
Boolean Network Sketches: A Unifying Framework

for Logical Model Inference (Supplementary

Material)

This document extends the main paper with the following information:
Section 1 provides examples of update function properties together with intuitive
explanation of their meaning. Section 2 formally describes the syntax and
semantics of hybrid computation tree logic (HCTL) and shows how biological
observations can be formulated in this logic. Section 3 gives a detailed description
of the Boolean network inference algorithm that lies at the core of our method.
Section 4 presents detailed information about the case studies used in the
evaluation. Finally, Section 5 compares our approach to two related approaches;
most notably, we show how these approaches are subsumed by our method.

1 Examples of Update Function Properties

Essentiality We want to specify that a specific variable (say, vi) represents an
essential input in the update function for vj . Intuitively, this posits that there
is at least one state in which vi influences the outcome of the update function
for vj . We define:

essential i(f) := ∃x ∈ Bn.f(x[i 7→ 0])⊕ f(x[j 7→ 1]).

Formally, the formula states that there are two states, sharing the values of
all the variables except for vi, for which the output of the update function is
different. The desired property is then written as essential i[Ej].

Monotonicity Similarly, we can express the property of (positive or negative)
input monotonicity. Intuitively, if vi regulates vj positively, an increase (from
0 to 1) in vi can only result in an increase in vj (however, vj can also stay the
same). For negative influence, the effect is reversed. We thus define:

positivei(f) := ∀x ∈ Bn. f(x[i 7→ 0])⇒ f(x[i 7→ 1])

negativei(f) := ∀x ∈ Bn. f(x[i 7→ 1])⇒ f(x[i 7→ 0]).

Formally, we require that for every pair of states that only differ in the value of
vi, our desired implication is satisfied.

1

Canalising functions Other potentially useful update function properties
include canalising functions [6]. Intuitively, a function is canalising if it is biased
with respect to a specific input variable. A specific value of a particular input
guarantees a specific output value. We define:

sufficient i,b,o(f) := ∀x ∈ Bn. f(x[i 7→ b])⇔ o.

to mean “vi = b is sufficient for output o”. We may then specify properties
such as sufficient i,1,0[Ej] meaning “vi = 1 is sufficient for the update function
represented by Ej to be false”.

Veto functions A veto function [5] is true only when all its negative inputs
are false and at least one of its positive inputs is true (the definition assumes
all inputs are monotonic). When all inputs are also essential, such condition
corresponds to a single update function that can be written out explicitly.
However, if some of the inputs remain non-essential, we have to formulate the
condition as a combination of update function properties.

To enforce a veto update function of variable vi with possibly non-essential
inputs, we assume two uninterpreted function symbols fP

(q) and fN
(r), such

that Ei = fP (vp1 , . . . , vpq) ∧ fN (vn1
, . . . , vnr

) where vpj are the positive and
vnk

the negative inputs of the update function for vi. We define:

vetop1,...,pq ;n1,...,nr
:=

q∧
j=1

(
essentialpj (f)⇒ sufficientpj ,1,0(f)

)
∧

r∧
k=1

(
essentialnk

(f)⇒ sufficientnk,1,1
(f)

)
.

The desired property is then written as vetop1,...,pq ;n1,...,nr
[Ei].

Intuitively, the property states that if vnk
is an essential input of the update

function, then the value of the function has to be false whenever vnk
is true (no

essential negative regulator can be true in order for the update function to be
true). Furthermoe, whenever a value of some essential input vpj is true (and the
condition for negative regulators is satisfied), the output of the update function
has to be true as well.

Other properties The case of veto functions nicely illustrates how multiple
properties can be combined to enforce the input-output behaviour of more
complex functions. There are numerous other combinations of properties that
can be tailored to fulfil the specific needs of a particular biological process. One
example could be conditional essentiality, where we assume an input is essential
only when additional properties hold. Say that vi activates vj , but only when
a specific catalyst vk is present. We can provide a property that states that vi is
essential in vj , but only for the cases where vk is 1. In other words, vi and vk
work in cooperation. Similarly, a notion of antagonism between function inputs
could be formalised.

2

2 HCTL Syntax, Semantics, Examples

The presentation of the HCTL follows [7].

Definition 1 Let AP be a finite set of atomic propositions and Vars be a count-
able set of state variables. A dynamic property φ is a HCTL formula defined as
follows:

φ ::= p | x | ¬φ | φ ∧ φ | @x φ | ↓x. φ | ∃x. φ | EXφ | E[φUφ] | A[φUφ]

Here, p ranges over AP and x over Vars.

Before we define the formal meaning of each operator, let us also observe
that we use the standard abbreviations that define additional commonly used
operators:

AXφ ≡ ¬EX¬φ
EFφ ≡ E[trueUφ]

AFφ ≡ A[trueUφ]

EGφ ≡ ¬AF¬φ
AGφ ≡ ¬EF¬φ
∀x. φ ≡ ¬∃x. ¬φ

We also use the usual propositional operators, such as ∨ (disjunction), ⇒
(implication), ⇔ (equivalence), ⊕ (non-equivalence, exclusive disjunction).

Semantics The validity of a dynamic property relates to the state-transition
graph STG(F), not the BN F directly. Consequently, we define a run π to be
a maximal sequence of states π = π1, π2, . . . satisfying πi → πi+1 for every i.
Note that every maximal run is necessarily infinite, as every state in STG(F)
has at least one outgoing transition.

Additionally, we extend the state-transition graph STG(F) with a labelling
function L : Bn → 2AP which assigns to each state a subset of atomic propositions
that hold in said state. For the purposes of this paper, we consider that
AP = {p1, . . . , pn} contains propositions that identify states where individual
variables hold. That is, pi ∈ L(s) if and only if vi is true in state s. However,
additional biologically motivated propositions can be also included, for example
identifying states corresponding to specific phenotypes.

