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I. DEQ: FORWARD AND BACKWARD PROPAGATION

This section provides more details on the implementation
of the DEQ based MOL algorithm, briefly described in V.A.
During inference and training, we use the forward iterations
xn+1 = TMOL(xn) + z until convergence as shown in the
pseudo-code in Algorithm 1. The expanded equation is,

xn+1 = (I+ αλAHA)−1
(
(1− α)xn + αHθ(xn)

)
︸ ︷︷ ︸

TMOL(xn)

+

(I+ αλAHA)−1
(
αλAHb

)
︸ ︷︷ ︸

z

(1)

= TMOL(xn) + z (2)

from equation (14) in the main paper. We terminate the
algorithm at the nth iteration, when xn satisfies,

en =
‖xn − xn−1‖2
‖xn−1‖2

< κ. (3)

We set κ = 1 × 10−4 for the experiments. We denote the
fixed point of the algorithm as x∗(b), such that x∗(b) ≈
TMOL (x

∗(b)) + z.
DEQ schemes [1] rely on fixed point iterations for back-

propagating the gradients. Using chain rule, the gradient
of the loss C with respect to the CNN parameters θ is
computed as ∇θC = (∇θx∗)T (∇x∗C). Using fixed point
relation x∗ = TMOL(x

∗) + z, one obtains ∇θx∗ = (I −
∇xTMOL(x)|x=x∗)−1 (∇θTMOL(x

∗)) which translates to

∇θC = (∇θTMOL(x
∗))

ᵀ
(I −∇xTMOL(x)|x=x∗)−ᵀ (∇x∗C)︸ ︷︷ ︸

q

(4)
Here, q is solved using fixed point iterations [1], [2] as

q = (∇xTMOL(x)|x=x∗)ᵀ q+∇x∗C (5)

with initialization as q0 = 0. This iteration is evaluated
until convergence, using the similar termination conditions as
in (3). The computed q is substituted in (4) to obtain the
gradient ∇θC = (∇θTMOL(x

∗))
ᵀ
q. The pseudo-code for the

backpropagation steps are shown in Algorithm 2.

Aniket Pramanik and Mathews Jacob are from the Department of
Electrical and Computer Engineering at the University of Iowa, Iowa
City, IA, 52242, USA (e-mail: aniket-pramanik@uiowa.edu; mathews-
jacob@uiowa.edu). M. Bridget Zimmerman is from the Department of Bio-
statistics at the University of Iowa, Iowa City, IA, 52242, USA (e-mail:
bridget-zimmerman@uiowa.edu). This work is supported by grants NIH R01
AG067078 and R01 EB031169.

Algorithm 1 : Forward propagation in MOL: input b
1: x0 = λ0(I+ λ0A

HA)−1AHb

2: z = (I+ αλAHA)−1
(
αλAHb

)
3: e =∞
4: while e > κ do
5: xold = x
6: x = TMOL(x) + z from (1)
7: e = ‖xold − x‖22/‖xold‖22
8: end while
9: Return x

Algorithm 2 : Backpropagation in MOL: input ∇x∗C
1: q0 = 0
2: e =∞
3: while e > κ do
4: qold = q
5: q = (∇xTMOL(x)|x=x∗)ᵀ q+∇x∗C in (5)
6: e = ‖qold − q‖22/‖qold‖22
7: end while
8: Return ∇θC = (∇θTMOL(x

∗))
ᵀ

q

II. PERFORMANCE COMPARISON ON PARALLEL MRI
FROM CALGARY BRAIN DATA

Qualitative analysis of the reconstructions from different
algorithms on four-fold accelerated brain MRI data is shown in
Fig. 1. Proposed MOL-LR performs at par with ten-iterations
of the unrolled MoDL and ADMM-Net. A slight drop in PSNR
for MOL-LR is due to Lipschitz constraint on the CNN block.
MOL-SN uses spectral normalization of each layer of the
CNN which gives stricter bounds on its Lipschitz and thus
provides lower performance. The drop in performance of DE-
GRAD is also for similar reasons as in MOL-SN. UNET has
a lower performance compared to unrolled algorithms MoDL
and ADMM-Net. The error images show high amplitude of
errors for SENSE, MOL-SN, DE-GRAD and UNET. Proposed
MOL-LR and unrolled MoDL, ADMM-Net show fewer errors
in the error images and that too with much lower amplitude.
These comparisons show that the Lipschitz regularization
strategy offers better performance than spectral normalization.
Similar trends are also visible in the quantitative analysis of
these methods over 20 subjects as reported in Table I.
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Ground Truth SENSE, 31.41 MOL-SN, 32.91 DE-GRAD, 32.63 MOL-LR, 36.34 MoDL, 36.72 UNET, 34.89 ADMM-Net, 36.29

