Science Advances

Supplementary Materials for

CBP and Gcn5 drive zygotic genome activation independently of their catalytic activity

Filippo Ciabrelli et al.

Corresponding author: Nicola Iovino, iovino@ie-freiburg.mpg.de

Sci. Adv. **9**, eadf2687 (2023) DOI: 10.1126/sciadv.adf2687

This PDF file includes:

Figs. S1 to S8 Tables S1 and S2

B

Gene		Name line	ID line	Type	CR	HR	PCLR	
	nejire	shRNA line 1	homemade	V20	35.0%	0.0%	100.0%	
	nejire	shRNA line 2	BL36682	V20	44.0%	0.0%	100.0%	
	CONTROL	control	BL36303	-	98.0%	95.0%	3.1%	

Supplementary Figure 1

Fig. S1. Knockdown efficiency and additional embryonic phenotypes upon maternal depletion. (A) Knockdown efficiency of RNAi targets. Values correspond to the mean and error bar represent the standard deviation of RT-qPCR from n = 3 biological replicates of independent embryo collections at ZGA. Values are calculated subtracting from 100% the relative level of target mRNA, normalized to RP49 mRNA levels, in a given knockdown compared to the control. (B) Cellularization rate (CR), hatching rate (HR) and post cellularization lethality rate (PCLR) of two Nejire shRNA lines and control. (C) Western blot assays performed with total protein extracts from PRE-ZGA embryos (stage 4). On the top, anti-Nejire and anti-Tubulin signals are compared in control and Nejire-KD extracts. On the bottom, anti-Gcn5 and anti-Tubulin signals are compared in control and Gcn5-KD. (D) Representative immunofluorescence pictures of PRE-ZGA (stage 4) (top) and ZGA (stage 5) (bottom) control and knockdown embryos. On the left, anti-Nejire staining (red) and on the right, anti-Gcn5 staining (green), are coupled with DAPI staining (cyan). (scale bar = $5 \mu m$). (E) DAPI staining of representative Chameau knockdown embryo at ZGA. Scale bar = $100 \,\mu$ m. Penetrance (P) indicates the frequency of observed embryos displaying abnormal phenotype. (F) Percentage of embryos displaying pole cells in control embryos (n = 47) and in Enok-KD embryos (n = 51) at ZGA. Fisher's exact test *t*-test *** *p*-value < 0.001.

Fig. S2. HATs and HDACs regulate different sets of genes during ZGA. (A) "Maternal & Zygotic" and "Pure Zygotic" gene-classification based on the overlap between "Zygotic transcripts" (Genes displaying GRO-seq signal at ZGA (15) also defined as "active genes") and "Maternal genes" (RNA-seq positive genes in unfertilized eggs (15)). In parenthesis the numbers of transcripts/genes for each category. (B) Comparison between total RNA-seq and nuclear RNAseq between Nejire-KD and control at ZGA. On the left, a heatmap displaying the change in gene expression between Nejire-KD and control among active genes, ranked by the Nuclear RNA-seq wt/-KD ratio. Corresponding log2FC color-coded scale bars are depicted on the bottom. On the top right, Venn diagram displaying the overlap between the number of active genes significantly downregulated in Nejire-KD (adjusted *p*-value ≤ 0.05 and log2FC < -1) in total RNA-seq (green) and the number of active genes significantly downregulated in Nejire-KD (adjusted *p*-value ≤ 0.05 and log2FC < -1) in nuclear RNA-seq (black). On the bottom right, number of "Pure Zygotic" (blue) and "Maternal & Zygotic" (orange) genes (see fig. S2A for details) significantly downregulated in nuclear RNA-seq and total RNA-seq in Nejire-KD. (C) List of 52 overlapping genes between Nejire-dependent and Gcn5-dependent active genes at ZGA (adjusted p-value \leq 0.05 and $\log 2FC < -1$). Column 2 shows Zelda dependency (see (15) for details) and column 3 shows GO biological process. (D) MA plots displaying total RNA-seq experiments performed on Pre-ZGA (stage 2) embryos, comparing knockdown with Ctrl. Significantly misregulated genes (adjusted *p*-value ≤ 0.05 and log2FC < -1 or log2FC > 1) are highlighted in orange. The numbers of significantly upregulated or down regulated genes are shown above or below the log2FC mean expression = 0 line, respectively. (n = 2 biological replicates from independent embryocollections). e, Top GO terms are shown for HDAC1-KD upregulated (adjusted *p*-value ≤ 0.05 and $\log 2FC > 1$) and Nejire or Gcn5 downregulated (adjusted *p*-value ≤ 0.05 and $\log 2FC < -1$) active genes at ZGA. For each term, color intensity represents the adjusted *p*-value and dot size shows the number of genes which support the corresponding GO term.

