal1069

parameters αH and αP for the budmoths and parasitoids; CH and CP are normalization constants.1070

Before dispersal, we assume that the local budmoth and parasitoid densities change in accordance to1071

the local dynamics. For the budmoth, r0 is the maximum growth rate2, δ is a scale parameter that1072

determines how fast the growth rate approaches r0 with increasing plant quality Q(j,t), and k is the1073

budmoth carrying capacity in the limit of large Q(j,t), so 1/k characterizes intraspecific competition.1074

Local parasitism is described by a modified Nicholson-Bailey framework: the exponential describes1075

the probability of a budmoth avoiding parasitism, and is parametrized by a and w representing the1076

search efficiency of a parasitoid and the mutual interference between parasitoids. Finally, for local1077

plant dynamics, β represent the rate at which plant quality Q(i,t) recovers towards 1, while u and1078

v characterize the impact of budmoth herbivory on plant quality. We note that Johnson et al. (2004)1079

also introduced an additional parameter that is meant to approximate the effects of demographic1080

stochasticity, although it was omitted in Johnson et al. (2006); we chose to omit it as well.1081

2Or nearly so, since Q(j,t) cannot exceed 1, so the maximum growth rate is really r0(1−e−1/δ)≃0.989r0 for the chosen
value of δ=0.22.
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Most parameter values can be found in Table 1 of Johnson et al. (2006), although note that the1082

parameter labels (r0,K,A,W,A,C,D,δ) should be corrected to (r0,k,a,w,β,u,v,δ). Other parameter values1083

that can only be found in the main text are: αH =10 km and αP=5 km. For the normalization constants1084

CH and CP, the authors stated that they were chosen such that the “total proportion of dispersal across1085

suitable and unsuitable habitat sums to one”. Therefore, we discretized the landscape into an arbitrarily1086

large spatial grid of resolution 3×3 km (based on the patch dimensions in Johnson et al. (2004)), and1087

assumed that the Gaussian kernel applied to any pair of grid cells, and not just grid cells assigned1088

as suitable patches. We then obtained CH using1089

CH =
∞

∑
i=−∞

∞

∑
j=−∞

e(i
2+j2)/(αH/(3 km))2

, (S28)1090

where i and j here are grid indices (not patch indices). A similar expression was used for CP.1091

We wanted to replicate the scenario in Johnson et al. (2004, 2006) where patches near the center of1092

the landscape had the highest connectivity. According to Johnson et al. (2004), “habitat configurations1093

were created by assuming that the probability of a patch being suitable declined exponentially with the1094

distance from the focal location”. Therefore, we drew random samples from an exponential distribution1095

with a mean of 5 grid units, applied a random sign, and rounded them to the nearest integer. Pairs1096

of these integers were then used as grid indices for the suitable patches. We generated 500 unique1097

patches this way.1098

Since we were only interested in the deterministic version of the model, we did not introduce1099

random variations into r0 for each patch and timestep as was done in Johnson et al. (2006). Also, even1100

though we initialized the simulation the same way as Johnson et al. (2006), we ran the simulation for1101

many time steps before the start of the time horizon, to allow any transients to die off.1102

S6.2 Larch budmoth: Objective function and adjoint equations1103

A possible objective function is to maximize the plant quality over a time horizon from t=1 to T, with1104

weight W(i,t) assigned to patch i at time t, so1105

J=
T−1

∑
t=1

n

∑
i=1

W(i,t)Q(i,t)+
n

∑
i=1

W(i,t)Q(i,T).1106

We choose an arbitrary time horizon of T=200 years, and we assigned equal weight to all patches,1107

but more weight to more recent years, by having1108

W(i,t)=e−t/τ,1109
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where τ=50 years. Just as in the pine looper example, the decaying weights reduce the dependence1110

of the time-dependent sensitivities on the time horizon, should the dynamics be quasiperiodic.1111

The Hamiltonian (which we denote by H to avoid confusion with the budmoth density) is given by1112

H=
n

∑
i=1

λH(i,t+1)
n

∑
j=1

{
e−(dij/αH)

2

CH
H(j,t)exp

[
r0

(
1−e−Q(j,t)/δ− H(j,t)

k

)]
exp
(
− aP(j,t)

1+awP(j,t)

)}

+
n

∑
i=1

λP(i,t+1)
n

∑
j=1

{
e−(dij/αP)

2

CP
H(j,t)

[
1−exp

(
− aP(j,t)

1+awP(j,t)

)]}

+
n

∑
i=1

λQ(i,t+1)
[
(1−β)+βQ(i,t)− uH(i,t)

v+H(i,t)

