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1 Training Dataset

1.1 Food Composition Databases

The food supply, representing the full inventory of all foods available for human consump-

tion, along with their nutritional content, plays an important role in determining an individual’s

nutrient exposure. Nutritional information is captured by food databases, collections of nutri-

ent measurements for extensive samples of the food supply. Here we define as nutrients all

chemicals cataloged by food databases, whether they refer to unique chemicals, like vitamin C,

or aggregate measures, like total fat or total sugar. Additionally, all major nutrient databases

include calories, measuring how much energy our body could get from eating or drinking the se-

lected product. Which foods and which nutrients to report is strictly dependent on the database

considered. For instance, USDA SR Legacy, the authoritative source of food composition data

in the United States contains 7,793 food items with variable nutrient resolution, from a mini-

mum of 8 nutrients, up to 138 (Figure S1) [2]. In comparison, USDA FNDDS, designed for the

epidemiological analysis of dietary intake data collected by the National Health and Nutrition

Examination Survey (NHANES), reports 65 to 102 nutrients for all foods, depending on the

edition, containing no missing nutrient values (Figure S1) [3, 4].

The nutrient resolution available to consumers is significantly lower: the Food and Drug

Administration (FDA) mandates the listing of 14 nutrients on the nutrition facts label, from

saturated and trans fat, to sodium and vitamin C [1] An updated nutrition facts label was final-

ized in 2016, removing vitamins A and C, but listing added sugars, vitamin D, and potassium.

However, the compliance deadline for certain food categories was extended to July 2021, and

for the majority of the data describing branded products, we observed a significantly higher

coverage of the nutrition facts prior to 2016.

FDA Nutrition Facts Label

Calorie Breakdown
Food and Nutrient 
Database for Dietary 
Studies 2015/2016 
for NHANES

Food and Nutrient 
Database for Dietary 
Studies 2009/2010 
for NHANES

FDA Nutrition Facts Label

Calorie Breakdown
Food and Nutrient 
Database for Dietary 
Studies 2015/2016 
for NHANES

Food and Nutrient 
Database for Dietary 
Studies 2009/2010 
for NHANES

Figure S1: Nutrient panel resolution for different food databases. To fully capture the nutrient alterations
caused by food processing, we need access to the nutrient information characterizing each food in the food supply. The
resolution available for branded products sold in grocery stores is very limited, frequently less than what is required by
FDA nutrition facts [1].
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1.2 FNDDS 2009-2010

The Food and Nutrient Database for Dietary Studies (FNDDS) is designed by the USDA to

provide food composition data (e.g., the amount of vitamin C per 100 g of a selected ingredient)

for foods and beverages reported in the dietary component of the National Health and Nutri-

tion Examination Survey (NHANES), a biannual cross-sectional survey of the US Population

conducted by Center for Disease Control and Prevention (CDC) to monitor the health of Amer-

icans. FNDDS is derived by combining the food items provided in the USDA National Nutrient

Database for Standard Reference (SR). In other words, each item in FNDDS is related to one or

more foods in SR, reported as ingredients in FNDDS. Differently from SR, designed for the dis-

semination of food composition data, FNDDS’s goal is to enable the analysis of dietary intake,

hence it contains no missing nutrient values, an ideal setup to train machine learning models [5].

Since 2017, the USDA has been harmonizing these different data sources in FoodData Central

(FDC), labeling SR data as SR-Legacy[6]. In particular, SR28 (released in 2015) is the final

version of SR-Legacy databases, and it is the foundation of FNDDS 2015-2016. In addition to

FNDDS and SR-Legacy, FoodData Central stores also Foundation Foods, a new food compo-

sition dataset that reports individual sample measurements behind the nutrient average values

that populate the other databases, and metadata reporting the number of samples, location,

time-stamps, analytical methods used, and if available, cultivar and production practices.

As shown in Figure S1, for the years 2007-2010 the USDA developed a flavonoids database

for population surveys that extended the original nutritional panel of 65 nutrients to 102. For

our analysis we kept all nutrients measured in g, mg or µg, dropping “Energy”, “Folate, DFE”

and “Vitamin A, RAE”, resulting in 99 nutrients, converted to grams (g).

We chose FNDDS 2009-2010 as data training for FoodProX, as it gave us the possibility to

combine the manual labels assigned by Steele et al. in [7], with the widest panel of nutrients

available for population studies. Out of 7,253 foods in FNDDS 2009-2010, 2,484 food items are

assigned to a unique NOVA class, while the remaining 4,769 foods are not classified (730), or

need further decomposition (4,039) into 2,946 ingredients imported from the SR24 database.

Figure S2A shows the proportion of NOVA classes in the initial dataset, labels mainly derived

by following the hierarchical encoding of food items provided by FNDDS. Indeed, each food is

assigned to an 8-digit code, and the first five digits represent food categories. For instance,

code 13230120 is assigned to “Pudding, flavors other than chocolate, ready-to-eat, sugar free”

where the first digit ‘1’ represents “Milk and Milk Products”; the first two digits ‘13’ represents

“Milk Desserts and Sauce”; and similarly ‘132’ represents “Puddings, Custards, and other Milk

Desserts.” Relying on FNDDS food categories leads to two major limitations of the current
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classification system: (a) the existence of many exceptions. For example, a non ultra-processed

food could belong to a category assumed to contain only ultra-processed food. Resolving these

exceptions is a laborious work that requires domain knowledge; (b) limited scalability, as not all

databases have a fine-tuned hierarchy of categories assigned to foods comparable to FNDDS.

Additionally, we found that some unclassified items, despite being labeled as requiring fur-

ther decomposition, had only one ingredient. For instance, this is the case for the unclassified

item ‘Egg, whole, raw’ (food code 31101010), created by linking only a single food from the SR

database: ‘Egg, whole, raw, fresh’ (SR code 1123). Hence, we migrated 478 such unclassified

single-ingredient foods to the training dataset (Figure S2B).

To further improve the training dataset, we manually classified nine foods, to extend the

coverage of staple ingredients like ‘Salt’, or poorly represented classes like meat and fish (Table

S1). In particular, the addition of ‘Salt’ in the training helped FoodProX to better calibrate

the role of sodium in identifying ultra-processed food.

Manually Classified Food Items (#2,484) Addition of Single-Ingredient Food Items (#478)

Training Dataset (#2,971)
C

A B

Figure S2: Proportion of NOVA classes in the manual classification and training dataset. (A) Steele
et al. [7] manually assigned NOVA classes to 2,484 from 7,253 food items in FNDDS 2009-2010, (B) We identified 478
single-ingredient and unclassified food items in FNDDS 2009-2010 linked to a single food in the SR database with assigned
NOVA labels. (C) Final training dataset with the corrections on single-ingredient food items and the addition of 9 manually
classified food items reported in Table S1.
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Table S1: Manual Additions to the Training Dataset

Food code Food Description Ingredients NOVA Class

2047 Salt
• Salt, table (directly imported

from SR database)

2

26100100 Fish, NS as to type, raw
• Fish, pollock, walleye, raw
• Fish, salmon, sockeye, raw
• Fish, tilapia, raw
• Fish, catfish, channel, farmed,

raw

1

26115000 Flounder, raw
• Fish, flatfish (flounder and sole

species), raw

1

26119100 Herring, raw
• Fish, herring, Atlantic, raw

1

26121100 Mackerel, raw
• Fish, mackerel, Atlantic, raw
• Fish, mackerel, Pacific and jack,

mixed species, raw

1

26125100 Ocean perch, raw
• Fish, ocean perch, Atlantic, raw

1

26313100 Mussels, raw
• Mollusks, mussel, blue, raw

1

63123020 Grapes, American type,
slip skin, raw • Grapes, american type (slip skin),

raw

1

27116400 Steak tartare (raw
ground beef and egg) • Beef, ground, 85% lean meat /

15% fat, raw
• Egg, yolk, raw, fresh
• Onions, raw
• Fish, anchovy, european, canned

in oil, drained solids

3

1.3 NOVA Manual Classification Coverage

The coverage of NOVA classification for FNDDS 2001-2017 is presented in Figure S3. For

over 55% of the databases, NOVA classification relies on having a precise ingredient decom-

position of food items, information that is extremely uncommon. To note, the manual NOVA

classification has been updated since the initial classification on FNDDS 2009-2010 used in [7].

For clarity, only for FNDDS 2009-2010 in Figure S3, we used the NOVA classification conducted
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by Steele et al. in [7], which is the data source that we used to train FoodProX. However, close

to the convergence of this manuscript, Steele and colleagues have updated the manual classifi-

cation for FNDDS 2009-2010, and propagated the labels in different cohorts by matching the

food codes through the years. In the updated manual classification of FNDDS 2009-2010 the

percentage of food items relying on ingredient decomposition increased to 58.98% from 55.69%.