Fig. S3. Nejire and Gcn5 regulate the expression of different sets of genes during ZGA. (A) On the top, the number of Zelda-dependent ("Zelda dep.", in blue), H2Av-dependent ("H2Av dep.", in orange) and Zelda-independent/H2Av-independent ("H2Av -", in grey) active genes (see ref. (15) for details) at ZGA. On the bottom, the Zelda/H2Av categorization applied to the genes significantly downregulated in total RNA-seq in Nejire-KD and in Gcn5-KD (adjusted pvalue ≤ 0.05 and log2FC < -1). (B) Western blot assays performed with total protein extracts from PRE-ZGA embryos (stage 4). On the top, anti-Zelda and anti-Tubulin, on the bottom, anti-GAF and anti-Tubulin signals are compared in control and Nejire-KD and Gcn5-KD embryonic extracts. (C) Representative immunofluorescence pictures of ZGA control, Nejire-KD and Gcn5-KD and knockdown embryos. On the top, anti-Zelda staining (red) and on the bottom, anti-GAF staining (green), are coupled with DAPI staining (cyan). (scale bar = $5 \mu m$). (**D**) MA plots displaying total RNA-seq experiments, comparing Nejire-KD (top) and Gcn5-KD (bottom) with Ctrl at ZGA. Highlighted in orange 24 early antero-posterior axis patterning genes (trunk gap genes, pair-rule genes, segment polarity genes and homeotic genes). Numbers indicate significantly upregulated, downregulated (adjusted p-value ≤ 0.05 and log2FC < -1 or log2FC >1), and the not significantly affected among the 24 considered genes. (E) Number of lincRNA genes significantly downregulated (adjusted *p*-value ≤ 0.05 and log2FC < -1) in Nejire-KD and Gcn5-KD compared to Ctrl at ZGA. (F) Number of "Syncytial blastoderm" expressed genes significantly downregulated in Nejire-KD and Gcn5-KD (adjusted *p*-value ≤ 0.05 and log2FC $\leq -$ 1) among the 510 genes still expressed at ZGA. (see (15) and (8) for details). (G) Number of "Developmental" (blue) and "Housekeeping" (orange) genes significantly downregulated (adjusted *p*-value ≤ 0.05 and log2FC < -1) in Nejire-KD and Gcn5-KD at ZGA. Genes are defined as "Housekeeping" when their expression is higher than the 40th percentile in each of the 30 distinct developmental conditions tested in modEncode RNA-Seq (81). All the other genes are considered as "Developmental". (H) MA plots of total RNA-seq experiments, comparing Nejire knockdown (left) and Gcn5 knockdown (right) with Ctrl embryos at ZGA. Only active genes are displayed (see fig. S2A and ref. (15) for details). In blue, significantly downregulated genes (adjusted *p*-value ≤ 0.05 and log2FC < -1) in Gcn5-KD are overlaid in the Nejire-KD vs Ctrl MA plot on the left. In green, significantly downregulated genes (adjusted *p*-value ≤ 0.05 and $\log 2FC < -1$) in Neijre-KD are overlaid in the Gcn5-KD vs Ctrl MA plot on the right. (I). Scatter plot displaying active genes log2FC in Nejire-KD (x-axis) versus Gcn5-KD (y-axis) at ZGA. Strong Nejire targets (log2FC < -1.5 in Nejire-KD) are highlighted in grey. Dashed green trendline shows the anticorrelation (R = -0.31) between Nejire-KD and Gcn5-KD of the fold change in gene expression among the rest of active genes (log2FC > -1.5 in Nejire-KD).

