YMTHE, Volume 31

Supplemental Information

Genome editing with natural

and engineered CjCas9 orthologs

Siqi Gao, Yao Wang, Tao Qi, Jingjing Wei, Ziying Hu, Jingtong Liu, Shuna Sun, Huihui Liu, and Yongming Wang

Figure S1. CjCas9 orthologs enable genome editing guided by their sgRNA scaffolds

(A) Comparison of the sgRNA scaffold sequences for CjCas9 orthologs. (B) The phylogenetic tree of the four sgRNA scaffolds. (C) The editing efficiencies of

Hsp1Cas9 with the CjCas9-sgRNA scaffold or Hsp1Cas9-sgRNA scaffold in HEK293T cells. (D) The editing efficiencies of Hsp2Cas9 with the CjCas9-sgRNA scaffold or Hsp2Cas9-sgRNA scaffold in HEK293T cells. (E) The editing efficiencies of CcuCas9 with the CjCas9-sgRNA scaffold or CcuCas9-sgRNA scaffold in HEK293T cells. Cells were treated with puromycin. The data represent the mean \pm SD; n=3. Student's t-test, **p < 0.01. Indel efficiencies were determined by targeted deep sequencing.

Figure S2. Analysis of specificity for (A) Hsp1Cas9, (B) Hsp2Cas9, and (C) CcuCas9 by the GFP-activation assay. Schematics of the GFP-activation reporters are shown on the top. A target sequence with the corresponding PAM is

inserted between ATG and GFP coding sequence, disrupting GFP expression. Cas9s were transfected with sgRNAs with CjCas9-sgRNA scaffold. Genome editing induced GFP expression. A panel of sgRNAs with dinucleotide mutations (red bases) is shown below. An additional G at the 5' terminal is added for U6 promoter transcription. The sgRNA activities were measured by the proportion of GFP-positive cells. The data represent the mean \pm SD; n=3.

Figure S3. Generation of chimeric Hsp1-CcuCas9

(A) Schematic diagram of chimeric Hsp1-CcuCas9 nuclease. The Hsp1Cas9 PI domain was replaced with the CcuCas9 PI domain. (B) GFP-activation assay revealed that Hsp1-CcuCas9 induced GFP expression. The proportion of GFP-positive cells is shown. BF, bright field; GFP, green fluorescent protein. (C) WebLogo for Hsp1-CcuCas9 is generated based on deep sequencing data.

Figure S4. Engineering of Hsp1-Hsp2Cas9 variants based on CjCas9 crystal structure

(A) Schematic depicting interactions of CjCas9 residues with the target DNA-sgRNA duplex, based on PDB accession 5X2H and 5X2G¹. (B) The crystal structure of the CjCas9 interacting with the target DNA-sgRNA duplex (SMTL ID: 5x2g.1.A). The nine residues that form hydrogen bonds at the target DNA-sgRNA interface are shown. (C) Alignment of CjCas9 and Hsp1-Hsp2Cas9 protein sequences. Black boxes indicate equivalent residues of CjCas9 and Hsp1-Hsp2Cas9 interacting with the target DNA-sgRNA duplex. The positions of the residues are shown.

Figure S5. Specificity analysis of Hsp1-Hsp2Cas9 variants (A) Schematic of the GFP-activation assay showing the specificity of the nucleases

in HEK293T cells on the top. Cas9s were transfected with sgRNAs with CjCas9sgRNA scaffold. A panel of sgRNAs with dinucleotide mutations (red bases) is shown below. An additional G is added at the 5' end of sgRNA for U6 promoter transcription. (B) Specificity of single-mutation Hsp1-Hsp2Cas9 variants analyzed by the GFP-activation assay. The activity of each sgRNA of the Hsp1-Hsp2Cas9 variants was measured by the proportion of GFP-positive cells. The data represent the mean \pm SD; n=3. (C) Quantification of off-target editing efficiency based on GFPactivation assay. The off-target editing efficiency is normalized by on-target editing efficiency.