2001 2003 2005 2007 2009 2011 2013 2015 2017
NHANES Cycle
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Figure S3: Manual NOVA Classification Coverage Over FNDDS 2001-2017. On average 35% of the food
items have a manual NOVA label without relying on ingredient decomposition.

1.4 Nutrient Panels

The large nutritional panel available for FNDDS 2009-2010 allowed us to train FoodProX

with varying subsets of nutrients. The widest panel consists of 99 nutrients, including the

flavonoid measurements developed for NHANES 2007-2010 (Table S2) [8]. Among these 99

nutrients, we further selected and trained on 62 nutrients common to NHANES 2001-2018

(Table S3), and 58 nutrients available in NHANES 1999-2018 (Table S4). Figures 1C-1D and

Figures 2A-2C in the manuscript describe the results on FNDDS 2009-2010 with 99 nutrients,

while Figure 2D is related to the analysis of FNDDS 2015-2016, therefore using a nutrient panel

of 62 nutrients. For the epidemiological analysis in Section S3, leveraging data from 1999 to

2006, we opted for 58 nutrients.

With the goal to tackle branded products and the consumer space, we additionally trained

on a subset of 12 nutrients contributing to FDA nutrition facts (Table S5), excluding calories

and total amount of trans fatty acids, as the latter is not available in the original batch of 99

nutrients.
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All nutrients were log-transformed and 0 values were substituted with e−20, a choice justified

by the orders of magnitude spanned by nutrient concentrations in food [9].

Table S2: 99 Nutrient Panel for NHANES 2007-2010

Nutrients 37 Additional Nutrients From FNDDS Flavoniod 2007-2010 Database

Protein Vitamin E (alpha-tocopherol) 6:0 Total flavonoids Eriodictyol

Total Fat Vitamin D (D2 + D3) 8:0 Cyanidin Hesperetin

Carbohydrate Cryptoxanthin, beta 10:0 Petunidin Naringenin

Alcohol Lycopene 12:0 Delphinidin Total flavanones

Water Lutein + zeaxanthin 14:0 Malvidin Apigenin

Caffeine Vitamin C 16:0 Pelargonidin Luteolin

Theobromine Thiamin 18:0 Peonidin Total flavones

Sugars, total Riboflavin 18:1 Total anthocyanidins Isorhamnetin

Fiber, total dietary Niacin 18:2 (+)-Catechin Kaempferol

Calcium Vitamin B-6 18:3 (-)-Epigallocatechin Myricetin

Iron Folate, total 20:4 (-)-Epicatechin Quercetin

Magnesium Vitamin B-12 22:6 n-3 (-)-Epicatechin 3-gallate Total flavonols

Phosphorus Choline, total 16:1 (-)-Epigallocatechin 3-gallate Daidzein

Potassium Vitamin K (phylloquinone) 18:4 Theaflavin Genistein

Sodium Folic acid 20:1 Thearubigins Glycitein

Zinc Folate, food 20:5 n-3 Theaflavin-3,3'-digallate Total isoflavones

Copper Vitamin E, added 22:1 Theaflavin-3'-gallate

Selenium Vitamin B-12, added 22:5 n-3 Theaflavin-3-gallate

Retinol Cholesterol Fatty acids, total monounsaturated (+)-Gallocatechin

Carotene, beta Fatty acids, total saturated Fatty acids, total polyunsaturated Total catechins (monomeric flavan-3-ols only)

Carotene, alpha 4:0 Total flavan-3-ols

Table S3: 62 Nutrient Panel for NHANES 2001-2018 Cycles

Nutrients

Protein Vitamin E (alpha-tocopherol) 6:0

Total Fat Vitamin D (D2 + D3) 8:0

Carbohydrate Cryptoxanthin, beta 10:0

Alcohol Lycopene 12:0

Water Lutein + zeaxanthin 14:0

Caffeine Vitamin C 16:0

Theobromine Thiamin 18:0

Sugars, total Riboflavin 18:1

Fiber, total dietary Niacin 18:2

Calcium Vitamin B-6 18:3

Iron Folate, total 20:4

Magnesium Vitamin B-12 22:6 n-3

Phosphorus Choline, total 16:1

Potassium Vitamin K (phylloquinone) 18:4

Sodium Folic acid 20:1

Zinc Folate, food 20:5 n-3

Copper Vitamin E, added 22:1

Selenium Vitamin B-12, added 22:5 n-3

Retinol Cholesterol Fatty acids, total monounsaturated

Carotene, beta Fatty acids, total saturated Fatty acids, total polyunsaturated

Carotene, alpha 4:0
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Table S4: 58 Nutrient Panel for NHANES 1999-2018 Cycles

Nutrients

Protein Vitamin E (alpha-tocopherol) 14:0

Total Fat Cryptoxanthin, beta 16:0

Carbohydrate Lycopene 18:0

Alcohol Lutein + zeaxanthin 18:1

Water Vitamin C 18:2

Caffeine Thiamin 18:3

Theobromine Riboflavin 20:4

Sugars, total Niacin 22:6 n-3

Fiber, total dietary Vitamin B-6 16:1

Calcium Folate, total 18:4

Iron Vitamin B-12 20:1

Magnesium Vitamin K (phylloquinone) 20:5 n-3

Phosphorus Folic acid 22:1

Potassium Folate, food 22:5 n-3

Sodium Cholesterol Fatty acids, total monounsaturated

Zinc Fatty acids, total saturated Fatty acids, total polyunsaturated

Copper 4:0

Selenium 6:0

Retinol 8:0

Carotene, beta 10:0

Carotene, alpha 12:0

Table S5: 12 Nutrient Panel for Branded Products

Nutrients

Protein

Total Fat

Carbohydrate

Sugars, total

Fiber, total dietary

Calcium

Iron

Sodium

Vitamin C

Cholesterol

Fatty acids, total saturated

Total Vitamin A = Retinol + Carotene, beta + Carotene, alpha + Cryptoxanthin, beta

1.5 Hierarchical Clustering of Foods according to Nutrients

Leveraging the 99 nutrient panel for FNDDS 2009-2010, we clustered all foods in an unsu-

pervised fashion, using the dynamic tree cut algorithm [10]. The algorithm retrieves 20 clusters,

annotated in the first column of the cluster map shown in Figure S4. The nutrient-derived clus-

ters are not good predictors of NOVA classes, both computationally-derived (Column 2) and

manually-assigned (Column 3). We measure the mutual dependence between different clustering

methodologies with adjusted mutual information (AMI), an adjustment of the classic mutual

information (MI) to account for chance, that takes a value of 1 when two partitions are identical

and 0 when the MI between two partitions equals the value expected by chance [11]. In partic-

ular, for the foods in the training data which were manually-assigned to NOVA 1, 2, 3, and 4,
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Figure S4: Hierarchical clustering of foods according to nutrient content. We clustered all foods in FNDDS
2009-2010, each represented by a vector of 99 log-transformed nutrients. The cluster map is annotated according to different
classification strategies. In Column 1, starting from the left, each color corresponds to a cluster found by the dynamic
tree-cut algorithm. In Column 2 we report the predicted NOVA classes by FoodProX, while Column 3 encodes the manual
labels used during the training phase of FoodProX. Finally, in Column 4 items are color-coded according to the first two
digits of their FNDDS food codes.

we find AMI=0.12. Similarly, for the classes predicted by FoodProX we obtain AMI=0.14. The

nutrient-based hierarchical clustering is more consistent with the first two digits of the FNDDS

food codes (Column 4), capturing broad food groups as defined by the database (AMI=0.39).

This result suggests that the performance of FoodProX is not merely induced by the classifi-

cation of foods based on nutrient content, but FoodProX combines in a non-linear fashion the

features of processing techniques (supervised information learned from NOVA manual labels),

with food composition data (unsupervised information learned from FNDDS nutritional values).

Similar results were obtained with 62, 58, and 12 nutrient panels described in Section S1.4.
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2 Random Forest Classifier FoodProX and Food Processing Score FPro

2.1 Random Forest Classifier

FoodProX is based on a Random Forest Classifier whose hyper-parameters were chosen using

the python sklearn RandomizedSearchCV function with a 5-fold stratified cross-validation. In

particular, the sampled search considered a number of trees between 200 and 2000, a maximum

number of features equal to
√

or to log 2, and a maximum depth of the trees between 100 and

500 (tested with 99 nutrients). Over 100 random samples, the function picked a number of

estimators equal to 200, a maximum number of features equal to
√

, and a maximum tree depth

equal to 420 (currently used). Further runs of the random search found other combinations

of parameters spanning the whole search intervals, suggesting an overall robust performance of

the classifier, independently from the hyper-parameter tuning.