]
+

n

∑
i=1

W(i,t)Q(i,t),

(S29)1113

where the last term comes from the objective function. The adjoint equations are then given by1114

λH(i,t)=
∂H

∂H(i,t)
=

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH

(
1− r0H(i,t)

k

)
exp
[

r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
exp
(
− aP(i,t)

1+awP(i,t)

)}

+
n

∑
j=1

λP(j,t+1)

{
e−(dji/αP)

2

CP

[
1−exp

(
− aP(i,t)

1+awP(i,t)

)]}
−λQ(i,t)

uv
[v+H(i,t)]2

,

λP(i,t)=
∂H

∂P(i,t)
=−

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH
H(i,t)exp

[
r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
a

[1+awP(i,t)]2
exp
(
− aP(i,t)

1+awP(i,t)

)}

+
n

∑
j=1

λP(j,t+1)

{
e−(dji/αP)

2

CP
H(i,t)

a
[1+awP(i,t)]2

exp
(
− aP(i,t)

1+awP(i,t)

)}
,

λQ(i,t)=
∂H

∂Q(i,t)
=

n

∑
j=1

λH(j,t+1)

{
e−(dji/αH)2

CH
H(i,t)

r0

δ
e−Q(i,t)/δexp

[
r0

(
1−e−Q(i,t)/δ− H(i,t)

k

)]
exp
(
− aP(i,t)

1+awP(i,t)

)}
+λQ(i,t+1)β+W(i,t),

(S30)1115

with terminal conditions1116

λH(i,T)=λP(i,T)=0, λQ(i,T)=W(i,T) for all i.1117
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S7 Supplementary figures and tables from Example 1:1118

Exogenous disease spillover in multi-species sink networks1119
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Figure S1: Additional figures from Network 1. (A) Matrix representation of the transmission coefficients bj,k. (B)
Population decline in the species of concern (species 5) over a 10-year period, assuming that the population size
at the end of one season carries over to the start of the next season. The purpose is to show that the population
decline can be significant despite the low infection prevalence shown in Fig. 3(D). (C) Time-dependent sensitivity
when only susceptible individuals are culled. (D) Time-dependent sensitivity when only infected individuals
are culled (−λIj). The weighted sum of (C) and (D) gives the time-dependent sensitivity to indiscriminate culling
(−λNj) shown in Fig. 3(G).
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Figure S2: Similar to Fig. S1, except for Network 2.
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Figure S3: For Network 1, the graphs above show the population rebound in the species of concern (species
5) when 10% of another species is indiscriminately culled. Late culling leaves less time for the population to
rebound (affecting the terminal payoffs VSjC

and VIjC
), and also less time for the rebound to contribute to the

integral in the reward function.
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Figure S4: More results from Network 2, obtained using modified parameter values. (A) Reducing R0 caused the
importance of species 5 to fall entirely below species 1, due to multi-step within-module transmission becoming
less likely at a lower R0. (B) Increasing the exogenous spillover rate σ1 caused the most important species to
switch from species 5 back to species 1 towards the end of the season. This is due to the large decrease in the
population of species 3 resulting from the increased spillover; the switch no longer occurred in (C) when we
converted most of the disease-induced mortality rate in species 3 to its recovery rate.
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S8 Supplementary figures and tables from Example 2:1120

Leopard frogs as reservoirs of the amphibian chytrid fungus1121
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Figure S5: (A) Number of infected frogs in each log load bin, each week across the year, at steady state. (B) Log
load distribution each week, obtained by normalizing the sum of each vertical column in (A) to 1. Due to the
temperature-dependent load dynamics, we see that the load is the lowest in summer and the highest in winter.
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Figure S6: The sensitivity to removing an infected frog from each log load bin, each week across the year. Note
that this sensitivity does not take into account whether the log load bin is actually “occupied” which is why
we choose to work with −λI(t) as defined in Eqn. (24) instead.
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Figure S7: Effects of the time horizon T. Similar to Fig. 6, except that we have also shown the sensitivities every
year within the time horizon. We see that if the time horizon is sufficiently long, the seasonal sensitivity patterns
during the first few years are identical. At steady state, each year starts with the same “initial conditions”, so the
second year can be thought of as the same system with a time horizon of 9 years, the third year a time horizon of
8 years, etc. Therefore, the fact that the early years show identical seasonal patterns means that the early-year pat-
terns are independent of the time horizon, and hence expected to be the same as when the time horizon is infinite.
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Figure S8: Varying the number of bins in the discretized IPM. Similar to Fig. 6, except that we have varied
the number of bins used when discretizing the IPM.
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Figure S9: Checking against explicit perturbations. Similar to Fig. 6, except that we have also shown the sensitiv-
ities obtained by explicitly perturbing the state variables at each time point (red dashed lines). The perfect agree-
ment with the adjoint variables implies that the adjoint equations have been correctly derived and implemented.
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S9 Supplementary figures and tables from Example 3:1122