B

A

Fig. S4. H3K9-, H3K18- and H3K27ac deposition precede the first wave of ZGA. (A) Representative pictures of posterior side control embryo (left) and Enok-KD embryo (right) stained with anti-H3K23ac (yellow), and DAPI (cyan) at ZGA. Scale bar = $20 \,\mu$ m. (B) Representative pictures of mitotic nuclei from cycle 2 to cycle 8 of embryogenesis (scale bar = $5 \,\mu$ m). On the top, control embryos and Gcn5-KD embryos stained with anti-H3K9ac (blue) and DAPI (cyan). On the bottom, control embryos stained with anti-H3K18ac (green) and DAPI; control embryos stained with anti-H3K27ac (red) and DAPI (cyan); Nejire-KD embryos stained with anti-H3K18ac (green), anti-H3K27ac (red) and DAPI (cyan).

Fig. S5. H3K9-, H3K18- and H3K27ac marks and their writers are specifically deposited on active genes. (A and B) Venn diagram displaying the overlap among the top 100 active genes enriched for H3K9ac (blue), H3K18ac (green) and H3K27ac (red) marks, normalized by total H3 levels, in the genomic region spanning around their TSS (200 bp upstream TSS to 200 bp upstream TSS) (A) or on their gene body (from 200 bp downstream of TSS to TES) (B). (C) Metagene profiles of H3 normalized H3K9ac (left), H3K18ac (center) and H3K27ac (right) marks, showing active genes (orange) and inactive genes (blue) at ZGA from 500 bp upstream the TSS to TES. Numbers in orange indicate the distance from the TSS to the peak. Numbers on Y-axis indicate the mean coverage of log2 of the corresponding H3 normalized acetylation marks. (**D**) Heatmaps of ZGA (stage 5) inactive genes defined by lack of a GRO-seq and PolII signals spanning from 500 bp upstream of TSS to TES. Genes are ranked according to their GRO-seq signal in column 5 (orange). Columns represent wild-type embryos H3K9ac CUT&Tag (blue), H3K18ac CUT&Tag (green), H3K27ac CUT&Tag (red), H3 CUT&Tag (grey), GRO-seq (orange), ATAC-seq (purple) (15). Corresponding color-coded scale bars are depicted on the bottom (n = 2 biological replicates from independent embryo collections). (E) Heatmaps of active genes (left) and inactive genes (right) spanning from 500 bp upstream of TSS to TES during ZGA. Genes are ranked according to their GRO-seq signal in column 1 (orange). Columns 2 shows Nejire ChIP signal from (48). Column 3 shows Ada2b signal (SAGA component) from (35). Corresponding color-coded scale bars are depicted on the bottom (n = 2 biological replicates from independent embryo collections).

Fig. S6. Nejire and Gcn5 deposit their acetylation marks on every active gene, independently of their transcriptional coactivator activities. (A) Heatmaps of ZGA (stage 5) active genes defined by a GRO-seq signal (15) spanning from 500 bp upstream of TSS to TES. H3K9ac (blue), H3K18ac (green) and H3K27ac (red) marks are shown in control embryos on the left and in their corresponding knockdown on the right. Corresponding color-coded scale bars are depicted on the bottom (n = 2 biological replicates from independent embryo collections). (B and C) Venn diagram displaying the overlap among the top 500 genes enriched for H3K9ac mark normalized by total H3 (blue) on their gene body (from 200 bp downstream of TSS to TES) (B) or on their TSS (200 bp upstream TSS to 200 bp upstream TSS) (C) with the top 500 genes downregulated in Gcn5-KD compared to control in RNA-seq experiments during ZGA. (D) IGV gene browser views of a representative Nejire-dependent gene (*wntD*) on the left and a representative Gcn5-dependent gene (*Gclm*) on the right. For each genomic region, control RNA-seq (black), Gcn5-KD RNA-seq (cyan), Nejire-KD RNA-seq (gold), H3K9ac (blue), H3K18ac (green), and H3K27ac (red) CUT&Tag are displayed from top to bottom. Genomic coordinates are indicated above the panel.