We evaluated the performance and stability of FoodProX over a 5-fold stratified cross-

validation of the labeled dataset (Figure S13C), with varying input resolution. In Figures

S13A-H we show the ROC curves and Precision-Recall curves for each NOVA class, while in

Tables S6A and S6B we report the average and standard deviation of AUC and AUP over

the 5 folds, and across the different nutrient panels, as reported in the manuscript. The high

performance for different nutrient resolutions is encouraging, as for many foods we lack access

to an extensive panel of nutrients.

To improve the performance of the classifier on new data and limit over-fitting, we retrained

it using SMOTE [12] to correct for the unbalance in class representation, and created an en-

semble voting system of 5 classifiers trained on 4/5 of the generated data. The predictions on

unseen data are then calculated as the average of the 5 classifiers.

Table S6: AUC and AUP for the four NOVA classes. For each NOVA class, we report the average and standard
deviation of AUC and AUP over the stratified 5-folds, for 12, 62, and 99 input nutrients. We summarize the results across
nutrient panels of different resolutions in bold.

NOVA 1 NOVA 2 NOVA 3 NOVA 4
Average AUC Nutrition Facts 0.981662 0.966348 0.967094 0.976772

Std AUC Nutrition Facts 0.003621 0.044898 0.010411 0.003432
Average AUC 62 Nutrients 0.980837 0.962878 0.970605 0.979866

Std AUC 62 Nutrients 0.00173 0.048586 0.00806 0.004876
Average AUC 99 Nutrients 0.978806 0.960406 0.971156 0.980085

Std AUC 99 Nutrients 0.002772 0.052151 0.007394 0.004237
Average AUC 0.980435 0.963211 0.969618 0.978908

Std AUC 0.0012 0.002437 0.001799 0.001513

NOVA 1 NOVA 2 NOVA 3 NOVA 4
Average AUP Nutrition Facts 0.891112 0.756997 0.864605 0.990558

Std AUP Nutrition Facts 0.035105 0.169225 0.040566 0.001414
Average AUP 62 Nutrients 0.891971 0.736245 0.873025 0.991702

Std AUP 62 Nutrients 0.024412 0.185744 0.03922 0.002178
Average AUP 99 Nutrients 0.881419 0.74707 0.879123 0.991783

Std AUP 99 Nutrients 0.024092 0.193387 0.032601 0.001954
Average AUP 0.888168 0.74677 0.872251 0.991348

Std AUP 0.004785 0.008475 0.005952 0.00056

(A) (B)
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Figure S5: Random forest performance over the 4 NOVA classes. For each NOVA class, we evaluated the
performance of the random forest classifier with a 5-fold cross-validation. We observe similar performances for the classifiers
trained with 99, 62, and 12 nutrients. In Panels A-D we show the ROC curves for each NOVA class, while panels E-F
display the Precision-Recall curves.

2.2 Feature Importance

Inspired by the work of Parr et al. [13], we investigated how different nutrients contribute

to the overall performance of FoodProX, i.e., their feature importance. The most popular way

to assess feature importance in the random forest algorithm is the mean decrease impurity,

measuring how effective a feature is at reducing uncertainty (classifiers) or variance (regressors)

when building the decision trees. However, this methodology is not reliable when potential

predictors vary in their scale of measurement or their number of categories [14]. We opted

for permutation feature importance, a technique quantifying the relevance of each feature by

permuting the specific input column and measuring the decrease in accuracy or R2 compared

to the baseline. This approach handles also the presence of collinear features, i.e., variables

with some significant degree of linear or nonlinear dependence, that should be clustered and

permuted together.

First, we modified the algorithm to work on a stratified 5-fold cross-validation, with data splits

consistent with the cross-validation for the baseline model. Second, we addressed the high degree

of collinearity of the nutrient space by removing all measurements like “Total Fat” or “Total

flavonoids”, as they represent straightforward linear combinations of other nutrients. On the

reduced set of 85 nutrients, we studied both rank correlation and feature dependence, i.e., the

extent to which each feature can be predicted by the others through a random forest regressor.

We cluster together features with ρSpearman ≥ 0.80, and additionally, every nutrient well fitted
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Figure S6: Permutation feature importance. (a) Clusters of features with strong dependence. We cluster together
features with ρSpearman ≥ 0.80, and additionally, every nutrient well predicted by the remaining nutrient set through
a random forest regressor is connected to each of the independent variables determining a drop ≥ 0.80 in the coefficient
of determination. Each connected component determines a single cluster of features permuted at the same time, while
isolated nutrients (not shown) are permuted on their own. (b) Top 10 most important nutrient clusters sorted by average
permutation importance over 20 reshuffles.

by the random forest regressor is connected to each of the nutrients in the independent variable

set that determines a drop ≥ 0.80 in the coefficient of determination (Figure S6A). Given the

stochastic nature of the permutation feature importance, we repeated the estimation 20 times

and ranked the feature clusters according to their average drop in accuracy. In Figure S6B we

report the top 10 most significant feature clusters, where only Sodium shows more predictive

power than the other nutrients, suggesting that there is no single nutrient marker for food

processing.

We further investigated the role of each nutrient i in determining the prediction for a selected

food f , by using SHAP [15], over 5-fold stratified cross-validation. The SHAP explanation

method computes Shapley values from coalition game theory. The feature values of a data

instance act as players in a coalition, and Shapley values indicate how to fairly distribute the

“payout”, i.e., the prediction, among the features. For each food f and NOVA class c, SHAP

specifies the explanation as

pc(f) = 〈pc(f)〉+
∑
j

SHAP valuecj(f). (1)

A player in the game could be also a group of features, as we previously investigated for the

permutation feature importance analysis. However, due to high computational complexity, we

focused on single nutrients, despite the presence of collinear features. In Figure S7 we show

the top 10 nutrients in terms of 〈|SHAP valuecj(f)|〉 for each NOVA class c. The magnitude
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of the explanations varies significantly across NOVA classes, with only Sodium and Folic acid

exhibiting distinct behaviors. For instance, when the amount of Folic acid is high, p4 is expected

to be high as well, while the other NOVA classes display lower probabilities. In the case of

Sodium, high values are likely to increase p4 and decrease p1 and p2, while the processed class

NOVA 3 displays mixed behaviors. Overall, we find that the ranking of SHAP values is in good

overlap with Figure S6B.

To understand the statistical relevance of SHAP explanations, we introduced a new positive

variable

relevanceic(f) =
|SHAP valueci (f)|∑
j |SHAP valuecj(f)|

, (2)

measuring to which extent nutrient i contributes to the superior limit of the absolute difference

|pc(f)−〈pc(f)〉|. In Figure S8, for each NOVA class c we display the violin-plot of relevanceic for

the top 10 nutrients in terms of median effect. Each violin-plot is compared with the quantiles

of a maximum entropy null model for feature relevance, i.e., a Dirichlet multivariate distribution

with marginal probability for each feature equal to a beta distribution with parameters α = 1

and β = nfeatures − 1[16]. The higher the overlap between a violin plot and the null model

ranges, the closer we are to a scenario lacking driving nutrients in determining the final class

probability. In Figure S8, we observe a huge variability in the feature relevance of each nutrient,

as captured by the shape of the violin plots, evidence of the lack of strong driving signals in the

model decision-making. As expected, the largest nutrient contributions are found for NOVA 1

and NOVA 4, the two extreme processing classes.

2.3 Food Processing Score FPro

The classifier probability space is a 4-D probability simplex that collects all vectors satisfying

{−→p ∈ R4, p1 + p2 + p3 + p4 = 1, pi ≥ 0 ∀i}. (3)

We define the processing score FProk as the projection of any food ~pk = (pk1, p
k
2, p

k
3, p

k
4) over

the line going from the pure minimally-processed state −→p MP = (1, 0, 0, 0) to the pure ultra-

processed state −→p UP = (0, 0, 0, 1), represented by the parametric equation
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Figure S7: Shapley values. Top 10 nutrients in terms of average 〈|SHAP valuecj(f)|〉 over all foods f , for class (a)

NOVA 1, (b) NOVA 2, (c) NOVA 3, and (d) NOVA 4 (see Eq. S1). For each NOVA class c, the color scale correlates
with the class probability pc. The number of data points in the beeswarm plots is equivalent to the size of the training set
represented in Figure S2C (2,971).