Population cycles in the pine looper and the larch budmoth1123

S9.1 Pine looper1124

Site r s u xmin β

Culbin 5.064×10−5 0.079 3.364 2.150 0.204

Roseisle 5.760×10−2 0.246 3.644 0.510 1.016

Tentsmuir 5.677×10−3 0.000 4.075 0.618 0.294

Table S1: Parameter values of the maternal effects model, fitted separately using data at three sites.
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Figure S10: Phase plane diagram at Roseisle, Tentsmuir and Culbin, showing the periodic steady-state solution
at Roseisle, and the quasiperiodic steady-state solutions at Tentsmuir and Culbin. At Roseisle, we only showed
10 years to illustrate one complete cycle of two oscillations, whereas at Tentsmuir and Culbin, we showed every
year across the time horizon of 200 years.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2023. ; https://doi.org/10.1101/2023.04.13.536769doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.13.536769
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 50 100 150 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time (years)

Site = Roseisle, tpert = 4

C
ha

ng
e 

in
 c

ur
re

nt
 p

up
ae

 d
en

si
ty

C
ha

ng
e 

in
 c

um
ul

at
iv

e 
pu

pa
e 

de
ns

ity

−
1.

0
0.

0
0.

5
1.

0

(A)

0 50 100 150 200
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
Time (years)

Site = Roseisle, tpert = 6

C
ha

ng
e 

in
 c

ur
re

nt
 p

up
ae

 d
en

si
ty

C
ha

ng
e 

in
 c

um
ul

at
iv

e 
pu

pa
e 

de
ns

ity

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(B)

0 50 100 150 200

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Time (years)

Site = Tentsmuir, tpert = 7

C
ha

ng
e 

in
 c

ur
re

nt
 p

up
ae

 d
en

si
ty

C
ha

ng
e 

in
 c

um
ul

at
iv

e 
pu

pa
e 

de
ns

ity

−
2

−
1

0
1

2

(C)

Figure S11: Changes in the current pupae density N(t) and the cumulative moth density ∑t
t′=1 N(t′) at all

t, following a 20% cull at t = tpert. (A) Roseisle; tpert = 4. (B) Roseisle; tpert = 6. (C) Tentsmuir; tpert = 7. We
see that the changes in current density decay with time in (A) and (B), but persist indefinitely in (C), likely
because of the steady-state trajectories being periodic in Roseisle, but quasiperiodic in Tentsmuir. As a result,
the cumulative changes approach constant, non-oscillatory values in (A) and (B), but remain oscillatory in (C).
Note that the choices of tpert are unimportant here; we made these specific choices only to facilitate comparison
with Fig. 7(D-F) and Fig. S12.
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Figure S12: Changes in the current reward −N(t)W(t) and the cumulative reward −∑t
t′=1N(t′)W(t′) at all t,

following a 20% cull at t= tpert. We have rescaled these changes by a factor of 1/0.2, so that the cumulative
reward at t= T = 200 should be approximately equal to the demi-elasticity in Fig. S13 at t= tpert; any small
discrepancies are due to nonlinearities from the relatively large perturbation. (A) Roseisle; tpert=4. (B) Roseisle;
tpert = 6. (C) Tentsmuir; tpert = 7. Note that unlike Fig. S11(C), the changes in current reward decay in time
because of the decaying weight W(t). This allows the cumulative reward to approach a constant, non-oscillatory
value, and hence reduces the dependence of the demi-elasticities on the time horizon T.
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Figure S13: Demi-elasticities of the reward to the culling of pine looper at (A) Roseisle, (B) Tentsmuir and (C)
Culbin.

S9.2 Larch budmoth1125
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Figure S14: Verifying that TDSA gives the correct sensitivities for the larch budmoth model using explicit
perturbations. We focused on the two patches discussed in Fig. 8.
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Figure S15: The effects of adding parasitoids at t=15 to the two patches discussed in Fig. 8. The current reward
refers to the sum of plant quality times the weight in the current year, and the cumulative reward the sum
of current rewards from t=1 up to the current year. We used small perturbations to ensure linearity, but scaled
the results by the inverse of the perturbation size, so that the change in cumulative reward at t=T=200 (the
end of the time horizon) should be equal to the sensitivity at t= 15 (the time of perturbation). As expected,
they indeed agree with Fig. S14 at t=15 (∼40 for Patch A, ∼−80 for Patch B).
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