Mask 4-fold SENSE MOL-SN DE-GRAD MOL-LR MoDL UNET ADMM-Net

Fig. 1. Reconstruction results of 4x accelerated multi-channel brain data. PSNR (dB) values are reported for each case. The image in the first row and column
was undersampled using a Cartesian 2D non-uniform variable-density mask as shown in the first column, second row. The top row shows reconstructions
(magnitude images), while the bottom row shows corresponding error images. We note that the quality of the MOL-LR reconstructions is comparable to
unrolled methods MoDL and ADMM-Net. MOL-SN and DE-GRAD show significantly lower performance due to spectral normalization of weights, resulting
in stricter bounds on the Lipschitz constant of its CNN.

Four-fold Brain MRI
Methods PSNR SSIM Run-time
SENSE 31.13 ± 1.67 0.982 ± 0.025 0.06s

MOL-SN 33.05 ± 1.13 0.986 ± 0.014 0.29s
DE-GRAD 32.84 ± 1.21 0.985 ± 0.016 0.24s
MOL-LR 36.56 ± 0.82 0.992 ± 0.008 0.35s

MoDL 36.89 ± 0.75 0.993 ± 0.007 0.15s
MoDL-LR 34.63 ± 1.02 0.990 ± 0.011 0.15s

ADMM-Net 36.77 ± 0.76 0.993 ± 0.008 0.16s
ADMM-Net-LR 34.51 ± 1.03 0.990 ± 0.011 0.16s

UNET 34.69 ± 1.03 0.988 ± 0.011 0.07s
UNET-LR 33.42 ± 1.15 0.986 ± 0.014 0.07s

TABLE I
QUATITATIVE COMPARISONS ON 2D DATASETS WITH 4-FOLD

UNDERSAMPLING USING CARTESIAN 2D NON-UNIFORM VARIABLE
DENSITY MASK. PSNR IN DB, SSIM AND MEAN RUN-TIME PER SLICE IN
SECONDS ARE REPORTED. THE PSNR AND SSIM VALUES ARE IN MEAN

± STANDARD DEVIATION FORMAT.

III. ILLUSTRATION IN IMAGE SUPER-RESOLUTION
SETTING

The proposed theory and algorithms are broadly applica-
ble to general linear inverse problems. We now show the
preliminary feasibility of the proposed MOL-LR approach
in three-fold super-resolution image reconstruction in Fig. 2.
MOL-LR is compared against MoDL and Tikhonov regu-
larized reconstructions, respectively. Similar to the parallel
MRI setting, MoDL and MOL-LR offer similar performance
while outperforming the Tikhonov regularized reconstruction

in terms of PSNR. There is visible aliasing and blurring in
Tikhonov, which is reduced to an appreciable extent in MoDL
and MOL-LR. All the models have been trained and tested
on the Berkeley Segmentation Dataset and Benchmark [3].
The dataset consists of 300 images, out of which 200 are
split for training and the remaining ones for testing. While
the preliminary experiments in this context are encouraging,
more experiments are needed to compare MOL to state-of-
the-art super-resolution methods. We plan to pursue this in
the future.

1

Ground Truth Tikhonov, 30.39 MoDL, 35.57 MOL-LR, 35.34

Fig. 2. Results of 3x super-resolution reconstruction of natural grayscale
images. PSNR (dB) values are reported for each case. The proposed MOL-
LR is compared against MoDL and Tikhonov regularized reconstructions. The
Tikhonov reconstruction shows blurring and Gibbs ringing, which is reduced
significantly in MOL-LR and MoDL, which show similar performance in
terms of PSNR.
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