−→
l(t) =


1

0

0

0

 + t


−1

0

0

1

 , (4)

equivalent to the explicit equation p1 = 1 − p4. The orthogonal projection of food −→p k follows

as the intersection between Eq. S4 and the plane passing through −→p k and orthogonal to
−→
l(t),

i.e.,

− p1 + p4 + pk1 − pk4 = 0. (5)

The parameter t∗ satisfying Eqs. S4-S5 determines the processing score FProk in Eq. 1.

Of note, FPro assigns a value around 0.5 for all NOVA 2/3 classes, which are then differentiated

using the p2/p3 ratio.

We focused on the extreme classes NOVA 1 and NOVA 4, as by definition [17], they are the

only ones with a clear “natural” ranking, ideal to define a processing scale. Indeed, NOVA 3

is not more processed than NOVA 2, they simply collect remarkably different items, according
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Figure S8: Relevance of Shapley values. Top 10 nutrients in terms of median relevanceic(f) across all foods f , for
class (a) NOVA 1, (b) NOVA 2, (c) NOVA 3, and (d) NOVA 4 (see Eq. S2). The gray dashed lines correspond to the
quantiles Q1 and Q3 of a beta distribution with parameters α = 1 and β = nfeatures − 1. The full grey line points to the
median of the same null model. The number of data points captured by the violin plots is equivalent to the size of the
training set represented in Figure S2C (2,971). In each violin plot, the white point represents the median, the tick gray bar
captures the interquartile range (upper quartile Q3 - lower quartile Q1), and the thin gray line represents the remaining
part of the distribution.

to nutrient composition and consumed portion. However, both classes are more complex than

NOVA 1, and less processed than NOVA 4. While it is true that a “pure” NOVA 2/3 item would

have FPro = 0.5, in real-world data, this is an uncommon scenario, so the extent of the residual

probabilities p1 and p4 measures if a product is leaning towards the minimally processed or the

ultra-processed extreme.
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2.4 Validation of FPro in Different FNDDS Editions

We investigated the relation of FPro, trained on FNDDS 2009-2010 with a 62 nutrient panel,

and NOVA manual classification in other editions of FNDDS, to control for any potential over-

fitting and validate the performance of our algorithm on new foods, or foods whose nutrient

content has changed over time. In particular, in Figure S9 we show the results for FNDDS

2015-2016, so far, the USDA database for dietary studies with the highest number of food

items. All four classes of manually labeled items correspond to well-localized and distinguishable

distributions of FPro.

Figure S9: Food processing score for NOVA manual labels in 2015-2016. Variability of FPro (trained on
FNDDS 2009-2010) within manual NOVA classes for FNDDS 2015-2016.
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Figure S10: Nutrient profiles of Post cereals compared to “Wheat bran, unprocessed”. (a) All 62 nutrients
measured in FNDDS 2015-2016 are shown in log-scale, and with varying colors and markers depending on the food item.
(b) We rescale the nutrient profile of each cereal by the corresponding value per 100 grams found in unprocessed wheat
bran and plot them in log-scale. The black dashed line corresponds to 1, i.e., identical nutrient content.

2.5 Case Study on Post Cereals.

To further investigate the interplay between nutrient patterns and FPro, we collected the

62 nutrient profiles describing each Post cereal highlighted in Figure 2, and compared them

with the nutritional values for 100 grams of unprocessed wheat bran (FPro=0.0682). We chose

this specific ingredient as the Post Shredded Wheat ’N Bran contains whole grain wheat, wheat

bran, and the antioxidant Butylated hydroxytoluene [18], and we tried to find any potential

matching item in FNDDS 2015-2016. In Figure S10, we compare the nutrient values in absolute

terms (Panel A), or as the ratio with their counterpart in wheat bran (Panel B). Interestingly,

we observe how the pattern of alterations involves all nutrients, increasing the level of FPro

even for simple products like Post Shredded Wheat ‘N Bran, as its nutrient profile is not

characteristic of any natural ingredient per 100 grams, but it corresponds to a mildly processed

food (FPro=0.5658).

2.6 Source of Food

The location where a food was prepared, as well as the origin of the ingredients, could

be indicative of its degree of processing. To investigate this hypothesis we used the variable
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Figure S11: FPro stratified by food source in NHANES 2003-2005. (a) Food sources reported in the cohorts,
sorted in descending order by number of records. (b) Violin plots of 10 selected food sources ranked in increasing order of
median FPro. Sample sizes are consistent with the number of records shown in panel (a), with a minimum of 1,132 data
points for “Bar/tavern/lounge” and a maximum of 378,420 data points for “Store”. We annotate median values with full
lines, and lower quartiles and upper quartiles with dashed lines. In each violin plot, the bold line represents the median,
and the dashed lines represent the lower quartile Q1 and the upper quartile Q3. Source data are provided in Source Data
Supplementary Figure 11a and 11b.xlsx.

DR1FS in NHANES, corresponding to the question “Where did you get (this/most of the

ingredients for this)?”, and available for the years 2003-2018 (https://wwwn.cdc.gov/Nchs/

Nhanes/2005-2006/DR1IFF_D.htm#DR1FS). By leveraging our analysis of the merged NHANES

cohorts between 1999 and 2006 (Section S3.2), we were able to stratify FPro by food source

for two cycles (2003-2004, 2005-2005). In Figure S11A we report the 25 different types of food

sources found in the population, sorted by decreasing number of records. As expected, “Store”

contributes to the majority of the records, followed by “Restaurant fast food/pizza”. In Figure

S11B we selected 10 of the most popular food sources, and visualize the related distributions of

FPro in increasing order of median. Overall, FPro is significantly different across source cate-

gories, as quantified by the Kruskal-Wallis H-test (p-value < 10−15), suggesting that the overlap

between the source categories (driven by foods with multiple origins), while present, is limited.

We also compared each pair of source categories with the Mann-Whitney U rank test, finding

that (Cafeteria not at school, Bar/tavern/lounge), (Cafeteria at school, Bar/tavern/lounge),

(Store, Bar/tavern/lounge), and (Restaurant with waiter/waitress, Bar/tavern/lounge) do not

survive multiple testing with Bonferroni correction (α = 0.01), indicating continuous distribu-

tions with equal medians. Additionally, to control for “overpowering”, i.e., the scenario in which

large samples almost surely determine a statistically significant outcome, we estimated the effect

size r following [19]. Across the 45 combinations of food sources, 23 show r ≥ 0.1 (small effect),

6 have r ≥ 0.3 (medium effect), and the pair (“Grown or caught by you or someone you know”,

“Vending machine”) is characterized by the largest effect size with r = 0.5798.
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3 Individual Diet Processing Scores iFPro and Exposome

3.1 Individual Processing Score iFPro

To capture the extent of processing in individuals’ diets we focus on two weighting schemes:

a calorie-based score (Eq. 2), and a gram-based score,

iFProjWG =

Dj∑
k

wjk
W j

FProk, (6)

where Dj is the number of dishes consumed by individual j, W j is her total amount of food in

grams, and wjk is the amount of grams consumed for each food item (excluding water consump-

tion, see Section S3.4).

3.2 Population Characteristics

NHANES captures a variety of information ranging from demographics and dietary intake,

to lab and physical examinations. This wealth of information is compiled into hundreds of

publicly available data files, that all together provide over 1,000 variables.

To investigate the relation between iFPro and health, we focused on NHANES 1999-2006

exposome and phenome database, a harmonized dataset created by Patel et al. in [20], merging

255 data files from four cycles of NHANES, for a total of 41,474 individuals and 1,191 variables.

The summary statistics for iFProWC and iFProWG, characterizing the 20,047 adults (18+)

in the cohort, are presented in Tables S7 and S8. All predictions are calculated with the 58

nutrient panel in Table S4.

NHANES follows the well-established two-step 24HRs dietary recall interviews to sample

the dietary intake of the American population [21, 22]. The first step is done in person with a

dietitian interviewing each applicant, while ensuring the highest quality of dietary recall over the

past 24HRs. The second step consists of a phone interview within 3-10 days to capture a second

dietary recall [23]. The multiple 24HRs dietary recalls have proved to be an effective method

in the assessment of trends over the dietary intakes of individuals [24]. For all individuals who

completed two-day dietary recalls (in-person and phone interview) we calculated a daily average

iFPro, while for the remaining participants we used just the data from the in-person interview.