(A) Schematic of the GFP-activation assay showing the specificity of the nucleases in HEK293T cells on the top. A panel of sgRNAs with dinucleotide mutations (red bases) is shown below. An additional G is added at the 5' end of sgRNA for U6 promoter transcription. (B) Specificity of Hsp1-Hsp2Cas9-Y analyzed by the GFPactivation assay with sgRNAs with Hsp1Cas9-sgRNA scaffold. The data represent the mean \pm SD; n=3. (C) Specificity of Hsp1-Hsp2Cas9-Y analyzed by the GFPactivation assay with sgRNAs with CcuCas9-sgRNA scaffold. The data represent the mean \pm SD; n=3. (D) Quantification of off-target editing efficiency based on GFPactivation assay. The off-target editing efficiency is normalized by on-target editing efficiency.

Site-D1																				~		
	20					10)							1		P	٩M			G	SUIDE-seq re	ads
TC	A G C	A T	Α	G G	G	T G	G	C	A A	A	G	С	С	C	N G	G	Ν	СС	Sp		Hsp1-Hsp2	Y446A
*	• • •	• •	•	• •	•	• •	•	•	• •	•	•	•	•	• ,	Δ.	•	G	• •	5,55	3	3,627	7,799
	G • •	• •	•	• •	•	• •	Т	•	• •	•	•	٠	•	•)	4.	•			2,12	2	-	-
	• • •	• C	•	• •	•	• •	•	•	• G	•	•	•	•	A	G•	•			794		-	-
		т•	•	• •	•	• •	•	A	• •	•	•	•	•	•	г.	•			628		-	-
	• • •	••	•	• A	•	• •	•	•	• G	•	•	•	•	A	г.	•			585		-	-
	• • •	• •	G	• •	•	• •	•	•	• •	•	•	•	Т	• (G•	•			552		-	-
	• • •	СС	•	• •	•	• •	•	•	• G	•	•	•	•	• ,	4.	•			374		-	-
	СТ.	• •	•	• •	•	• A	•	•	• •	•	٠	٠	•	• (• 0	С			157		-	-
	• • •	• C	•	• •	•	• •	•	•	• G	•	•	Α	•	Т	G•	•			35		-	-
Site-D4																						
	20					10								1		PA	١M					
TC	T <mark>G</mark> T	СС	С	СТ	C	CA	С	СС	СС	A	С	A	G	ΤI	N G	G	Ν	СС	Sp		Hsp1-Hsp2	Y446A
*	• • •	• •	•	• •	•	• •	•	• •	•	•	•	•	•	• (G •	•	G	• •	8,68	1	5,398	12,005
•	• C •	Α •	•	• •	•	• •	٠	• •	•	٠	•	•	•	C	C A	С	А	• •	-		603	-
A	• • •	• •	•	• •	G	• •	٠	• •	•	•	•	•	•	• -	ГС	Т	С	• •	-		111	-
	C A G	• •	٠	• •	•	• •	٠	• •	•	٠	•	•	•	• (G A	•			2,65	9	-	-
	• • •	• •	•	• •	•	• •	٠	• •	•	٠	٠	•	A	• (G •	•			2,34	1	-	-
	СТС	• •	Т	• C	•	• •	٠	• •	•	٠	٠	•	٠	• (G •	٠			1,25	7	-	-
	A • •	• •	٠	• •	•	• C	Т	• •	•	٠	٠	•	٠	• (G•	٠			1,119	9	-	-
	A • •	G T	•	• •	•	• •	•	۲	•	٠	٠	•	•	• (G•	•			753		-	-
	• C •	• •	Т	• •	•	• •	•	• •	•	٠	٠	•	٠	• (A	•			652		-	-
	C A A	• •	Т	• C	•	• •	•	۲I	•	٠	٠	•	•	• -	Г•	٠			133		-	-
	CC•	• •	٠	• C	A	• •	٠	• •	•	٠	٠	•	•	<mark>G</mark> (G•	٠			126		-	-
	СТ.	• •	•	• •	•	• •	٠	• •	•	٠	•	•	A	•	Г•	٠			32		-	-
	• • •	• T	•	• C	•	4 •	•	• •	•	٠	•	•	•	• -	Г•	٠			17		-	-
Site-D5																						
	20					10								1		P	٩M					
G G	C T G	CA	G	G G	C (сс	С	G 1	Г <mark>G</mark>	С	А	G	А	<mark>G</mark> I	N G	G	Ν	C C	Sp		Hsp1-Hsp2	Y446A
																	~		1 21	0	6.070	14 490
*								•							• •	-	Б		4,31	0	0,079	14,400
•		T										Ì			• •			•••	- 5 11	3	551	130
							т												3 63	1		-
	TAA													т					3,00	' 7	_	_
												Ì							1 25	2	-	-
				A •									- -		• •				1,35	Z	-	-
					Ŧ			A						- (~ ~				224		-	-
			•	• •				A .		•	•	•	•	- /		•			524		-	-
Sito De																						
Sile-Do	,															_						
	20	G C	C		G	10 T G		G			Δ	G	G	1 G		P/	AM N	0.0	Sn		Hsn1-Hsn2	V446A
					5	. 0		5 (0	0	-		. 0	. 4	0.0	οp			1 1014
*••	• • •	• •	•	• •	٠	• •	•	•	• •	•	•	٠	•	• ,	4•	•	G	• •	7,71	5	12,464	25,187
	• C •	• •	٠	• •	•	• •	٠	•	• •	•	G	٠	•	• *	г.	•			1,52	6	-	-
	G C •	• •	•	• •	٠	• •	٠	•	• •	•	G	٠	٠	• •	г •	•			413		-	-
	• • •	• •	٠	C A	•	• •	٠	•	• •	•	•	٠	•	A	• 0	•			399		-	-
	• A G	• •	Α	• •	• (C •	٠	•	• •	•	٠	٠	٠	• /	۹.	•			84		-	-