We write RF,s to denote the set of all runs of STG(F) starting in s (i.e. π1 =
s), ν : Vars → Bn to denote a valuation of the state variables, and define the

3

satisfaction relation of a formula φ in a given state s ∈ Bn as follows:

(F, s, ν) |= p ⇐⇒ p ∈ L(s)
(F, s, ν) |= x ⇐⇒ ν(x) = s

(F, s, ν) |= ¬φ ⇐⇒ (F, s, ν) ̸|= φ

(F, s, ν) |= φ1 ∧ φ2 ⇐⇒ (F, s, ν) |= φ1 and (F, s, ν) |= φ2

(F, s, ν) |= @x φ ⇐⇒ (F, ν(x), ν) |= φ

(F, s, ν) |= ↓x. φ ⇐⇒ (F, s, ν[x 7→ s]) |= φ

(F, s, ν) |= ∃x. φ ⇐⇒ (F, s, ν[x 7→ s′]) |= φ for some s′ ∈ Bn

(F, s, ν) |= EXφ ⇐⇒ (F, π1, ν) |= φ for some π ∈ ΠF,s

(F, s, ν) |= E[φ1 Uφ2] ⇐⇒ there exists π ∈ ΠF,s and i ∈ N such that

(F, πi, ν) |= φ2 and ∀j < i. (F, πj , ν) |= φ1

(F, s, ν) |= A[φ1 Uφ2] ⇐⇒ for all π ∈ ΠF,s there exists i ∈ N such that

(F, πi, ν) |= φ2 and ∀j < i. (F, πj , ν) |= φ1

As before, ν[x 7→ s] denotes a copy of the valuation ν where the variable x is
mapped to the state s. When φ is closed (i.e. without free variables), the choice
of ν is irrelevant and we may simply write (F, s) |= φ.

Consistency Given a closed HCTL formula φ describing a dynamic property
as outlined above, we say that a Boolean network F is consistent with φ if we
have (F, s) |= φ for every s ∈ Bn, i.e. all the states of STG(F) have to satisfy φ.
Note that this comes without loss of generality—if we instead wanted to specify
that there exists at least one state satisfying a given formula φ, we can rewrite
the formula to ∃x. @x φ. This new formula holds in all states if and only if the
original formula φ holds in at least one state.

2.1 Biological Observations as Dynamic Properties

We now discuss how various types of real-world observations can be translated
into dynamic properties that are incorporated into a Boolean network sketch.
In the following, we consider various types of data and associated assumptions
(partial observability, time series, attractors, knockouts, etc.). However, in all
cases, we assume that the data has been already cleaned up and binarised using
some standard tool. We do not address this aspect of the workflow explicitly, as
it is largely orthogonal to our method.

Partial observations Dynamic properties allow us to reason about the evolu-
tion of the system’s state with respect to discrete time steps. To this end, we
need to formalise how the system’s state is translated into a logical formula. In
general, the system’s state s ∈ Bn corresponds to the values of its n Boolean
variables. In HCTL, each state can be thus described using a conjunction of n
literals (atomic propositions or negated atomic propositions) corresponding to
the values of variables within s.

4

However, in practice, even the most precise measurements may not include
all n network variables. We thus generally assume that every measurement is
potentially only an incomplete collection of observations. Formally, a partial
observation o is a partial function o : {1, . . . , n} ↛ B which assigns Boolean
values to some network variables. To capture such observation in a temporal
logic, we again use a conjunction of literals. We write φo to denote the logical
formula expressing the partial observation o:

φo ≡
∧

o(i)=1

pi ∧
∧

o(i)=0

¬pi

The formula φo is then satisfied by all states that result in the corresponding
observation o. So for example, if a partial observation fixes 6 out of 10 network
variables, then there are 24 states that could result in this partial observation,
and these satisfy the formula φo.

Time series A common representation of measurement data is a time series,
represented by a sequence of partial observations, o1, . . . , ok. Here, each o
can potentially fix different network variables; for example, a measurement of
a variable in some time step may have been discarded due to errors, while other
time steps and variables are measured correctly.

The general assumption is that the partial observations are of the same
system and were measured in a sequence. From the perspective of the system’s
discrete dynamics, this means that there should be a path in the system’s state
space that replicates the partial observations in the right order.

However, note that the states replicating each observation do not have to
be direct successors on this path (as is often incorrectly assumed in literature,
see [9, 12] for details). In fact, not all states on such a path must necessarily
match some observation oi either. In general, the system’s behaviour is unknown
while the system is not observed, and we thus avoid any assumptions in this
regard. Due to the loss of time information by the discrete abstraction, we also
cannot impose any specific timing properties (e.g. states being reachable within
k steps).

To encode the presence of a time series in a system, we use the following
formula:

φo1,...,ok ≡ (φo1 ∧EF(. . . (φok−1
∧EFφok)))

This formula holds in every state from which we can replicate the observed time
series. We can thus write ∃x. @x φo1,...,ok to obtain a formula that holds if there
is some way to replicate the given time series, starting in some model state.

Note that here, we allow the system to non-deterministically evolve into
completely different outcomes (in addition to the specified time series). If there
is sufficient evidence to support the claim that this particular time series is
guaranteed to occur for some initial conditions (i.e. the system cannot diverge),
we can replace EF with AF to further restrict the space of satisfying states to
those that replicate the time series on all runs.

5

Time series with path properties We can also use the until operators (EU
and AU) to incorporate properties that should be universally true along the
duration of the time series. For example, say that φalive describes the states
of the system which we assume are in some sense admissible for the observed
experiment (e.g. they describe states in which the cell is still alive).

Now, in the context of φo1,...,ok , instead of EF oi, we can write EφaliveUφoi ,
which states that the observation oi is not only reachable, but reachable by a
living cell. Furthermore, each oi can be possibly associated with a different path
property. For example, if certain observations were taken in different phases of
the cell cycle, we can express this using corresponding path properties. Using
this mechanism, we can further restrict the satisfying networks only to those
which are biologically admissible.

Periodic time series In some instances, the observed time series may represent
a single period of an oscillation, with the assumption that once ok is reached,
o1 should be eventually observed again and the whole time-series should be
repeatable. This type of data may come for example from observing a cell cycle
or a circadian rhythm. To describe time series that is periodically repeatable,
we can then use the following formula:

φ(o1,...,ok)+ ≡ ↓x. (φo1 ∧EF(. . . (φok−1
∧EF(φok ∧EFx))))

Note that this is the first time we use a hybrid operator (↓) in this section.
In this situation, the presence of the hybrid operator greatly simplifies the
specification. If we only considered CTL, we could still describe a situation
where the time series is repeatable finitely many times (by nesting the φo1,...,ok
formula), but there is no direct way to guarantee that it can be repeated
indefinitely. However, using ↓, we clearly specify that the initial state of the time
series has to be reachable from the final state.

Finally, we may again consider AF instead of EF if the time series must be
reproducible repeatedly on every path starting in the satisfying state, and we
can use EU or AU to implement path properties.