The relevance of each individual for population statistics is based on survey weights [25, 26].
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Table S7: Population characteristics for iFProWC

mean
𝑖𝐹𝑃𝑟𝑜𝑊𝐶

0.0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0

Counts Subjects (𝑛 = 20,047) 4 63 1487 11180 7313

Age — mean±SE 45.28±0.3 58.01±6.16 47.2±3.06 51.4±0.64 47.36±0.37 41.3±0.3

Poverty Income Ratio — mean±SE 2.99±0.04 2.58±0.98 2.92±0.3 2.97±0.07 3.06±0.04 2.88±0.05

Calories Consumed — mean±SE 2189.13±10.36 534.25±162.24 1359.03±184.71 1772.85±29.81 2143.11±13.16 2329.7±15.07

BMI — mean±SE 28.13±0.1 26.48±1.63 29.33±1.33 27.45±0.28 27.92±0.1 28.53±0.13

female — count (%) 4 (1) 41 (0.65) 879 (0.59) 5798 (0.52) 3763 (0.51)

white — count (%) 0 (0) 20 (0.32) 663 (0.45) 5389 (0.48) 3525 (0.48)

black — count (%) 0 (0) 21 (0.33) 227 (0.15) 2160 (0.19) 1810 (0.25)

mexican — count (%) 2 (0.5) 15 (0.24) 443 (0.3) 2737 (0.24) 1460 (0.2)

other hispanic — count (%) 0 (0) 6 (0.1) 86 (0.06) 467 (0.04) 270 (0.04)

Table S8: Population characteristics for iFProWG

mean
𝑖𝐹𝑃𝑟𝑜𝑊𝐺

0.0 – 0.2 0.2 – 0.4 0.4 – 0.6 0.6 – 0.8 0.8 – 1.0

Counts Subjects (𝑛 = 20,047) 182 2699 7286 7230 2650

Age — mean±SE 45.28±0.3 52.81±1.55 54.78±0.61 49.11±0.38 41.5±0.34 34.71±0.3

Poverty Income Ratio — mean±SE 2.99±0.04 3.01±0.15 3.13±0.05 3.15±0.05 2.92±0.04 2.56±0.07

Calories Consumed — mean±SE 2189.13±10.36 1490.34±70.36 1821.13±19.67 2134.69±14.34 2342.11±17.73 2356.4±30.02

BMI — mean±SE 28.13±0.1 28.08±0.82 27.47±0.15 27.76±0.13 28.37±0.1 29.14±0.19

female — count (%) 112 (0.62) 1618 (0.6) 3851 (0.53) 3594 (0.5) 1310 (0.49)

white — count (%) 107 (0.59) 1682 (0.62) 3790 (0.52) 2921 (0.4) 1097 (0.41)

black — count (%) 20 (0.11) 294 (0.11) 1189 (0.16) 1860 (0.26) 855 (0.32)

mexican — count (%) 37 (0.2) 529 (0.2) 1731 (0.24) 1873 (0.26) 487 (0.18)

other hispanic — count (%) 9 (0.05) 100 (0.04) 295 (0.04) 320 (0.04) 105 (0.04)

3.3 Correlation between iFProWG, iFProWC, and HEI-15

While we find an overall agreement in the population ranking determined by iFProWG

and iFProWC (ρSpearman = 0.7029, Figure S12A), the two measures show significantly differ-

ent patterns in epidemiological associations, in particular regarding chemical exposures (Figure

S20). Indeed, a weight-based index could capture complex dietary patterns arising from the

consumption of highly processed beverages such as zero-calorie soft drinks, or any type of food

contaminant whose amount is independent of the provided calories.

We compared iFProWG and iFProWC with the HEI-2015, a score measuring the alignment

of an individual’s diet with the national dietary guidelines, ranging from 0 (no alignment) to

100 (complete alignment) [27]. We followed the National Cancer Institute (NCI) to calculate

HEI-15 for NHANES participants [28]. As expected, we observe negative correlations emerging

(Figures S12B and C), with both iFProWG (ρSpearman = −0.4862), and iFProWC (ρSpearman =
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−0.5575).

Figure S12: Relation between iFProWC , iFProWG and Healthy Eating Index 2015 HEI-2015. For each
individual in NHANES 1999-2006 18+ years old, we investigate the relation between (a) iFProWC and iFProWG, (b)
HEI-2015 and iFProWC , and (c) HEI-2015 and iFProWG, stratified by age.

Food Code Calories
(kcal)

FPro Grams

63107010 Banana (raw) 121 0.00 136
72201100 Broccoli (raw) 30 0.02 88
75115000 Mushrooms (raw) 30 0.17 138
74101000 Tomatoes (raw) 71 0.07 394
75114000 Mixed greens salad 31 0.09 182
24124120 Fried Chicken breast 232 0.56 120
22101220 Fried Pork chop (lean) 189 0.63 117
56205008 Rice (cooked white) 663 0.69 513
61210250 Orange juice 211 0.00 450
92410550 Soft drink (caffeine add) 68 1.00 185
92302000 Tea (unsweetened) 22 0.05 2131

47 age 48 ageIndividual 𝒜𝒜 Individual ℬ

63107010 Banana (raw) 242 0.00 272
72201100 Broccoli (raw) 17 0.00 50
75115000 Mushrooms(raw) 18 0.17 79
74101000 Tomatoes (raw) 18 0.07 101
75113000 Lettuce (raw) 8 0.02 55
42114130 Pistachio nuts (roasted , salt added) 82 0.53 15
14109010 Swiss Cheese 9 0.50 2
83106000 Italian dressing 141 0.91 59
56205008 Rice (cooked white) 268 0.69 207
28355480 Seafood soup with vegetables 185 0.69 442
41420300 Soy sauce 17 0.54 32
26158010 Tilapia (baked or broiled) 204 0.50 136
61210250 Orange juice 845 0.00 1798
93101000 Beer 310 0.51 720

D
ay

 1
D

ay
 2

Food Code Calories
(kcal)

FPro Grams

63109010 Cantaloupe (raw) 27 0.02 78
14010100 Cheddar cheese 32 0.51 9
63223020 Strawberries (raw) 9 0.00 28
92111010 Coffee (decaffeinated) 0 0.02 192
92101000 Coffee (regular) 7 0.00 607
57230000 Cereal (Grape-Nuts) 139 1.00 39
53242000 Cookie (sugar wafer) 141 0.99 28
54337000 Cracker 80 0.99 19
25210110 Hot dog (frankfurter) 184 0.99 57
27510560 Hamburger (with mayonnaise) 655 1.00 290
51150000 Bread roll (white, soft) 145 1.00 52
26137190 Salmon (smoked) 15 0.50 13
71201020 Potato chips 59 0.91 12
71401030 French fries 306 0.95 98
75506010 Mustard 7 0.54 10
91705030 Kit Kat 78 1.00 15
11422000 Yogurt (flavored and lowfat milk) 156 0.99 184
92410510 Soft drink (caffeine free) 49 0.99 122

63201010 Blackberries (raw) 11 0.01 26
63219020 Raspberries (raw) 10 0.00 19
92101000 Coffee (regular) 7 0.00 696
57230000 Cereal (Grape-Nuts) 312 1.00 87
53209000 Cookie (chocolate) 206 1.00 44
53112100 Cake 382 1.00 141
58106225 Pizza (cheese) 622 1.00 234
11423000 Yogurt (flavored and nonfat milk) 149 0.84 184

Figure S13: Dietary recalls for Individual A (SEQN-ID 68484) and Individual B (SEQN-ID 59440) anno-
tated in Figure 3a-c.
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3.4 Water Consumption in NHANES

To calculate iFProWG (Eq. S6), we removed four food codes regarding water consumption,

as their reporting through different NHANES cycles showed inconsistencies. Indeed, we noticed

that “Water as an ingredient” stopped being tracked since NHANES 2011-2012 (Figure S14

A), and the consumption of tap and bottled water started being recorded since NHANES 2003-

2004 (Figures S14B and C). These inconsistencies would have affected our analysis of the pooled

cohorts.

A B

C D

Figure S14: Water consumption in survey data. (a) “Water as an ingredient” is no longer tracked since NHANES
2011-2012. (b-c) Bottled and tap water have been tracked since NHANES 2005-2006, hence this might introduce incon-
sistency when combining NHANES 1999-2004 cohorts with their succeeding cohorts. (d) The consumption of baby water
has been tracked since NHANES 2009-2010.

3.5 Relation between iFProWC and WWEIA Food Categories

By leveraging our calculation of iFProWC (Eq. 2) over the merged NHANES cohorts

between 1999 and 2006 (Section S3.2), we investigated the relation between trends in iFProWC

and fraction of consumed calories in each of the What We Eat in America (WWEIA) food

categories [29].