Pure zygotic

Log2 (base mean)

Maternal and zygotic

Log2 (base mean)

Fig. S7. Nejire and Gcn5 catalytic activities are not required for embryonic development. (A) Representation of Gcn5 and Nejire protein products with their corresponding domains. Numbers indicate aminoacidic positions. In blue, the aminoacidic substitutions in the catalytically dead constructs within the HAT domains. (B) Western blot assays performed with total protein extracts from ZGA embryos. On the top, anti-Nejire and anti-Tubulin, on the bottom, anti-Gcn5 and antitubulin signals are compared in control, wild-type rescue and catalytically dead rescue embryonic extracts. (C) Representative immunofluorescence pictures of ZGA embryos. On the left, anti-Nejire staining (red) and on the right, anti-Gcn5 staining (green), are coupled with DAPI staining (cyan). (scale bar = 5 μ m). (**D**) Heatmaps of ZGA CUT&Tag experiments performed in ZGA embryos, comparing wild type rescue and on the left and catalytically dead rescues on the right of Nejire-KD (top) and Gcn5-KD (bottom), respectively. Signal span 5 Kb upstream and 5 Kb downstream of Nejire peaks (green) on the top and Gcn5 peaks (blue) on the bottom. Corresponding color-coded scale bars are depicted on the bottom (n = 3 biological replicates from independent embryo collections) (E) DAPI staining of representative embryos during the beginning of dorsal closure (stage 14). Nejire-KD embryos coupled on the left with wild-type Nejire rescue or with Nejire catalytically dead rescue on the right. Scale bar = $100 \,\mu m$. (F) Pictures of holocarbon oil-immersed embryos, 25 hours after egg deposition in the corresponding conditions. Empty cases correspond to hatched embryos. Abdominal segments are visible in embryos that died at late stages of embryogenesis (G) MA plots of RNA-seq experiments from total RNA in ZGA embryos, comparing the indicated conditions. The number of significantly upregulated and downregulated genes (adjusted *p*-value ≤ 0.05 and log2 FC < -1 or log2FC > 1) is shown above or below the $\log 2FC$ mean expression = 0 line, respectively. The affected genes are listed on the right and they are highlighted in blue if "pure zygotic" or in orange if "maternal and zygotic" (see fig. S2A for details on classification).

Luciferase signal relative to GFP-GAL4 levels as % of full-lenght Gcn5 transactivation

Fig. S8. Nejire N-terminal domain is crucial for *in vitro* **transactivation.** (**A**,**B**) On the top, Gcn5 (**A**) and Nejire (**B**) schematics of truncated protein variants. Numbers represent aminoacidic position is full-length protein. Domains are highlighted in colors. On the bottom, the results of *firefly* luciferase transactivation assay upon the recruitment of Gcn5 variants (**A**) and Nejire variants (**B**), using a developmental core promoter. The *firefly* luciferase signal is normalized to the *renilla* luciferase signal expressed from a constitutive promoter to control for transfection efficiency. Signals are further normalized to GFP-GAL4DBD as negative control. Finally, the relative GFP for each transfection replicate is normalized to full-length Gcn5 (**A**) or Nejire (**B**) transactivation levels. For each independent transfection replicate, three technical measurement replicates were averaged. Data are represented as mean and standard deviation of n = 4 transfection replicates. Paired, two-tailed Student's *t*-Test was applied to compare the GFP-GAL4DBD relative *firefly/renilla* luciferase levels with the other conditions (* *p*-value ≤ 0.05 , ** *p*-value ≤ 0.01 , *** *p*-value ≤ 0.001).