Attractor data In many practical instances, the systems under observation
are assumed to be in the so called steady state. Here, it does not necessarily
mean that every variable of the system has a single fixed value, but rather that
the behaviour of the system is confined to a subset of states that it cannot
leave without external intervention. Such situation corresponds to the notion of
attractors in Boolean networks.

To specify that a particular observation o must be present in a system
attractor, we can write the following:

φA(o) ≡ ↓x. φo ∧AGEFx

Informally, this formula is satisfied in a state where φo holds, and on all paths
leaving this state, we always have the possibility of returning. Such formula is

6

satisfied in any state that is a member of an attractor and reproduces the given
observation o. We can use ∃x.@x . φo ∧AGEFx to describe that such a state
exists somewhere in the state space.

In general, we may also write φA ≡ ↓x. AGEFx to denote a HCTL formula
that is true in exactly all the attractor states of the system (in other words,
every state that is reachable from x can also reach x back). We can then simplify
the condition above to φA ∧φo. Using this composition, we can express different
properties that have to hold within the system’s attractors. For example, we use
φA ∧ φo1,...,ok to write that a particular time series must be reproducible within
a system attractor (due to the nature of attractors, this also means that the
time series can be repeated indefinitely).

3 Symbolic BN Inference Algorithm

The inference algorithm consists of the following steps:

1. influence graph consistency checking (line 1 in Algorithm 1),

2. building a coloured state-transition graph:

(a) uninterpreted function elimination (lines 2, 3 in Algorithm 1),

(b) update function properties validation (lines 4, 5 in Algorithm 1),

3. coloured HCTL model checking (lines 6, 7, 8 in Algorithm 1).

In the first step, we simply verify that the PSBN E(n) is in agreement with
the influence graph I by checking that each partially specified Boolean expression
Ei only depends on the network variables vj for which (vj , vi) ∈ I. If this check
fail, the input is invalid and the offending variables are reported to the user for
consideration whether to add new edges to the influence graph or to eliminate
the variables from the partially specified Boolean expressions.

3.1 Coloured state-transition graphs

To capture the semantics of a PSBN, which represents a collection of standard
BNs, we are going to need the notion of a coloured state-transition graph (CSTG).
This graph will then be used as the input to the model-checking core of our
algorithm.

Definition 2 A coloured state-transition graph is a triple (S, C, T) where S is
a set of states, C is a set of colours, and T ⊆ S × C × S is a set of transition
relations T = {Tc | c ∈ C} such that each Tc ⊆ S × S.

A coloured state-transition graph is thus a representation of a family of
state-transition graphs whose set of states is shared, but which can have distinct
transition relations. This notion maps well to our need of capturing the semantics

7

of PSBN, which can be seen as a family of Boolean networks with the same set
of variables but possibly differing update functions.

Technically, in order to build the CSTG, we first need to convert the partially
specified Boolean expressions of the given PSBN into an equivalent form that
only uses 0-arity uninterpreted function symbols (i.e. constants). For each f (a),
we create 2a fresh uninterpreted constant symbols and substitute all occurrences
of f with a logically equivalent expression using these fresh symbols.

For a function symbol f of arity one, the expression f(e) (where e is an
arbitrary Boolean term) is replaced by (e⇒ c1) ∧ (¬e⇒ c2), where c1 and c2
are fresh constant symbols. For a function symbol f of arity two, the expression
f(e1, e2) (where e1, e2 are arbitrary Boolean terms) is replaced by

((e1∧e2)⇒ c1,1)∧((e1∧¬e2)⇒ c1,2)∧((¬e1∧e2)⇒ c2,1)∧((¬e1∧¬e2)⇒ c2,2)

where c1,1, c1,2, c2,1, c2,2 are fresh constant symbols. Similar constructions are
done for higher arities.

We denote the set of all the new constant uninterpreted symbols by F ′ and
the expressions created from Ei by the above substitution by E′

i for all i. We
also modify the set of update function properties Π by replacing all prop[Ei]
with prop[E′

i] and call this new set of update function properties Π′.
The CSTG is then build as follows: The set of states S = Bn as in the

(standard) BN case. The set of colours C is the set of all interpretations consistent
with the update function properties Π′. In the following, we speak about colours
instead of interpretations and use lowercase letters such as c to refer to specific
colours. The set of transition relations T is defined to be the set of all transition
relations Tc such that Tc is the transition relation of the Boolean network created
from the PSBN by fixing the interpretation c.

Note that we assume that both the set of states and the set of transitions
can be represented symbolically. In our implementation, we use the formalism
of BDDs, but the algorithm can work with other symbolic representations.

3.2 Coloured HCTL model checking

The core of our algorithm is a model-checking procedure that takes as an input:
a coloured state-transition graph, a state labelling function, and a HCTL formula.
The CSTG has been build in the previous part. The labelling function we use is
defined in Section 2. Finally, the HCTL formula is obtained by taking a logical
conjunction of all the formulae in Ω. We call the resulting formula φ.

In the following, we use Varφ to denote the (finite) set of state variables that
appear in the formula φ. We use the notation SVarφ for the set of all functions
Varφ → S, i.e. the set of all assignments of states to the variables of Varφ. Before
we introduce the algorithm itself, we briefly discuss the assumptions about the
symbolic description of the inputs, including the symbolic operations used in
the algorithm.

8

3.2.1 Symbolic Computation Model

The basic building blocks of our algorithm are certain symbolic steps, set and
relational operations that can be performed over a given symbolic representation
of the state space. Because we need to reason about both the colours and the
valuation of the state variables, we work with the set S × C × SVarφ , which can
also be seen as a relation of arity (|Varφ|+ 2). We sometimes call this set the
extended state space and its elements extended states. We assume that this set and
its arbitrary subsets can be represented symbolically. The symbolic operations
we use in our algorithm are described in Table 1. Note that the extended state
space manipulation operators from Table 1 can usually be implemented in terms
of basic set and relation algebra.

Intuitively, the role of the existential quantification operations is to “forget”
certain information about the current subset of the extended state space: ∃st
forgets the current state while ∃x forgets the valuation of the state variable x.
The equaliser of x, Eq(x) is then a subset that holds a single piece of information,
namely that the valuation of the state variable x should be equal to the current
state. Finally, the most important operation is the coloured pre-image, Pre(X).
Given a subset of the extended state space, this operation computes the set of all
predecessors respecting the colours of the transitions while keeping the valuation
of the state variables intact.

We assume that every operation in Table 1 has a constant symbolic complexity.
This is a fairly standard assumption for the analysis of symbolic algorithms like
ours. However, in practical cases, it may actually be preferred to implement
some of these operations as multiple, less resource-intensive symbolic steps. The
saturation method [4] is a typical example of this phenomenon.