Figure S7. Genome-wide specificities of SpCas9, Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-Y determined by GUIDE-seq

The on-target site is marked with "*". Mismatched bases within off-target sites are shown and highlighted in color. Read counts for on-target and off-target sites are listed on the right. Sp, SpCas9; Hsp1-Hsp2, Hsp1-Hsp2Cas9; Y446A, Hsp1-Hsp2Cas9-Y. SpCas9 was transfected with sgRNAs with the SpCas9-sgRNA scaffold. Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-Y were transfected with sgRNAs with the CjCas9-sgRNA scaffold.

Figure S8. Comparison of genome editing activity between SpRY and Hsp1-Hsp2Cas9-Y

(A) Schematic of the Cas9 nuclease and sgRNA-expressing plasmid constructs. pA, polyA; Puro, puromycin resistant gene; hU6, human U6 promoter. SpRY was transfected with sgRNAs with the SpCas9-sgRNA scaffold. Hsp1-Hsp2Cas9-Y was transfected with sgRNAs with the CjCas9-sgRNA scaffold. (B) Expression levels of SpRY and Hsp1-Hsp2Cas9-Y relative to *GAPDH* were measured by RT-qPCR. (C) Comparison of SpRY and Hsp1-Hsp2Cas9-Y genome editing activity at ten endogenous sites with the N₄CY PAM in HEK293T cells. Cells were treated with puromycin. Indel efficiencies were determined by targeted deep sequencing. The data represent the mean \pm SD; n=3. (D) Quantification of the editing efficiencies of SpRY and Hsp1-Hsp2Cas9-Y. The data represent the mean \pm SD.

Figure S9. Hsp1-Hsp2Cas9-Y enables genome editing in diverse cell types Hsp1-Hsp2Cas9-Y enables genome editing in diverse cell types, including (A) HeLa, (B) SH-SY5Y, (C) C33A, and (D) N2a cells. The PAM sequences are shown below. Hsp1-Hsp2Cas9-Y was transfected with sgRNAs with the CjCas9-sgRNA scaffold. Cells were treated with puromycin. Indel efficiencies were determined by targeted deep sequencing. The data represent the mean \pm SD; n=3.