First, for each individual j we calculated the total fraction of calories contributed by food
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category g,

FCjg =

Dj∑
k

cjk
Cj
δ(WWEIA(k), g), (7)

where Dj is the number of dishes consumed by individual j, Cj is the daily total amount of

consumed calories, cjk is the amount of calories contributed by each food item, and δ indicates

the Kronecker delta, whose value is 1 when food k belongs to food category g, and otherwise 0.

We proceeded in calculating the Spearman’s rank correlation between {iFProjWC} and

{FCjg} for each WWEIA class g across the cohort. Once accounted for multiple testing with

Bonferroni correction (α = 0.01), we found a total of 64 WWEIA categories anti-correlated

with iFProWC , and 40 positively correlated (Figure S15).

We further investigated the representation of WWEIA categories in the first quintile Q1

of iFProWC ( iFProWC ≤ 0.6908), compared to the last quintile Q5 (iFProWC ≥ 0.8585).

These two sub-populations capture 4,010 individuals each, representing the most divergent

dietary patterns in terms of ultra-processed food. The caloric consumption of each WWEIA

category across the two sub-groups was tested with the Mann-Whitney U rank test, finding a

total of 103 categories significantly changing from Q1 to Q5, once corrected for multiple testing

(Bonferroni method with α = 0.01). To control for “overpowering”, as explained in Section

S2.6, we calculated the effect size r following [19], and ranked all significant WWEIA categories

accordingly (Figure S16A). Overall, the consumption of 21 food groups changes between Q1

and Q5 with effect size ≥ 0.1, the baseline for small effect sizes. Among the biggest effect sizes

we find “Soft drinks” (r = 0.4660), with average caloric fraction 5.61 bigger in Q5 compared to

Q1, and “Bananas” (r = 0.2728), with average caloric fraction 14.07 bigger in Q1 compared to

Q5 (Figure S16B).
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Figure S15: Spearman’s rank correlation between iFProWC and the caloric fraction contributed by each
WWEIA category across NHANES individuals. 64 WWEIA categories significantly anti-correlate with iFProWC
(blue), while 40 are positively correlated (red). The height of each bar is proportional to the correlation value, and all
coefficients are sorted from the strongest anti-correlation to the strongest correlation.

4 Environment-Wide Association Study

Inspired by [30], we performed an Environment-Wide Association Study (EWAS) on the

merged NHANES 1999-2006 cohort, to identify environmental factors and disease-related phe-

notypes associated with iFProWC , iFProWG, and the fraction of calories contributed by man-

ual NOVA 4. To do so, we collected data for 45 exposure modules in [20], and we further added

one variable predicting diabetes according to fasting glucose levels ≥126 mg/dL, as advised

by the American Diabetes Association [31], two variables predicting metabolic syndrome [32],

two assessments of the Framingham Risk Score [33, 34], and the ACC/AHA Risk Score [35],

quantifying the 10-year risk of non-fatal myocardial infarction (MI), congestive heart disease

(CHD) death, or fatal or nonfatal stroke.

The variables are broadly categorized in two panels (Figure S17A): a health panel, gather-

ing variables describing the overall health of the individuals, from biological age and nutrient

biomarkers, to disease phenotypes, and a chemical panel, where we group all chemical expo-

sures measured in blood or urines, linked to pesticides, contaminants, and processing chemical
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Figure S16: Comparison of iFProWC extreme quintiles Q1 and Q5. For individuals in the first quintile Q1 and
in the last quintile Q5 of iFProWC we compare the caloric fraction contributed by each WWEIA category. In (a) we
estimate the effect size r following [19], where r ≈ 0.1 is considered a small effect, r ≈ 0.3 a medium effect, and r ≈ 0.5
a large effect. The WWEIA food categories surviving multiple testing with Bonferroni correction (α = 0.01) are shown in
decreasing order of effect size. In (b), following the same order, we show the average fraction of calories in Q1 and Q5.

byproducts.

To select the most robust signal, we studied only variables measured in at least two cycles

of NHANES. To quantify the statistical associations, we employed survey-weighted generalized

linear models, and in particular, linear regression to predict continuous variables, and logis-

tic regression for categorical (Figure S17B). All models were adjusted for age, sex, ethnicity,

Body Mass Index (BMI), total-caloric intake, and estimated Socioeconomic Status (SES), as

provided by NHANES and consistently with [31] (similar results were obtained with the ad-

ditional correction for smoking habits). We employed the ‘survey’ statistical package in R to

account for the complex survey design of NHANES [26]. We further filtered all categorical

and continuous variables lacking a minimum sample size to perform regression analysis. In

particular, for continuous variables we considered a ratio between number of covariates and
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Perchlorate 0 0 1 0 0

Pesticides 29 35 55 23 52
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Figure S17: Overview of the EWAS pipeline on NHANES 1999-2006. (a) For the selected health phenotypes
and chemical exposures provided in each cohort of NHANES, we kept only those variables present in at least two cohorts.
(b) We investigated possible associations between the selected 405 variables in the combined NHANES 1999-2006 cohort
using linear regression for continuous variables and logistic regression for categorical variables. (c) To account for false
discovery rate, we adjusted the p-value of β1 using Benjamini-Hochberg method with α = 0.05.

number of data points ≤ 1/50, while for categorical we applied a similar threshold for the ratio

between number of covariates and number of data points in the smallest category (Figure S17C).

All continuous variables were transformed using Box-Cox transformation or logit function

(applied to Framingham and ACC/AHA scores) to stabilize the variance and improve the va-

lidity of measures of association [30]. We then standardized all continuous variables, to bring

their effect sizes on a similar scale. For multiple linear regression, we used fully standardized

regression coefficients, indicating how many standard deviations of change in the dependent

variable are associated with one standard deviation increase in the independent variables. For

logistic regression, we opted for a partial standardization, acting only on the continuous inde-

pendent variables, as we wanted to keep a straightforward interpretation of the relation between

one standard deviation increase in the Box-Cox transformed iFPro and increase/decrease in

disease odds [36].

To account for false discovery rate, we adjusted the p-values corresponding to each score

using the Benjamini-Hochberg method with α = 0.05. Overall, we find 214 significant tests

across the three methodologies, with iFProWC at 134, iFProWG at 170, and manual NOVA
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4 at 92. The summary of the analysis is presented in Figures S18-S21. A comparison with

literature results based on manual NOVA 4 is reported in Table S9.

Figure S18: Number of significant tests surviving multiple testing for iFProWC , iFProWG, and fraction
of caloric intake from manual NOVA 4. For iFProWG and iFProWC , we find 170 and 134 significant associations,
respectively, for a total of 209 unique variables. In comparison, the same analysis using the fraction of calories contributed
by manual NOVA 4 finds 92 significant associations, of which 95% is in overlap with iFProWG and iFProWC . Overall,
the total number of variables recovered by the three methodologies is 214. Here we report the results stratified by module.
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Figure S19: Comparison of the effect sizes for the significant tests found by iFProWC , iFProWG, and
fraction of caloric intake from manual NOVA 4. Across the 214 significant variables recovered by the three method-
ologies, we find that (a) 70.56% of the times iFProWC shows bigger effect sizes compared to manual NOVA 4, while (b)
for iFProWG the percentage increases to 77.57%.
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Figure S20: Exposure panel. Each variable reported on the left (e.g., “Acrylamide”) refers to different exposure
modules. We report here the standardized β coefficient, quantifying the effect on each exposure when the Box-Cox
transformed diet scores increase by one standard deviation over the population. Each variable is color-coded according
to β, with positive associations in red, and negative associations in blue. For logistic regressions, p-values are associated
with two-sided Wald tests, while for multiple linear regressions, p-values are determined by two-sided t-tests. In white, we
annotate the variables that do not survive Benjamini-Hochberg FDR correction with α = 0.05 (*** adj p-value < 0.001,
** adj p-value < 0.01, * adj p-value < 0.05)
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Figure S21: Health panel. Each variable reported on the left (e.g., “Aging”) refers to different modules of disease
phenotypes and measurements assessing the overall health status of each individual. We report here the standardized β
coefficient, quantifying the effect on each exposure when the Box-Cox transformed diet scores increase by one standard
deviation over the population. Each variable is color-coded according to β, with positive associations in red, and negative
associations in blue. Each variable is color-coded according to β, with positive associations in red, and negative associations
in blue. For logistic regressions, p-values are associated with two-sided Wald tests, while for multiple linear regressions,
p-values are determined by two-sided t-tests. In white, we annotate the variables that do not survive Benjamini-Hochberg
FDR correction with α = 0.05 (*** adj p-value < 0.001, ** adj p-value < 0.01, * adj p-value < 0.05)

Table S9: A Summary of the Epidemiological Literature on the Discovered Associations with
Manual NOVA 4.