3.2.2 Coloured HCTL model-checking algorithm

The pseudocode of the algorithm is given as Algorithm 1. As in standard
symbolic CTL model checking, we assume that the formula is given in a normal
form that only uses the temporal operators EX, EG, and EU. This assumption
comes without any loss of generality due to the following equivalence of formulae:

A[φ1 Uφ2] ≡ ¬EG¬φ2 ∧ ¬E[¬φ2 U(¬φ2 ∧ ¬φ1)]

This equivalence holds in standard CTL as well as in its hybrid extension. Note
that although the right-hand-side formula is larger, parts of it representing the
sub-formula φ2 are shared. Due to the dynamic programming (memoization)
nature of the algorithm, as explained below, this does not lead to any blowup in
the actual computation.

The algorithm begins by computing the set Varφ of variables that appear
in the given formula. Once the set Varφ is computed, it is considered a global
constant during the rest of the computation, together with the input CKS. The
rest of the algorithm proceeds by recursively calling the Check function. This
function accepts a sub-formula of the main formula as its input and produces a set
of extended states (s, c, ρ) such that the state s satisfies the given sub-formula

9

Table 1: Summary of symbolic operations appearing in the presented algorithm.
The description assumes a CKS K = (S, C, T, L) and a finite set Varφ containing
exactly all the variables appearing in the HCTL formula φ to be checked. The
extended state space manipulation operations can be implemented using the
standard and relational operations.

Standard set operations

union A ∪B {x | x ∈ A ∨ x ∈ B}
intersection A ∩B {x | x ∈ A ∧ x ∈ B}
difference A \B {x | x ∈ A ∧ x ̸∈ B}
product A×B {(x, y) | x ∈ A ∧ y ∈ B}

Extended state space manipulation (X ⊆ S × C × SVarφ)

existential
quantification
of the state

∃st(X) {(s′, c, ρ) | s′ ∈ S ∧ ∃s : (s, c, ρ) ∈ X}

existential
quantification of
a state variable

∃x(X)
{(s, c, ρ′) | ρ′ ∈ SVarφ ∧ ∃ρ : (s, c, ρ) ∈ X
∧ ∀y ∈ Varφ \ {x} : ρ′(y) = ρ(y)}

equaliser of the
state and a state

variable
Eq(x) {(ρ(x), c, ρ) | c ∈ C ∧ ρ ∈ SVarφ}

coloured pre-image Pre(X) {(s, c, ρ) | ∃t : (t, c, ρ) ∈ X ∧ (s, t) ∈ Tc}

in the Kripke structure Kc with ρ as the state variable valuation. For efficient
computation, the function is supposed to be memoized, i.e. its results should be
cached and used whenever the same sub-formula is to be processed.

The computation of the Check function is mostly straightforward. The algo-
rithm for EU comes from the fact that E[ψ1 Uψ2] ≡ ψ2 ∨ (ψ1 ∧EXE[ψ1 Uψ2])
and that the EU operator is the least fixed point of this equation. Similarly,
the algorithm for EG comes from the fact that EGψ ≡ ψ ∧EXEGψ and that
the EG operator is the greatest fixed point of this equation. The proof of these
claims in HCTL is the same as for standard CTL.

As for the hybrid extension, to evaluate the sub-formula x where x is a state
variable, we simply take the equaliser of x, as this sub-formula is true in exactly
all the extended states where the valuation of x is the current state. To evaluate
the jump operator @x .ψ, we first compute all the extended states where ψ holds.
Out of them, we filter only those extended states where the valuation of x is the
current state. And finally, we “forget” the current state as the satisfaction of
@x .ψ is independent of it. To evaluate the existential quantification ∃x.ψ, we
again first compute Check(ψ). Then, we simply “forget” the valuation of x as
x is no longer a free variable in ∃x.ψ. Finally, to evaluate the bind operation
↓x.ψ, we do a computation similar to the previous case, but we filter only those
states where the valuation of x is the current state.

Once the Check function computes the set of extended states for the whole

10

Algorithm 1: Coloured Symbolic model checking for HCTL

Input: K = (C, S, T, L) is a coloured Kripke structure; φ is a HCTL
formula

Output: the set RK
φ = {(s, c) ∈ S × C | (Kc, s) |= φ}

1 Varφ ← {x ∈ Var | x appears in φ}
2 V ← Check(φ)
3 return {(s, c) | ∃ρ : (s, c, ρ) ∈ V }

4 Function Check(ψ) (memoized)
5 switch ψ do
6 case p ∈ AP do return {(s, c, ρ) ∈ S × C × SVarφ | s ∈ L(p)}
7 case ¬ψ′ do return S × C × SVarφ \Check(ψ′)
8 case ψ′

1 ∧ ψ′
2 do return Check(ψ′

1) ∩Check(ψ′
2)

9 case EXψ′ do return Pre(Check(ψ′))
10 case E[ψ′

1 Uψ′
2] do

11 B ← Check(ψ′
2)

12 Setψ′
1
← Check(ψ′

1)

13 repeat B ← B ∪ (Setψ′
1
∩Pre(B)) until fixpoint

14 return B

15 case EGψ′ do
16 B ← Check(ψ′)
17 repeat B ← B ∩Pre(B) until fixpoint
18 return B

19 case x ∈ Varφ do return Eq(x)
20 case ↓x.ψ′ do return ∃x(Eq(x) ∩Check(ψ′))
21 case @x.ψ′ do return ∃st(Eq(x) ∩Check(ψ′))
22 case ∃x.ψ′ do return ∃x(Check(ψ′))

original formula φ, the algorithm discards the state variable valuation part of
the set and returns the result. Note that as the whole formula is closed, the
valuation plays no role in the final result.

The correctness of the algorithm follows from the discussion above, the
observations about the equivalences of formulae, the fixed point properties, and
the semantics of HCTL operators. The worst-case complexity of the algorithm
in terms of the symbolic steps as described above is O(|S| × |φ|). The only
interesting cases complexity-wise are the computations of the fixed points. Note
that as each invocation of Pre creates a set of predecessors, there cannot be
more such invocations than the length of the longest simple path in the CKS.
Clearly, such a length is less than the number of states. Note that the complexity
is independent of C as well as of |V arφ|. Although this might seem surprising,
it is due to the fact that the Pre operation computes the predecessors in all
colours and state variable valuations at once.