Figure S10. Characterization of Hsp1-Hsp2Cas9-KY for Genome editing

(A) Schematic diagram of chimeric Hsp1-Hsp2Cas9-KY nuclease. It contains K390A and Y446A mutations. (B) The specificity of Hsp1-Hsp2Cas9-KY is evaluated by the GFP-activation assay. Hsp1-Hsp2Cas9-KY was transfected with sgRNAs with the CjCas9-sgRNA scaffold. A panel of sgRNAs with dinucleotide mutations (red bases) is shown below. An additional G at the 5' terminal is added for U6 promoter transcription. The data represent the mean \pm SD; n=3. (C) Genomewide specificities of Hsp1-Hsp2Cas9-KY determined by GUIDE-seq. Hsp1-Hsp2Cas9-KY was transfected with sgRNAs with the CjCas9-sgRNA scaffold. The on-target site is marked with "*". Read counts are listed on the right. (D) Expression levels of Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-KY relative to *GAPDH* were measured by RT-qPCR. (E) Comparison of Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-KY were transfected with sgRNAs with the CjCas9-sgRNA scaffold. Cells were treated with puromycin. The data represent the mean \pm SD; n=3.

Figure S11. Test of genome editing activity of Hsp1-Hsp2Cas9-Y and Hsp1-Hsp2Cas9-KY with different sgRNA scaffolds

(A) Genome editing ability of Hsp1-Hsp2Cas9-Y with different scaffolds measured by targeted deep sequencing. Cells were treated with puromycin. The data represent the mean \pm SD; n=3. (B) Genome editing ability of Hsp1-Hsp2Cas9-KY with different scaffolds measured by targeted deep sequencing. The data represent the mean \pm SD; n=3.

Figure S12. Comparison of genome editing activity between Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-KR

(A) Schematic diagram of chimeric Hsp1-Hsp2Cas9-KR nuclease. It contains K390A and R269A mutations. (B) Schematic of plasmid constructs of the Cas9 nuclease and sgRNA with CjCas9-sgRNA scaffold. pA, polyA; Puro, puromycin resistant gene; hU6, human U6 promoter. Both Cas9 were transfected with sgRNAs

with the CjCas9-sgRNA scaffold. (C) Expression levels of Hsp1-Hsp2Cas9-Y and Hsp1-Hsp2Cas9-KY relative to *GAPDH* were measured by RT-qPCR. (D) Comparison of Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-KR genome editing activity at 20 endogenous sites with the N₄CC PAM in HEK293T cells. Cells were treated with puromycin. The data represent the mean \pm SD; n=3. (E) Quantification of the editing efficiencies of Hsp1-Hsp2Cas9 and Hsp1-Hsp2Cas9-KY. Indel efficiencies were determined by targeted deep sequencing. The data represent the mean \pm SD.

REFERENCES

 Yamada, M., Watanabe, Y., Gootenberg, J.S., Hirano, H., Ran, F.A., Nakane, T., Ishitani, R., Zhang, F., Nishimasu, H., and Nureki, O. (2017). Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems. Mol Cell *65*, 1109-1121 e1103. 10.1016/j.molcel.2017.02.007.

Туре	Cas9	PAM	Size (aa)	Activity	Specificity	Reference
Type II-A	SpCas9	NGG	1368	High	Low	Jinek et al. (2012)
Type II-A	SaCas9	NNGRRT	1053	High	Medium	Ran et al. (2015)
Type II-A	ScCas9	NNG	1380	Medium	Low	Chatterjee et al. (2018)
Type II-A	SlugCas9	NNGG	1054	High	Medium	Hu et al. (2021)
Type II-A	SauriCas9	NNGG	1061	High	Medium	Hu et al. (2020)
Type II-A	SchCas9	NNGR	1054	Medium	High	Wang et al. (2022)
Type II-A	St1Cas9	NNRGAA	1121	Medium	Medium	Agudelo et al. (2020)
Type II-C	NmeCas9	NNNNGATT	1082	Medium	High	Amrani et al. (2018)
Type II-C	Nme2Cas9	NNNNCC	1082	Medium	High	Edraki et al. (2019)
Type II-C	CjCas9	NNNRYAC	984	Medium	High	Kim et al. (2017)
Type II-C	Nsp2Cas9	NNNNCC	1067	Medium	High	Wei et al. (2022)
Type II-C	BlatCas9	NNNNCNAA	1092	Medium	High	Gao et al. (2020)

Table S1. Summary of the type II-A and type II-C Cas9 orthologs

The following tables are submitted in Excel format

- Table S2. DNA sequences of plasmids were used in this study
- Table S3. The human codon-optimized Cas9 sequences
- Table S5. Primers used in this study
- Table S6. All data in this study
- Table S7. The information of raw sequencing data

