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Supplementary methods 1 
 2 
ECG pre-processing 3 
 4 
As AVNRT or AVRT should be almost identical on each beat, long recordings are 5 
therefore unlikely to be needed. A 5s segment duration was selected as these 6 
performed better than 10s recordings on preliminary analyses. This is may be 7 
because twice as many 5s recordings are available for training from the same length 8 
recording compared to if 10s input recordings are used. Subsampling the ECG 9 
recording is an established methodology to reduce the number of model parameters 10 
((1)) and can be seen as a form of data augmentation to allow the network to learn 11 
from the subtle variations in each sub sample. Given the current classification task 12 
was to diagnose arrhythmia mechanisms, ECG durations shorter than 5s were 13 
considered to be too short and therefore were not examined. A detailed comparison 14 
of ideal subsampling durations is beyond the scope of this manuscript.  15 
 16 
Digital 12-lead ECGs were recorded using the EP recording system (LABSYSTEM™ 17 
PRO (Boston Scientific)) as previously described (2). ECGs were downsampled to 18 
200hz as this was the lowest input sampling rate on validation data showed no 19 
differences in model accuracy, therefore 200hz was chosen to reduce the data input 20 
size and number of model parameters, which consequently would reduce training 21 
time. Digital ECG recordings from outside the EP lab were not available, therefore 22 
we were unable to compare performance of the network with ECGs not recording the 23 
EP recording system, however other than the higher original sampling rate there is 24 
no major difference in how the ECG is recorded.  25 
 26 
Although a 12 lead ECG uses data from only 8 independent leads, all 12 leads were 27 
used as input in our neural network. It is possible that the model training time could 28 
have been shorter when using 8 leads. Given the candidate CNN architectures all 29 
used a 12 lead input, we did not train a model using 8 leads. It may also be possible 30 
to use a further limited number of leads (e.g. 1-4 leads from ambulatory monitoring) 31 
however this was not evaluated in the present study. 32 
 33 
Architecture selection and hyperparameter optimization 34 
 35 
1-dimensional convolutional neural network (CNN) architectures were implemented. 36 
The ECG signal is treated as a 1-dimensional time series with 12 channels. In order 37 
to fairly compare each candidate architecture, Keras tuner was used to perform a 38 
grid search to identify optimal hyperparameters for each architecture. Candidate 39 
architectures were: Zhu et al(3), Hannun et al(4), Attia et al (1), Ribeiro et al (5) 40 
Resnet 18, 34 and 50(6). Resnet 34 and Resnet 50 architectures did not generalise 41 
well during hyperparameter tuning, likely due to their large size, and therefore were 42 
excluded from further testing.  Architectures were then compared to identify optimal 43 
performance as shown in supplementary table S1. Where architectures had similar 44 
performance, small networks with fewer parameters were preferred.  45 
 46 
The final architecture was a modified version of that used by Attia et al (1). Their 47 
neural network architecture was used for a 2 second ECG segment, sampled at 48 
500hz and zero padded to a final length of 1024. In contrast, given that our network 49 
is designed to make a rhythm diagnosis, we elected to use a longer ECG segment. 50 
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Our network therefore takes an input of a 5 second, sampled at 200hz and zero 1 
padded to a final length of 1024. During hyperparameter tuning, setting dropout to 0 2 
resulted in the highest validation set accuracy. Therefore the dropout layer after the 3 
fully connected layer was removed, which was another difference to the network 4 
architecture of Attia et al. Lastly, the kernel size and number of filters for the last 5 
convolutional layer was not specified. A kernel size of 3 with 128 filters were chosen 6 
for the final convolutional layer in line with common convention of increasing the 7 
number of filters deeper into the network. Importantly, the final architecture was 8 
decided purely based on performance on the validation set. 9 
 10 
Explainable artificial intelligence predictions 11 
 12 
Saliency mapping has been used to explain CNN models ((2, 7, 8)). Grad-CAM is 13 
another method that has been used for this purpose (9). Grad-CAM identifies the last 14 
convolutional layer and investigates the gradients flowing into the layer. This works 15 
well for providing coarse localisation for images where a common kernel size is 5x5. 16 
This method however was not applicable to our model architecture given the small 17 
kernel size of 3 in the last convolutional layer. This kernel size results in the Grad-18 
CAM mapping being far too coarse to be of any use. Other related methods such as 19 
guided Grad-CAM have been shown to be unreliable (10).  20 
 21 
Test set 22 
 23 
In order to directly compare model performance with the algorithm performance, one 24 
ECG per patient was used in the test as it would not be practical to manually 25 
evaluate a large number of ECGs using the manual algorithm. Additionally, each 26 
ECG segment is likely to be very similar to subsequent segments in the same 27 
patient, therefore the additive value of testing in all segments is likely to be 28 
negligible. 29 
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Supplementary figure S1 1 
Flow chart of steps from patient population to prepared ECG inputs.  2 

ECG: electrocardiogram; AVNRT: atrioventricular-nodal re-entrant tachycardia; 3 

AVRT: atrioventricular re-entrant tachycardia 4 
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Supplementary figure S2 1 
Flow chart of data flow from derivation of training dataset to model training. Testing dataset remains separate throughout and is 2 
used only for model evaluation 3 
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Supplementary figure S3 1 
Selected model architecture is shown. Our final network was a modified version of 2 
one used by an Attia et al. (1). It is comprised of a total of 7 convolutional layers with 3 
2 fully connected layers.  4 
AVNRT: atrioventricular-nodal re-entrant tachycardia; AVRT: atrioventricular re-entrant 5 
tachycardia; Conv=convolutional layer; ReLU=rectified linear unit; F=number of filters; 6 
S=kernel size; MP=maxpool factor. 7 
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Supplementary figure S4 1 
Algorithm schematic as described by Jaeggi et al. (11) 2 
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