Table S1. Screen results of maternal knockdown of chromatin factor

#	Symbol	ID line	Туре	CR	HR	PCLR	Eggs	Category	
1 2	GAF Pita	67265 57732	V20 V20	48,0% 45,8%	0,0%	100,0%	abnormal	Chromatin Structure/Topology Chromatin Structure/Topology	
3	HDAC3	34778	V20	44,6%	0,0%	100,0%		Histone Acetylation	
4	nej E(z)	nomemade 33659	V20 V20	35,0% 32,5%	0,0%	100,0%		Histone Acetylation Polycomb group/H3K27me3	
6	CtBP	32889	V20	31,7%	0,0%	100,0%		Chromatin Remodelling	
7	chm Gug	32484	V20 V20	29,2%	0,0%	100,0%		Histone Acetylation Transcriptional Corepressor	
9	ZIPIC	64552	V20	13,3%	0,0%	100,0%		Chromatin Structure/Topology	
10 11	domino Brel	41674 35443	V20 V22	11,1% 9.0%	0,0%	100,0%	abnormal abnormal	Chromatin Remodelling Thritorax group/H3K4me3	
12	trr	36916	V20	3,3%	0,0%	100,0%	abnormal	Thritorax group/H3K4me3	
13	Chd1 egg	34665	V20 V20	2,9%	0,0%	100,0%	abnormal	Chromatin Remodelling Heterochromatin/H3K9me3	
15	HDAC1	33725	V20	51,3%	0,3%	99,5%		Histone Acetylation	
16	nurf38 Gen5	35444 35601	V22 V20	3,3%	0,4%	87,5%		Chromatin Remodelling Histone Acetylation	
18	Psc	38261	V20	49,2%	7,8%	84,2%		Polycomb group/H3K27me3	
19 20	Hp1a unSET	36792	V22 V20	43,6%	8,3% 8.8%	80,9%	abnormal	Heterochromatin/H3K9me3 Thritorax group/H3K4me3	
21	tafl	32421	V20	22,7%	5,1%	77,6%	abnormal	Histone Acetylation	
22 23	csul SMC2	56978 32369	V20 V20	63,3%	20,4%	67,8%		Arginine methyltransferase Chromatin Structure/Topology	
24	DMAP1	63666	V20	42,0%	14,2%	66,3%	abnormal	Chromatin Remodelling	
25 26	Scm msl-1	55278 39012	V20 V20	24,0%	8,7%	63,9% 57,1%		Polycomb group/H3K27me3 Histone Acetylation	
27	SMC5	56035	V20	65,7%	29,4%	55,3%		Chromatin Structure/Topology	
28 29	Chro	57470	V20	35,0%	48,5%	49,0%		Chromatin Structure/Topology Chromatin Structure/Topology	
30	Mod(mdg4)	32995	V20	0,8%	0,4%	47,9%	abnormal	Chromatin Structure/Topology	
31	ash2 su(Hw)	34006	V20 V20	53,3%	28,7%	46,8%		Chromatin Structure/Topology	
33	dwg	35666	V22	9,4%	5,3%	44,0%		Chromatin Structure/Topology	
34 35	Pc	34908	V20 V22	24,2%	14,2%	42,0%		Polycomb group/H3K27me3	
36	Nap1 RPWD2	35445	V22 V20	65,0%	41,1%	36,8%		Chromatin Remodelling Histone Acetulation	
38	ash1	36803	V20 V22	60,0%	38,0%	36,7%		Thritorax group/H3K4me3	
39 40	Art3	109448	KK V20	37,5%	24,4%	34,8%		Arginine methyltransferase Polycomb group/H3V 27mo2	
41	trx	33703	V20	59,2%	39,6%	33,1%		Thritorax group/H3K4me3	
42	ear	34798	V20	65,0%	44,2%	32,1%		Transcriptional Coactivator Polycomb group/H3K 27mo2	
44	enok	41664	V22 V20	36,3%	24,0%	29,9%		Histone Acetylation	
45 46	Sirt1 Set1	32481	V20 V20	57,5%	40,6%	29,5%	ahpormal	Histone Acetylation Thritorax group/H3K4mo3	
47	ttk	36748	V20	80,0%	56,8%	29,0%	aonorniai	Chromatin Remodelling	
48 49	mof Lity	58281 34076	V20 V20	52,5% 47.5%	37,5%	28,6%		Histone Acetylation Thritorax group/H3K4mo3	
50	gro	35759	V20	1,7%	1,3%	26,7%		Transcriptional Corepressor	
51 52	HDAC11 Brd8	32480 42658	V20 V20	46,3% 83.0%	34,0%	26,6%		Histone Acetylation Histone Acetylation	
53	Su(var)3-3	32853	V20	61,0%	45,7%	25,1%		Heterochromatin/H3K9me3	
54	PR-Set7	35322 34842	V22 V20	18,1%	13,7%	24,3%	abnormal	Heterochromatin/H3K9me3 SET domain protein	
56	Ph	63018	V20	70,8%	55,4%	21,8%	uonormui	Polycomb group/H3K27me3	
57 58	Sin3A Jarid2	32368	V20 V20	57,5%	45,0%	21,7%		Histone Acetylation Polycomb group/H3K27me3	
59	bbx	57553	V20	75,8%	60,6%	20,1%		HMG box protein	
60 61	bon SMC1	37515 108922	V20 KK	85,0% 26.7%	68,3% 22.1%	19,6%		Heterochromatin/H3K9me3 Chromatin Structure/Topology	
62	Hmt4-20	32892	V20	76,6%	63,9%	16,6%		Heterochromatin/H3K9me3	