Table S4. Target sites used in this study

	Name	Gene	Target Seq	PAM	Description
Figure3B	A1	VEGEA		GCTAAAA	Endogenous target site of human
8	A2	GRIN2B	ataacaaqqqqaataaaqccaa	CCTGAAA	Endogenous target site of human
	A3	VEGEA		AGCAAAA	Endogenous target site of human
	Δ/	VEGEA	aacaaaaaattaataactaaa	GGTAAAA	Endogenous target site of human
	Λ .	VEGEA	teadteaadaaaadaaaada	GGCAAAA	Endogenous target site of human
	A5 46	EMX1		ΑΓΤΑΑΑΑ	Endogenous target site of human
	A0 A7	CDINI2D		ТСААСАА	Endogenous target site of human
	A7	GRIINZD		ACAGAAA	Endogenous target site of human
	AO			ACAGAAA	Endogenous target site of human
	A9			CCCAAAA	Endogenous target site of human
	AIU	GRIN2B	cagtcagctctgtgctgtgagg	GGGAAAA	Endogenous target site of human
	AII	GRINZB	lliggaagaaaaggicacaaga	IAIGAAA	Endogenous target site of human
	AIZ	GRINZB	aggatggggtagaatggcactg	AGGAAAA	Endogenous target site of human
	A13	VEGFA	acigagggiaaaaagacciggg	GLAGGAA	Endogenous target site of human
	A14	VEGFA	ggctggggagctcgaaatgcag	GAGGAAA	Endogenous target site of human
	A15	VEGFA	tggggcttgctggga a cctggg	CIGGGAA	Endogenous target site of human
	A16	GRIN2B	gaggtgacaaggggggaaagga	GIGGGAA	Endogenous target site of human
	A1/	GRIN2B	ggtgacagcagcaatgagaatg	TATAGAA	Endogenous target site of human
Figure3C	B1	AAVS1	cgcaccattetcacaaagggag	TTTTCC	Endogenous target site of human
	B2	AAVS1	agggaggagagatgcccggaga	GGACCC	Endogenous target site of human
	B3	GRIN2B	gatggtgtagacctgtgaagcg	TGGTCC	Endogenous target site of human
	B4	GRIN2B	aaagggagtgatggatgaagag	GGATCC	Endogenous target site of human
	B5	AAVS1	aggactgcatgggtcagcacag	GCTGCC	Endogenous target site of human
	B6	GRIN2B	aagggagtgatggatgaagagg	GATCCC	Endogenous target site of human
	B7	AAVS1	a a gcctga gcgcctctcctggg	CTTGCC	Endogenous target site of human
	B8	AAVS1	tggtgcagcgccgagaaggaag	TGCTCC	Endogenous target site of human
	B9	GRIN2B	aatatcaagccactctaaatag	ACTACC	Endogenous target site of human
	B10	GRIN2B	gtagcttctctctccttccagg	TCTGCC	Endogenous target site of human
	B11	VEGFA	a totta a gtgta tgottogtgg	ACTTCC	Endogenous target site of human
	B12	VEGFA	ccggga ccctcca ctcctcctg	GGCCCC	Endogenous target site of human
	B13	VEGFA	aggggggtgccgaggaccgaag	GGCACC	Endogenous target site of human
	B14	VEGFA	a tgtcta tca gcgca gcta ctg	CCATCC	Endogenous target site of human
	B15	VEGFA	gagagagggggctcctgacacag	GCATCC	Endogenous target site of human
	B16	VEGFA	tctcgaggtagccccagcccgg	GGATCC	Endogenous target site of human
	B17	VEGFA	tggaagggacaatgccttctgg	GTCTCC	Endogenous target site of human
	B18	VEGFA	tgga ggta ga gca gca a ggca a	GGCTCC	Endogenous target site of human
	B19	VEGFA	ccgaggctccgggaacacgcgg	CCGGCC	Endogenous target site of human
	B20	GRIN2B	ttta caa tga ga ga caa ta ctg	GCATCC	Endogenous target site of human
	B21	EMX1	ctccagcctgggcgatacaggg	AGATCC	Endogenous target site of human
	B22	VEGFA	tagcagcgacccctgtccatgg	CTTTCC	Endogenous target site of human