Health or

Exposure Panel

Paper In Agreement

with iFPro

Aging Ultra-processed food consumption and the risk of short

telomeres in an elderly population of the Seguimiento

Universidad de Navarra (SUN) Project [37] Spain (SUN)

Yes

Disease:

Cardiovascular • Association between ultraprocessed food intake and

cardiovascular health in US adults: a cross-sectional

analysis of the NHANES 2011–2016 [38]

USA (NHANES)

• Ultra-processed food intake and risk of cardiovascular

disease: prospective cohort study (NutriNet-Santé) [39]

France (NutriNet-Santé)

• Ultra-processed food consumption is associated with

increased risk of all-cause and cardiovascular mortality

in the Moli-sani Study [40] Molise, Italy (Moli-sani)

Yes

Disease:

Hypertension

Ultra-processed food consumption and the incidence of

hypertension in a mediterranean cohort: The seguimiento

universidad de navarra project [41] Spain (SUN)

Yes

Continued on next page
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Table S9 – continued from previous page

Health or

Exposure Panel

Paper In Agreement

with iFPro

Disease:

Metabolic

Syndrome

• Dietary share of ultra-processed foods and metabolic

syndrome in the US adult population [42]

USA (NHANES)

• Diet quality indices in relation to metabolic syndrome

in an Indigenous Cree (Eeyouch) population in northern

Québec, Canada [43]

Canada (Aschii Environment & Health Study)

• A minimally processed dietary pattern is associated

with lower odds of metabolic syndrome among Lebanese

adults [44] Lebanon

Yes

Disease:

Cancer

Consumption of ultra-processed foods and cancer risk:

results from NutriNet-Santé prospective cohort [45]

France (NutriNet-Santé)

Yes

Body Measures:

Total Fat

Contribution of ultra-processed foods in visceral fat

deposition and other adiposity indicators: Prospective

analysis nested in the PREDIMED-Plus trial [46]

Spain (PREDIMED-Plus)

Yes

Continued on next page
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Table S9 – continued from previous page

Health or

Exposure Panel

Paper In Agreement

with iFPro

Body Measures:

Waist

Circumference

• Ultra-processed food consumption and excess weight

among US adults [47] USA (NHANES)

• Consumption of ultra-processed food and obesity: cross

sectional results from the Brazilian Longitudinal Study

of Adult Health (ELSA-Brasil) cohort (2008–2010) [48]

Brazil (ELSA)

• Ultra-processed food consumption and indicators of

obesity in the United Kingdom population (2008-2016)

[49] UK (NDNS)

Yes

Nutrients

• The share of ultra-processed foods and the overall

nutritional quality of diets in the US: evidence from a

nationally representative cross-sectional study [50]

USA (NHANES)

• Impact of ultra-processed foods on micronutrient

content in the Brazilian diet [51] Brazil (HBS)

Yes

Biochemistry:

C-Reactive

Protein

Association between consumption of ultra-processed foods

and serum C-reactive protein levels: cross-sectional results

from the ELSA-Brasil study [52] Brazil (ELSA)

Yes

Phytoestrogens Association between dietary share of ultra-processed foods

and urinary concentrations of phytoestrogens in the US

[53] USA (NHANES)

Yes

Vegetarian Diet:

Adverse Effects of

ultra-processing

Consumption of Ultra-Processed Foods by

Pesco-Vegetarians, Vegetarians, and Vegans: Associations

with Duration and Age at Diet Initiation [54]

France (NutriNet-Santé)

Yes

Continued on next page
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Table S9 – continued from previous page

Health or

Exposure Panel

Paper In Agreement

with iFPro

Phthalates and

Phenols • Ultra-processed food consumption and exposure to

phthalates and bisphenols in the US National Health

and Nutrition Examination Survey, 2013–2014 [55]

USA (NHANES)

• Association between dietary contribution of

ultra-processed foods and urinary concentrations of

phthalates and bisphenol in a nationally representative

sample of the US population aged 6 years and older [56]

USA (NHANES)

Yes

Acrylamides Association between Heat-Induced Chemical Markers and

Ultra-Processed Foods: A Case Study on Breakfast Cereals

[57] Spanish supermarkets

Yes

5 Food Substitution

The observed variability of FPro for categories of foods similarly consumed in the population

(Figure 2E), combined with the EWAS results, quantifying the effect of processed diet on disease

risk, suggests a systematic way to implement food substitution and predict its relevance in terms

of health indicators [58, 59]. With this goal, we classified all foods consumed by the pooled

cohort of 20,047 individuals in NHANES 1999-2006, according to WWEIA [60]. For substitution

purposes, the relevance of food k in individual j’s diet can be quantified as

rjk = f
(k,j)
C (FProk − FPromin WWEIA(k)), (8)

where f
(k,j)
C is the fraction of calories contributed by food k to the dietary profile, while

FPromin WWEIA(k) refers to the food with the lowest FPro within the same WWEIA category

of food k. By picking the suggested foods in the original WWEIA classes reported by each

individual, we aim to minimally perturb her habits, to maximize the compliance to the new

dietary regime. Moreover, as Eq. S8 offers a heuristic to identify which food to prioritize, the

overall level of processing is reduced in a minimal number of steps.
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The impact of substituting M foods on disease risk is measured in terms of odds ratio (OR),

that quantifies the odds of disease occurring when adopting the optimized diet, compared to

the original choices. We estimate OR as

ORj(Sub vs Orig) = eβ1[(iFProjWC−
∑M

m=1 r
j
m)t−(iFProjWC)t], (9)

where β1 is the effect size describing the strength of the association between iFPro and dis-

ease onset, all {rjm} follow from Eq. S8, and with the superscript t we denote the function-

composition of Box-Cox transformation followed by z-score with parameters estimated in the

original population.

For continuous variables y like vitamin B12, vitamin C, and bisphenol A, the impact of substi-

tuting M foods on individual j’s diet is quantified by

yjSub
yjOrig

=
{(yjOrig)t + β1[(iFProjWC −

∑M
m=1 r

j
m)t − (iFProjWC)t]}−t

yjOrig
, (10)

where with the superscript −t we refer to the inverse function-composition of Box-Cox trans-

formation followed by standardization (first invert z-score, then Box-Cox).

6 Open Food Facts

Open Food Facts is a free, crowd-sourced world-wide database of food products, with nutri-

tion facts and ingredient list [61]. We collected 233,831 nutritional records from their website,

corresponding to 168,681 product ids, annotated with NOVA labels according to a heuristic

described at [62]. This database also compiled an extensive list of food additives that gave us

the possibility to quantify the number of additives per product. Similarly to the cross-validation

explained in Section S2.1, we trained and validated two models on the same 5-fold partition:

(1) standard FoodProX leveraging the logarithm of 11 nutrients used as baseline, (2) Food-

ProX with an additional input feature capturing the number of additives in each food. The

baseline feature panel includes protein, fat, total carbohydrate, sugars, dietary fiber, calcium,

iron, sodium, cholesterol, saturated fat, and trans fat. We removed vitamins A and C from the

analysis, given the high number of not available values (NAs). Hence, the cross-validation was

run on a selection of 228,689 records, with no NAs in any feature.

Overall, we find commendable performances in both scenarios, with higher AUC and AUP

when additives are included in the model (see Table S10). In particular, model (2) outperforms

35



model (1) in assessing NOVA 3. We derived FPro1 and FPro2 following Eq. 1, finding

they highly correlate with each other (ρSpearman = 0.9017), and they both correlate well with

the number of additives (ρSpearman(FPro1, nadditives) = 0.6726, ρSpearman(FPro2, nadditives) =

0.8240). This result is encouraging, as details regarding ingredient lists and additives are seldom

if ever available in current food composition databases.

To better understand the role of additives in discriminating NOVA classes, we trained and

validated a random forest taking the number of additives as the only input, over the same train-

test split used for model (1) and (2). We find AUC equal to 0.859923 ± 0.000485 for NOVA 1,

0.832023 ± 0.003375 for NOVA 2, 0.820256 ± 0.000693 for NOVA 3, and 0.907307 ± 0.000609

for NOVA 4. Compared to model (2), the performances in terms of AUC drop of 13.36% for

NOVA 1, 15.77% for NOVA 2, 15.03% for NOVA 3, and 7.25% for NOVA 4.