63 64	Ntmt Sirt7	110351 32483	KK V20	92,0%	77,5%	15,8%		H2B methylation Histone Acetylation	
65	Smyd4-1	106709	KK	87,5%	74,4%	14,9%		SET domain protein	
66 67	CoRest Sox14	34794	KK V20	63,3% 92,5%	54,2%	14,5%		Heterochromatin/H3K9me3 HMG box protein	
68	Art4	36833	V22	83,3%	71,7%	14,0%	abnormal	Arginine methyltransferase	
69 70	top3 ctcf	40850	KK V20	62,5%	66,0% 53,9%	13,9%	abnormal	Chromatin Structure/Topology Chromatin Structure/Topology	
71	HmgD	77429	V20	79,2%	68,3%	13,7%		Chromatin Structure/Topology	
73	G9a	34072	V20 V20	70,8%	61,7%	12,9%		Histone Acetylation Heterochromatin/H3K9me3	
74	Br140 Fiba2	42502	V20 V20	84,2%	73,3%	12,9%		Histone Acetylation Chromatin Structure/Topology	
76	Elbaz E(Pc)	67921	V20 V20	6,0%	5,3%	12,778	abnormal	Chromatin Remodelling	
77 78	Acf msL2	35575	V22 V22	80,8%	70,8%	12,4%		Chromatin Remodelling Histone Acetulation	
79	Sirt4	33984	V20	41,0%	36,0%	12,4%		Histone Acetylation	
80 81	HP1c Ino80	33962 33708	V20 V20	92,5% 60.8%	82,2%	11,1%	ahpormal	Heterochromatin/H3K9me3 Chromatin Remodelling	
82	Iswi	32845	V20	58,3%	52,1%	10,7%	wonorillal	Chromatin Remodelling	
83 84	Art8 Kdm4A	20307	GD V20	89,2%	80,3%	10,0%		Arginine methyltransferase Heterochromatin/H3K 0mo2	
85	Kdm4B	62409	V20	78,3%	70,8%	9,6%		Heterochromatin/H3K9me3	
86 87	dikar lid	58280 36652	V20 V22	55,8% 87.5%	51,1% 80.6%	8,4%	abnormal	Histone Acetylation Transcriptional Corepressor	
88	beaf32	35642	V21	27,5%	25,4%	7,6%		Chromatin Structure/Topology	
89 90	NSD Chd3	34033 33420	V20 V20	5,8% 58.3%	5,4%	7,1% 6.4%		SET domain protein Chromatin Remodelling	
91	Art7	36832	V22	80,8%	75,9%	6,1%		Arginine methyltransferase	
92 93	Atac2 SuUR	53918 36893	V20 V22	30,8% 46.7%	29,2%	5,2%	abnormal	Histone Acetylation Heterochromatin/H3K9me3	
94	Parp	57265	V20	82,5%	78,3%	5,1%		Chromatin Structure/Topology	
95 96	dKDM2 JIL1	33699 55875	V20 V20	61,7% 62,5%	58,6% 59,6%	5,0%	abnormal	Polycomb group/H3K27me3 Kinase	
97	Sirt6	34530	V20	48,1%	45,9%	4,5%		Histone Acetylation	
98 99	brm Smyd5	37721 28609	GD V10	10,0%	9,6% 88,6%	4,2%		Chromatin Remodelling SET domain protein	
100	l(3)mbt	35052	V20	72,5%	69,6%	4,0%		Heterochromatin/H3K9me3	
101 102	Sirt2 HDAC4	32482 34774	V20 V20	68,0% 62,5%	60,0%	4,0%		Histone Acetylation	
103	set2	42511	V20	87,8%	84,4%	3,9%		SET domain protein	
104 105	CP190 polybromo	33903 32840	V20 V20	43,3% 88,3%	41,7% 85,0%	3,8%		Chromatin Structure/Topology Chromatin Remodelling	
106	MRG15	35241	V22	95,8%	92,5%	3,5%		Histone Acetylation	
107	tou	25995 35790	V10 V22	89,2% 77,0%	86,4% 75,1%	3,1%		Chromatin Remodelling	
109	E(bx)	33658	V20	35,8%	35,0%	2,3%		Chromatin Remodelling	
110	rimg-2 Smyd4-4	42542 40705	GD GD	90,0% 96,7%	88,3% 95,0%	1,9%		SET domain protein	
112	CHRAC-16	63658	V20	96,7%	95,3%	1,4%		Chromatin Remodelling	
113 114	CONTROL rhi	36303 35171	- V22	98,3% 0,8%	96,9% 0,8%	1,4%	abnormal	- Heterochromatin/H3K9me3	
115	Cdk1	36117	V20	0,0%	0,0%	0,0%	abnormal	Kinase	
116 117	fs(1)Ya Ton?	64597 35416	V20 V22	0,0%	0,0%	0,0%		Histone Acetylation	
118	scrawny	40865	V20	-	-	-	no eggs	Thritorax group/H3K4me3	
119 120	Tlk fs(1)b	33983 35130	V20 V22		-		no eggs	Kinase Histone Acetulation	
121	Mi-2	33419	V20	-	-	-	no eggs	Chromatin Remodelling	
122	Sfmbt Ton1	32473 55314	V20 V20	-			no eggs	Polycomb group/H3K27me3 Chromatin Structure/Topology	
124	D12	65062	V20	-	-	-	no eggs	Histone Acetylation	
125	piwi dred	33724 41677	V20 V20		-		no eggs	Heterochromatin/H3K9me3 Chromatin Remodelling	
127	Sern	41719	V20			1	no eggs	Chromatin Remodelling	