11

It is true, however, that the complexity of the symbolic steps themselves may
vary depending on the size of the extended state space representation, which might
even change during computation. The representation may depend on both the
number of colours and the number of state variables in the formula. As explained
in Section 3.1, the number of colours coresponds to the number of uninterpreted
symbols and their arity. This correspondence is doubly exponential: a function
symbol f of arity a is encoded with 2a constant symbols. Such a symbol thus
has 22

a

interpretations in the worst case. Note that this number may, however,
be reduced by the restrictions given by the update function properties.

On the other hand, the worst case (in the number of symbolic steps) only
happens when all of the fixed-point computations in the algorithm explore the
whole state space one state at a time. This is far from the expected case, as the
Pre operation has the potential to discover larger chunks of the state space at
once.

4 Evaluation

In this section, we present detailed information about our experiments.

4.1 Analysis of the T Cell Survival Network

In our first case study, we focus on the T cell survival mechanism arising in the
context of T-LGL leukaemia. In [14], the authors have designed the signalling
network and Boolean model characterising this mechanism. They have created
the model based on an extensive literature search. Subsequently, in [11], the
authors have developed a reduced version of that model, which we focus on
in our evaluation. This model contains 18 variables. We call the set of these
variables V ar. Their names are shown in the first column of Table 2. One of
them, called Apoptosis, is used to model programmed cell death.

When creating the original Boolean model, the authors had to deduce the
precise form of update logic from the literature. Such a task is often extremely
challenging, since the existing data may be incomplete or imprecise, and may
result in introducing certain inaccuracies or biases into the model. We show how
these problems can be avoided by employing the inference approach based on
network sketches, which does not require a complete specification of the update
logic. We also show the process of refinement of the sketch. Particularly, we
consider two iterations of the inference procedure. In the first step, we address
the question of whether there exists a consistent candidate. To that end, we
incorporate the knowledge obtained from the existing signalling network and
the binarised experimental data (both taken from [11]). Using the results of the
first step, we then further refine the sketch and obtain the final results.

The existing signalling network [11] includes two levels of prior knowledge
– the influence graph I and the additional information about the influences
(inhibition or activation). Using these characteristics, we generate a set of update
function properties expressing the monotonicity of the respective influences.

12

Variable TLGL state

Apoptosis OFF

BID OFF

Caspase OFF

Ceramide OFF

CREB ?

CTLA4 ?

DISC OFF

Fas OFF

FLIP ON

GPCR OFF

IAP ?

IFNG OFF

MCL1 ON

P2 ?

sFas ON

SMAD ?

S1P ON

TCR ?

Table 2: List of variables used in the model of T cell survival network [11].
The second column shows the state of several nodes observed under the LGL
leukaemia phenotype, as defined in [11].

Moreover, we require all described regulations to be essential since the knowledge
is based on literature (and not, e.g., some hypotheses). Combining the properties
expressing the monotonicity and essentiality, we get the set Π. At this stage, we
consider a BN E with completely unspecified update logic.

To obtain a desired dynamic property, we use the binarised experimen-
tal data [11] addressing the state of several proteins observed under the LGL
leukaemia phenotype. The data concerns network components that were experi-
mentally found to be overexpressed (resp. underexpressed). Moreover, variable
Apoptosis should be inactive. We present the binarised values of measured
variables in the second column of Table 2. Based on this data, we automatically
generate a formula φ1 encoding the existence of an attractor that contains a
state corresponding with the data. The set of dynamic properties Ω is then
defined as Ω = {φ1}.

13

ψdata ≡ (S1P ∧ sFas ∧ ¬Fas ∧ ¬Ceramide ∧ ¬Caspase ∧MCL1 ∧ ¬BID∧
¬DISC ∧ FLIP ∧ ¬IFNG ∧ ¬GPCR ∧ ¬Apoptosis)

φ1 ≡ ∃x.@x . (ψdata ∧AGEF(ψdata ∧ x))

Combining the four components, we obtain the complete sketch S = (I, E,Π,Ω).
We run the inference procedure on the sketch S, which takes less than 9 minutes.
Individual rows of the second column of Table 3 show the number of candidates
consistent with the particular components of the sketch S.

In order to refine the sketch, we analyse the set of consistent networks. Our
set representation allows us to symbolically compute attractors for all consistent
candidates at once. For this task, we use the method introduced in [1]. By
analysing the computed attractors, we observe two important things. First,
there are candidates that do not exhibit any attractor corresponding directly
to the programmed cell death phenotype. Second, some candidates do exhibit
attractors that contain states where both the Apoptosis variable and variables for
various proteins are activated at the same time. However, once the programmed
cell death process begins, the production of all proteins should cease.

We address the first issue by designing another dynamic property, φ2, that
encodes the existence of a fixed-point attractor where the Apoptosis variable is
activated while all other variables are deactivated. To address the second issue,
we design an additional formula φ3 encoding the dynamic property expressing
there should not be any other attractor apart from those that correspond to the
programmed cell death phenotype or the experimental data. We thus obtain a
new set of dynamic properties Ω′ = {φ1, φ2, φ3}.

ψdeath ≡ Apoptosis ∧ (
∧

vi∈V ar
vi ̸=Apoptosis

¬vi)

φ2 ≡ ∃y.@y . (ψdeath ∧AX(ψdeath ∧ y))
φ3 ≡ ¬∃z.@z . ¬(AGEF(ψdeath ∨ ψdata))

Furthermore, we improve the specification of the update logic by substituting
the component E of the sketch for a new (“more detailed”) partially specified BN
E′. We require that when the Apoptosis variable is activated, all other variables
should be switched off. Therefore, the update function of each network variable

vi (except the Apoptosis variable itself) should be ¬Apoptosis∧f (a)
i , where a is

a number of the variable’s regulators excluding Apoptosis, and f
(a)
i represents

an uninterpreted Boolean function with these a regulators as its arguments.
When we employ this new refined sketch S′ = (I, E′,Π,Ω′) and run the

inference algorithm, only 378 potential consistent networks remain. Individual

14

Sketch components S S′

IG 3.2e32 3.2e32

IG + PSBN 3.2e32 7.2e16

IG + PSBN + UFP 7.8e10 1296

IG + PSBN + UFP + DP 9.1e9 378

Table 3: Numbers of candidates consistent with the two T-LGL model sketches
described in the first case study. Each row shows the number of candidates
consistent with the particular components of the sketch, starting with just the
IG, and considering the whole sketch in the last row.

rows of the third column of Table 3 show the number of candidates consistent
with the particular components of the sketch S′. The whole computation for
S′ only takes less than one second. That is an order of magnitude faster than
the computation for S mainly because the searched space of candidates got
notably smaller by substituting E for E′ (note how the number of candidates
consistent with the IG + PSBN components in the Table 3 changes between the
two sketches). This demonstrates the importance of the ability to specify the
update logic partially using uninterpreted functions. Other similar BN inference
approaches usually lack this ability and operate only with either completely
unspecified update logic or just with a few specific classes of update functions.