The lack of information on nutrient amounts strongly affects the precision-recall curve, increas-

ing disproportionately the number of false positives predicted for NOVA 1, 2, and 3. Indeed,

we find AUP equal to 0.288799 ± 0.000930 for NOVA 1, 0.026227 ± 0.000498 for NOVA 2,

0.439202 ± 0.001269 for NOVA 3, and 0.941548 ± 0.000350 for NOVA 4. The values for class

NOVA 1, 2, and 3 are close to the proportion of examples labeled as 1, 2, and 3 in the training,

suggesting that the model’s behavior is close to a random classifier. Compared to model (2),

the performances in terms of AUP drop of 70.01% for NOVA 1, 97.05% for NOVA 2, 50.96%

for NOVA 3, and 4.77% for NOVA 4.

Overall, these results suggest that the number of additives is a good predictor of ultra-processed

food as defined by NOVA, but it misses the processing nuances represented in the other NOVA

classes.

Table S10: AUC and AUP for the four NOVA classes in Open Food Facts. For model (1) and (2) we report
the average and standard deviation of AUC (A) and AUP (B) over the stratified 5-folds.

NOVA 1 NOVA 2 NOVA 3 NOVA 4
Average AUC 11 Nutrients 0.987989 0.986044 0.932033 0.950768

Std AUC 11 Nutrients 0.000647 0.004472 0.001525 0.00086
Average AUC 11 Nutrients + Additives 0.992553 0.987785 0.965301 0.978242

Std AUC 11 Nutrients + Additives 0.000327 0.004682 0.000962 0.000683

NOVA 1 NOVA 2 NOVA 3 NOVA 4
Average AUP 11 Nutrients 0.949175 0.85327 0.828676 0.972467

Std AUP 11 Nutrients 0.002694 0.016713 0.002751 0.000712
Average AUP 11 Nutrients + Additives 0.962916 0.890253 0.895639 0.988722

Std AUP 11 Nutrients + Additives 0.001583 0.013054 0.002983 0.000388

(A) (B)
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7 Data Quality and Future Directions

• Data Sample and Variability. The quality of the training data influences our analy-

sis and the interpretation of FPro. Indeed, all machine learning and AI models become

feasible only when extensive labeled datasets are available, and on top of that, they pro-

vide reliable results when the training data samples the real world in an exhaustive way,

avoiding over-fitting.

A single cycle of FNDDS, as well as SR-Legacy, reports representative nutritional average

values for each food/drink, which do not capture the variability due to factors such as

recipe variations, production methods, soil quality, and storage time. The training data

would then benefit from multiple instances of the same food, helping capture the natural

variability in nutrient content, and reduce over-fitting [63]. This is why we have inves-

tigated how nutritional values for the same food code change through different FNDDS

cycles, and how integrating additional variability is affecting FoodProX and FPro in

assessing “unseen foods” (see Assesment of FPro robustness below). We envision that

Foundation Foods, the new USDA food composition dataset available at FoodData Cen-

tral, will be a great asset to improve the current data training of FPro, once it will increase

its coverage to more than 140 foods. Indeed, Foundation Foods includes individual sample

measurements behind the nutrient mean values that populate the other databases, and

metadata reporting the number of samples, location, time-stamps, analytical methods

used, and, additionally, if available, cultivar and production practices.

A further way to improve how machine learning algorithms and AI characterize food

data is to study the statistical properties of nutrient distributions in the food supply and

make sure that the training data sample them exhaustively. In Menichetti et al. [9] we

observe how the variability of nutrient concentrations in food, despite covering several

orders of magnitudes, follows a well-defined functional form, related to the lognormal

distribution. This is the reason why we log-transformed all nutrient measures before

performing the classification, as this is the natural scale of the nutrient fluctuations.

Accounting for the variability driven by chemical reactions in the ingredients, as well as

for the variability derived from the complete food production chain, plays a major role in

successfully capturing associations between food intake and disease phenotypes [64].

Beyond nutrient variability, the training data would benefit from a better representation

of different food groups, as in the case of raw meat products, important ingredients in

many recipes. This poor representation in the dataset is somehow expected, as FNDDS is

designed by the USDA to provide food composition data for foods and beverages reported
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in the dietary component of NHANES, and raw meat is not commonly consumed by the

American population. Better coverage of a heterogeneous collection of food groups would

also improve the accuracy of the algorithm when facing different national food composition

databases, beyond the data collected by the USDA.

Finally, we stress that all potential errors affecting food composition data should gener-

ally be random with respect to the machine learning algorithm and the manual NOVA

classification that developed FPro, which should only cause attenuation of classification

accuracy rather than bias, and attenuation toward the null of all epidemiological outcomes.

Thus, our findings would further improve with a more accurate database.

• Requirements for Branded Products. While in this study we focus on survey

data, our model based on nutritional values can easily work on different food and co-

hort databases, as proven by our analysis of over 50,000 products collected from major

grocery store websites [65]. When facing real-world food data, we have to account for

the regulations introduced by government agencies, like the FDA. For instance, in the

nutrition facts label nutrients are classified into 3 different classes, characterized by dif-

ferent standards regarding the agreement between the declared value on the label and

the actual values in the sampled food [66]. For nutrients like sugars, total fat, saturated

fat, cholesterol, and sodium, the label is considered compliant if the nutrient content of

the sampled product is up to 20% above the value declared on the label. Consequently,

when relying on the nutrition facts of branded products, FPro should be reported with

confidence intervals determined by randomly altering the nutrient content according to

FDA regulations.

• Size and Composition of the Nutrient Panel. The computation of FPro adapts

to different sets of nutrients, allowing us to accurately classify food from limited nutrient

information. However, the chemical information currently available to train our algorithm

is limited by the resolution of food databases. Indeed, many chemicals like acrylamide,

ammonium sulfate, azodicarbonamide, butylated hydroxyanisole, and furans, associated

with the preparation and preservation of food, are not tracked by national agencies. The

lack of quantification of these chemicals becomes even more striking once we acknowledge

their impact on human health [67–71]. With a higher number of chemicals available for

all foods, we could aim for an unsupervised classification of food processing, eliminating

the need for supervised manual curation. Currently, our analysis in Section S1.5 shows

that an unsupervised hierarchical clustering of foods, leveraging the widest nutrient panel
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available in FNDDS, is not able to independently reproduce the four NOVA classes. It is

possible, however, that the addition of chemical measurements that pertain to processing

signatures could further improve the current results, leading to a purely chemically driven

classification of food processing.

• Assessment of FPro robustness. We aim to test the robustness of FPro by measur-

ing the extent of its variations when re-formulations of the same product are created and

measured experimentally. This analysis is currently hindered by limited data availability.

However, we were able to test how nutrient variability impacts FPro when comparing the

same food code in different cycles of FNDDS. Indeed, while FNDDS does not capture sam-

ple variability within the same cycle (e.g., 2009-2010), it documents the nutrient variability

affecting the same food through the years, as a function of the specific sample or technique

chosen to estimate the representative nutritional average. In FoodProXonFNDDS.xlsx we

report the nutrient profile of 5,632 foods, present in both FNDDS 2009-2010 and 2015-

2016, and how their FPro changed according to the variations in their nutrient content.

For all foods we estimate the number of nutrients that changed between the two editions

of FNDDS, accounting for the different rounding approximations affecting each nutrient.

In presence of one or more nutrients with maximal variation between 10% and 50%, we ob-

serve a median ∆FPro=0.001556 (Q1=0.000222, Q3= 0.004764). Allowing significantly

bigger fluctuations, as in case of one or more nutrients with maximal variation between

10% and 1000%, we observe a median ∆FPro= 0.003312 (Q1= 0.000722, Q3= 0.011310).

• Limitations of Population Surveys. To test the prediction power of FPro and iFPro

for several health phenotypes and chemical exposures, we leveraged the rich panel of

analyses collected in NHANES, a population survey that captures dietary intake with

24-hour recalls. A limitation of the 24-hour recall is its reliance on memory, both for

identification of foods eaten as well as for quantification of portion sizes, and the need for

highly trained interviewers. Although reliance on the participant’s memory leaves room for

measurement error, skilled interviewers can produce highly detailed and useful nutritional

data comparable to a dietary record [24]. 24-hour recalls are also affected by random

within-person error, typified by the day-to-day fluctuation in dietary intake. Random

within-person error tends to decrease correlation and regression coefficients towards zero

and to bias relative risks toward one. Multiple days of intake per individual permit an

estimate of within-person day-to-day variability, and it is usually statistically more efficient

to increase the number of individuals in the sample rather than increase the number of

days beyond two per individual [72]. For this reason, NHANES added a second day of
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dietary intake starting with NHANES 2003 [24]. Despite these limitations, 24-hour recalls

are widely used in epidemiology as their statistical issues are well understood, and they

were used to rigorously evaluate HEI-2015, a gold-standard non-data-driven dietary score

for the epidemiological community [73].
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