Table S2. List of antibodies used in this work

Antigen	Antibody name	Host	Source
H3K9ac	H3K9ac - EpiCypher SNAP-ChIP	Rabbit monoclonal	EpiCypher (BioCat)
H3K18ac	Histone H3K18ac antibody (pAb)	Rabbit polyclonal	Active Motif
H3K27ac	Anti-acetyl Histone H3(Lys27) (Clone No MABI0309)	Mouse monoclonal	Wako
H3K23ac	Histone H3K23ac antibody (pAb)	Rabbit polyclonal	Active Motif
Н3	Histone H3 Antibody (ChIP Formulated)	Rabbit polyclonal	Cell Signaling
H4	HRP Anti-Histone H4 antibody [mAbcam 31830]	Mouse monoclonal	Abcam
Nejire	anti-CBP	Rabbit polyclonal	Nadezhda E. Vorobyeva (homemade)
Gen5	anti-Gcn5	Rabbit polyclonal	Aleksey N. Krasnov (homemade)
GAF	anti-GAF	Rabbit polyclonal	Maxim Erokhin and Daria Chetverina (homemade)
Zelda	rZld	Rabbit polyclonal	Melissa M. Harrison (homemade)
HA	Anti-HA.11 Epitope Tag Antibody	Mouse monoclonal	Covance
rabbit IgG (H+L)	F(ab')2-Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488	Goat polyclonal	Molecular Probes by ThermoScientific
mouse IgG (H+L)	F(ab')2-Goat anti-Mouse IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 555	Goat polyclonal	Molecular Probes by ThermoScientific

Antigen	Catalog number or reference	Lot number	conc. used for IF	conc. used for WB	quantity for Cut&Tag
H3K9ac	13-0033	19091001	1 to 200	1 to 1000	1µg
H3K18ac	39587	7909001	1 to 200	1 to 5000	1µg
H3K27ac	306-34849	11003	1 to 100	1 to 1000	1µg
H3K23ac	39131	1008001	1 to 200	-	1µg
H3	#2650	4	-	-	1µg
H4	ab197517	GR3357384-5	-	1 to 1000	-
Nejire	https://www.sciencedirect.com/science/article/pii/S1874939917302924	-	1 to 200	1 to 500	-
Gen5	https://academic.oup.com/nar/article/41/11/5717/2411603	-	1 to 200	1 to 500	lμg
GAF	https://www.pnas.org/doi/10.1073/pnas.1515276112	-	1 to 100	1 to 200	-
Zelda	https://doi.org/10.1016/j.ydbio.2010.06.026	-	1 to 200	1 to 200	-
HA	MMS101R	B224726	-	-	1µg
rabbit IgG (H+L)	A11070	1775509	1 to 500	-	-
mouse IgG (H+L)	A21425	1874003A	1 to 500	-	-