Finally, we examine the similarities between the candidates. By means of
automatic analysis, we discover that all consistent candidates agree on the update
functions for 13 variables (i.e., for each of these variables, only one consistent
update function is possible). Modellers can use this information and only focus on
the remaining 5 network components that vary between the candidates. At this
stage, the sketch can be refined even more by specifying additional hypotheses,
or further experiments may be designed focusing on the varying parts of the
network.

4.2 Analysis of the sepal development of A. Thaliana

In our second case study, we consider the model of sepal primordium polarity in
the young flower of Arabidopsis thaliana developed in [8]. The model contains 21
variables. Their names are shown in the first column of Table 4. The regulatory
interactions in the model were manually created using published data. The
authors also defined a set of two expected attractors by analyzing the expression
patterns of the most important genes during sepal development. However, after
the model was created, the authors were unable to obtain the set of expected
attractors. Therefore, they had to add several additional hypothetical regulations.
This is an example of a situation where automatic inference tools could be of
great importance and help. We show how to employ Boolean network sketches
to help with this task.

The case study focusing on this particular model was also conducted by the

15

Variable
Attractor

state 1

Attractor

state 2

AGO1 ON OFF

AGO10 OFF ON

AGO7 OFF ON

ANT ON ON

ARF4 ON OFF

AS1 OFF ON

AS2 OFF ON

ETT ON OFF

FIL ON OFF

KAN1 ON OFF

miR165 ON OFF

miR390 ON ON

REV OFF ON

TAS3siRNA OFF ON

AGO1 miR165 ON OFF

AGO7 miR390 OFF ON

AS1 AS2 OFF ON

AUXINh ON ON

CkH OFF ON

GTE6 OFF ON

ITP5 OFF ON

Table 4: List of variables used in the model of Sepal development of A.
Thaliana [8]. The second and third columns show the values of these vari-
ables in two expected attractor states [10].

16

authors of the inference tool Griffin ([10]). We can thus use it as a means to
compare some aspects of our approach to theirs (such as the performance). The
main difference between the two methods is that Griffin only works with the
synchronous semantics of BNs, which considerably simplifies the biological reality.
However, note that some dynamic properties, such as fixed-point attractors,
are preserved between synchronous and asynchronous semantics, allowing for
comparison.

We gradually consider several versions of our sketch, which differ in the
dynamic properties. We construct the first version of the sketch to directly
compare the performance of our method to that of Griffin, considering the exact
same knowledge and data.

We utilise the same signalling network defined in the original article [8] to
obtain the influence graph I and generate the set of update function properties
Π. The update function properties come from the information on whether the
regulations are inhibitions or activations (properties expressing monotonicity)
and whether the regulations are hypothetical or not (properties expressing
essentiality). To allow for comparison with Griffin, we have to consider PSBN E
with completely unspecified update logic since Griffin does not allow partially
specifying the update logic.

We define the dynamic properties by utilising the same set of two expected
attractor states as in [10]. Values of each variable in these two states are shown
in the second and third columns of Table 4. The authors of Griffin considered
the expected attractors to be fixed points. We thus automatically construct two
HCTL formulae φfixed1 and φfixed2 , each encoding the property expressing the
existence of the expected fixed-point attractor. To be concise, we use “macros”
ψstate1 and ψstate2 , each encoding one of the two states described in Table 4 (for
detailed information on encoding binarised observations, see Section 2.1). The
set of dynamic properties is then Ω = (φfixed1 , φfixed2). The whole sketch is
S = (I, E,Π,Ω).

φfixed1 ≡ ∃x.@x . (ψstate1 ∧AX(ψstate1 ∧ x))
φfixed2 ≡ ∃y.@y . (ψstate2 ∧AX(ψstate2 ∧ y))

Griffin computed the set of all consistent networks exhibiting the 2 specified
fixed-point attractors in 5 hours and 10 minutes. Our method computes the
set of all networks consistent with the sketch S in less than half of a second.
That means almost 50000x speed up with respect to Griffin. Note that we
could not find a working implementation of Griffin, so we use computation times
presented in [10], which were obtained on a similar setup (Intel i7 CPU and 16
GB of RAM). Both tools computed the same number of consistent candidates –
439 296.

Since our approach allows us to work with more complex dynamic properties,
we modify the sketch. Generally, the expected attractor states do not have to
correspond to fixed points but may be a part of more complex attractors. This

17

leads us to substitute properties φfixed1 and φfixed2 by φ1 and φ2, respectively.
Moreover, by symbolically analysing the attractors of the candidates consistent
with S, we found out that a large part of these candidates exhibits attractors
that do not contain any state corresponding to our data. Therefore, we add
the formula φ3 expressing that the candidate network should not exhibit any
additional attractors “unrelated” to the data. The modified sketch is then
S′ = (I, E,Π,Ω′), where Ω′ = (φ1, φ2, φ3). Note that all three formulae can
again be generated automatically from binarised data.

φ1 ≡ ∃x.@x . (ψstate1 ∧AGEF(ψstate1 ∧ x))
φ2 ≡ ∃y.@y . (ψstate2 ∧AGEF(ψstate2 ∧ y))
φ3 ≡ ¬∃z.@z . ¬(AGEF(ψstate1 ∨ ψstate2)).

The utilisation of this new version of dynamic properties causes the number of
consistent concretisations to drop to 48 352, so approximately tenfold. Moreover,
we can be sure that we did not miss any attractors (since we do not consider
only fixed points anymore). The whole computation takes 49 seconds in this
case. By means of automatic analysis, we discover that all consistent candidates
agree on the update functions for 11 variables (i.e., for each of these 11 variables,
only one consistent update function is possible).

4.3 Large biological networks with synthetic attractor data

To evaluate the performance of our method on larger and more complex models,
we consider the following scenario. We start with a real-life, fully specified BN
F , its corresponding influence graph I, and a set of known properties of update
functions (regarding monotonicity or essentiality) encoded into the set Π.

We then compute attractors for F . From the attractors, we derive synthetic
steady-state data, emulating experimental observations. For each synthetic
observation, we automatically generate a formula encoding the existence of
an attractor containing the state corresponding to this observation. We also
construct a formula prohibiting any additional attractors that do not contain a
state corresponding to any observation (just like in our case studies). The set of
considered dynamic properties Ω then contains all these properties.

Finally, we modify F by ”relaxing” some of its exact update functions,
replacing them with uninterpreted Boolean functions (with the same arity and
arguments as in the original model). By doing this, we obtain a partially specified
BN E.

We combine the four components to obtain the sketch S = (I, E,Π,Ω). Now
we apply the inference algorithm and compute the set of all networks which are
consistent with the sketch S. We measure the time needed for the computation.
After the process finishes, we also check that the resulting ensemble of networks
contains the original network F .

Using this approach, we were able to analyse networks with up to 321
network components. The sketches also admit a large degree of uncertainty –

18

Model Name
BN

Components

Cons. with

I, E

Cons. with

I, E,Π

Cons. with

I, E,Π,Ω
Time

E Protein 35 274 9.4e5 196 0.5s

NSP4 60 276 1.2e6 128 0.9s

ETC 84 272 2.4e8 1.3e6 186.5s

Interferon I 121 2103 5.3e22 6.8e5 58.3s

NSP9 252 2356 7.3e30 6.4e27 39.3s

Macrophage 321 2104 9.9e12 7.8e11 239.8s

Table 5: Overview of several large models and their sketches on which we
have successfully run the inference algorithm. For each sketch S = (I, E,Π,Ω),
we present how the number of consistent BN candidates changes after more
components of the sketch are gradually considered. We omit the number of
influence graph candidates. Computation time in seconds is in the last column.

the highest number of admitted candidate networks for a single partially defined
BN (component E) was 2356. In Table 5, we present examples of 6 large models
we have successfully run the inference algorithm on.

5 Comparison with Related Approaches

In this part, we give a detailed comparison with two most relevant related
approaches based on [3] and [13]. The following two sections show that our
method generalises the synthesis problems considered by these two publications.
Finally, we give a summary of the advantages our method enjoys over these (and
other) related approaches.

5.1 Comparison with Chevalier et al.

Now, we compare the theoretical expressiveness of our approach to that of [3, 2].
In particular, we show that every property that the authors consider in [3] can
also be encoded into a BN sketch.

First, note that the authors consider an equivalent notion of influence graph
and monotonicity properties of regulations. These can be directly translated to
our framework using the already presented intuition.

Second, let us observe that our text and [3] agree on the notion of partial
observation as defined above (i.e. a partial assignment of Boolean values to
network variables). As such, we can write that [3] considers a collection of partial
observations o1, . . . , ok and a set of associated constraints on these observations.
Let us now demonstrate how each of these constraints is expressed in HCTL.

Reachability and non-reachability First, the requirement that oj is reach-
able from oi is similar to the time-series property described in Section 2.1:

19

φoi→oj ≡ oi ∧EF oj . This property holds in all states which match observation
oi and can reach a state matching observation oj . We can then also invert the
property to obtain non-reachability: φoi ̸→oj ≡ oi ∧ ¬EF oj . Here, the property
holds in states matching oi that cannot reach any state matching oj . Finally,
note that we can again use ∀ or ∃ (combined with @) to enhance the formula
such that it is valid universally in the whole state space (regardless of the initial
state).

Fixed-points and universal fixed-points Expressing that observation o
holds in some fixed-point of the system is easy in HCTL: φFixedPoint(o) ≡
↓x. o ∧AXx. This formula is satisfied in states which match o and can only
reach themselves (fixed-points). Furthermore, if we want to express that all
fixed points of the system must match a particular (partial) observation o, we
can write that φUniversalF ixedPoint(o) ≡ ∀x. @x (AXx) ⇒ o. If there are l
different observations that are admissible as the system’s fixed-points, we can
write o1 ∨ . . . ∨ ol instead of just o in φFixedPoint and φUniversalF ixedPoint.

Attractors and universal attractors As already discussed, we can express
that a certain partial observation must appear in some attractor state using
formula φA(o) (see above). Now, let us note that using a similar approach as
with universal fixed-points, we can also write that every attractor state must
match a particular observation: φUniversalAttractor(o) ≡ ∀x. @x (AGEFx)⇒ o.
As was the case for fixed-points, we can swap o for a disjunction of observations
when multiple choices are possible.

Reachable universal fixed-points and attractors Finally, we can combine
these properties to express reachable universal fixed-points and attractors (we
give exact formula for fixed-points, the case of general attractors is similar,
swapping AXx for AGEFx). In particular, our goal is to express that for
all fixed-point states, there is a pair of observations, oi and os, such that the
fixed-point matches observation os and it is reachable from a state that matches
the observation oi. Formally ∀x. @x ((AXx)⇒ (os ∧ ∃y. @y EFx)). Again, if
there are multiple possible combinations of oi and os, we can expand the second
part of the implication into a disjunction of multiple admissible cases.

5.2 Comparison with Yordanov et al.

Similarly, let us take a look at the work in [13] and compare it to our approach.
First, let us note that [13] also considers a compatible notion of influence graph.
In particular, their notion of abstract Boolean network includes a set of regulations
between variables, such that each regulation can have a monotonicity requirement,
and can be marked as optional (i.e. the non-optional regulations need to be
essential in their respective update functions). As we already demonstrated,
these types of requirements can be easily expressed in our framework as properties
of the network’s update functions.

20

Network inputs and outputs Here, we should also note that [13] explicitly
separates network inputs and outputs from the rest of the variables. However,
as far as we understand, this is not critical for the actual specification of the
synthesis problem, it just allows to, e.g., specify the observed variable states and
assumed input valuation as two separate parts of an overall partial observation
(e.g. several observations can share the same input valuation, and so on). As
such, this is mostly a syntactical and presentational property of the method.
Also, it is worth noting that an input variable as understood in [13] is effectively
a logical parameter, which is in our framework better captured using a zero-arity
uninterpreted function.

Update function patterns In [13], the method does not actually consider all
possible Boolean networks that are consistent with the desired influence graph.
Instead, the authors define a set of 20 general “patterns” that each update
function can take. In our framework, each of these patterns can be expressed
as a combination of update function properties and partially defined Boolean
expressions.

As an example, consider the first pattern AllActivators(x)∧NoRepressors(x)
from [13]. Intuitively, a function matches this pattern if it is true exactly when
all (essential) activators are active, and all (essential) repressors are inactive.
Note that this is not necessarily a single Boolean function, as it is still up to the
method to determine which of the optional regulations are essential. However,
recall that this is exactly the definition of a veto function we describe in Section 1
(including the case where essentiality of all inputs is not mandated, where the
sufficient properties were used).

Other considered patterns employ similar constructs (i.e. AllActivators,
NoActivators , AllRepressors and NoRepressors), we can therefore translate these
analogously into logical combinations of various essential and sufficient properties.
As our framework allows arbitrary first-order logic formulae, we can simply
enumerate all 20 patterns and combine them using a disjunction operator.

Dynamic properties Finally, in terms of dynamic properties, the specification
in [13] again relies on the notion of partial observations. Subsequently, the
authors can formulate reachability and fixed-point constraints on these partial
observations, which we have already described in previous sections.

However, it should be noted that due to the nature of the decision procedure,
here the reachability properties are always defined in a bounded sense. That is,
the next state must be reachable within some known number of k discrete steps.
Meanwhile, our framework does not have this limitation. Nevertheless, a HCTL
formula can also express this property by nesting k subsequent EX operators
instead of a single EF. As such, we can artificially introduce this limitation.

5.3 Summary

We have demonstrated that as a specification language, BN sketches are more
general than previous methods (in particular, comparing to [3] and [13], which,

21

to the best of our knowledge, provide the richest specification languages among
comparable methods). The expressive power of HCTL allows us to specify rich
dynamical assumptions, but more importantly, it allows us to compose and
combine these assumptions in a predictable and robust manner that goes beyond
the previously employed methods.

Another crucial aspect of BN sketches is our symbolic synthesis procedure
which we use to comprehensively explore the whole set of candidate models.
Meanwhile, methods like [3] and [13] rely on ASP/SMT solvers and model
enumeration, which is inherently limited in the number of explored candidate
models. The nature of the symbolic BDD method even allows us to easily share
and further refine the set of candidate models (e.g. once additional data is
available) without repeating the previous computations.

The solver-based methods enjoy a theoretical performance advantage over
our symbolic method (it is sufficient to find a single satisfying BN, instead of all
BNs). However, as we demonstrate in our case studies, the symbolic approach
can still scale to practically sized problems, in which case it provides a more
comprehensive and actionable set of results.

References

[1] Nikola Beneš, Luboš Brim, Jakub Kadlecaj, Samuel Pastva, and David
Šafránek. AEON: attractor bifurcation analysis of parametrised Boolean
networks. In Computer Aided Verification, volume 12224 of Lecture Notes
in Computer Science, pages 569–581. Springer, 2020.

[2] S. Chevalier, C. Froidevaux, L. Pauleve, and A. Zinovyev. Synthesis of
Boolean networks from biological dynamical constraints using answer-set
programming. In 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI), pages 34–41. IEEE Computer Society, nov
2019.

[3] Stéphanie Chevalier, Vincent Noël, Laurence Calzone, Andrei Zinovyev, and
Löıc Paulevé. Synthesis and simulation of ensembles of Boolean networks
for cell fate decision. In Computational Methods in Systems Biology, pages
193–209. Springer, 2020.

[4] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: An
efficient iteration strategy for symbolic state-space generation. In Tools and
Algorithms for the Construction and Analysis of Systems TACAS, volume
2031 of Lecture Notes in Computer Science, pages 328–342. Springer, 2001.

[5] Haleh Ebadi and Konstantin Klemm. Boolean networks with veto functions.
Physical Review E, 90(2), Aug 2014.

[6] Stephen E. Harris, Bruce K. Sawhill, Andrew Wuensche, and Stuart Kauff-
man. A model of transcriptional regulatory networks based on biases in the
observed regulation rules. Complex., 7(4):23–40, March 2002.

22

[7] Daniel Kernberger and Martin Lange. Model checking for hybrid branching-
time logics. Journal of Logical and Algebraic Methods in Programming,
110:100427, 2020.

[8] Camilo La Rota, Jérôme Chopard, Pradeep Das, Sandrine Paindavoine,
Frédérique Rozier, Etienne Farcot, Christophe Godin, Jan Traas, and
Françoise Monéger. A data-driven integrative model of sepal primordium
polarity in arabidopsis. The Plant Cell, 23(12):4318–4333, 2011.

[9] Xiang Liu, Yan Wang, Ning Shi, Zhicheng Ji, and Shan He. GAPORE:
Boolean network inference using a genetic algorithm with novel polynomial
representation and encoding scheme. Knowledge-Based Systems, 228:107277,
2021.

[10] Stalin Muñoz, Miguel Carrillo, Eugenio Azpeitia, and David A. Rosenblueth.
Griffin: A tool for symbolic inference of synchronous Boolean molecular
networks. Frontiers in Genetics, 9:39, 2018.

[11] Assieh Saadatpour, Rui-Sheng Wang, Aijun Liao, Xin Liu, Thomas P.
Loughran, István Albert, and Réka Albert. Dynamical and structural
analysis of a T Cell survival network identifies novel candidate therapeutic
targets for large granular lymphocyte leukemia. PLOS Computational
Biology, 7(11):1–15, 11 2011.

[12] Taisuke Sato and Ryosuke Kojima. Boolean network learning in vector
spaces for genome-wide network analysis. In KR, pages 560–569, 2021.

[13] Boyan Yordanov, Sara-Jane Dunn, Hillel Kugler, Austin Smith, Graziano
Martello, and Stephen Emmott. A method to identify and analyze bio-
logical programs through automated reasoning. NPJ systems biology and
applications, 2(1):1–16, 2016.

[14] Ranran Zhang, Mithun Shah, Juncheng Yang, Susan Nyland, Xin Liu,
Jong Yun, Réka Albert, and Thomas Loughran. Network model of survival
signaling in LGL leukemia. Proceedings of the National Academy of Sciences
of the United States of America, 105:16308–13, 2008.

23

	Examples of Update Function Properties
	HCTL Syntax, Semantics, Examples
	Biological Observations as Dynamic Properties

	Symbolic BN Inference Algorithm
	Coloured state-transition graphs
	Coloured HCTL model checking
	Symbolic Computation Model
	Coloured HCTL model-checking algorithm

	Evaluation
	Analysis of the T Cell Survival Network
	Analysis of the sepal development of A. Thaliana
	Large biological networks with synthetic attractor data

	Comparison with Related Approaches
	Comparison with Chevalier et al.
	Comparison with Yordanov et al.
	Summary