Figure3D	C1	AAVS1	cacaccatteteacaaaaaaaaa	TTTTCAA	Endogenous target site of human
5	C2	VEGEA		GCCCCCA	Endogenous target site of human
	C3	AAVS1	tcettaggaagaagaagaagaaga	AGAGCAA	Endogenous target site of human
	C4	AAVS1		GGACCCA	Endogenous target site of human
	C5	VEGEA	ccaacaacaacaataacaca	GCGGCGA	Endogenous target site of human
	C6	VEGEA	tagaccactgagacagaga	AGAGCAA	Endogenous target site of human
	C7	VEGEA	ggggggggggggggggggggggggggggggggggggggg	ACAACCA	Endogenous target site of human
	C8	AAVS1	taagaataataatacatacata	TTCACCA	Endogenous target site of human
	C9	VEGEA	ctatteccaaaatattaccecc	CTCCCTA	Endogenous target site of human
	C10	VEGEA	addcddcddtdggladddd	TGCTCCA	Endogenous target site of human
	C11	VEGEA	totocacaccotacctotoco	AGTGCTA	Endogenous target site of human
	C12	VEGEA	tetecagatecerageee	GGATCCA	Endogenous target site of human
	C12 C13	VEGEA	deadeaa.ddeaa.ddetecaa.td	CACCCAA	Endogenous target site of human
	C14	VEGEA	adadaacadaaatttaatacco	CTTCCAA	Endogenous target site of human
	C14 C15	VEGEA		CCACCAA	Endogenous target site of human
	C16	VEGEA		GCCCCAA	Endogenous target site of human
	C10 C17	VECEA	atagagagatagagagagaga	CGGGCCA	Endogenous target site of human
	C18	TIMM8B	tatota otoca a ootoatota o	CCAGCAA	Endogenous target site of human
	C10	VECEA		ACTGCTA	Endogenous target site of human
	C20	VEGEA	dyddid lyccacacacacacacaca	GCAACAA	Endogenous target site of human
	C20	TIMMED		ATGACCA	Endogenous target site of human
	C21			GGGGGGAA	Endogenous target site of human
	C22			GGGACAA	Endogenous target site of human
	C23	VECEA		AGGACGA	Endogenous target site of human
	C24	VEGEA		AGGACCA	Endogenous target site of human
Figure 4D	C23	VEGFA	ggaggggggagaagggaccagag	AGGGCAA	Endogenous target site of human
Figure4D	DI	AAVSI	lcagcalaggglggcaaagccc	AGGGCC	Endogenous target site of human
	D2	AAVS1	gcagcgcaaagtgacaatggcc	AGGGCC	Endogenous target site of human
	D3	AAVSI		George	Endogenous target site of numan
	D4	AAVS1	tctgtcccctccaccccagt	GGGGGCC	Endogenous target site of human
	D5	AAVS1	ggctgcagggccccgtgcagag	GGGGCC	Endogenous target site of human
	D6	AAVS1	cggcggggtcgagctcggcgcc	GGGGCC	Endogenous target site of human
	D7	AAVS1	cttcctccaccctgcatagccc	TGGGCC	Endogenous target site of human
	D8	AAVS1	atatcgccaggtgaggcaaggg	AGGGCC	Endogenous target site of human
	D9	AAVS1	gaatcatgtcccaccgcatgga	TGGGCC	Endogenous target site of human
	D10	AAVS1	agggaggagagatgcccggaga	GGACCC	Endogenous target site of human
	D11	AAVS1	gggtctga ggga gga ggggctg	GGGGCC	Endogenous target site of human
	D12	AAVS1	tgagaa tggtgcgtccta ggtg	TTCACC	Endogenous target site of human
	D13	AAVS1	a a gcctga gcgcctctcctggg	CTTGCC	Endogenous target site of human
	D14	AAVS1	gttcccttttccttctccttct	GGGGCC	Endogenous target site of human
	D15	AAVS1	a tgctgtcctga a gtgga ca ta	GGGGCC	Endogenous target site of human

	D10			000000	Enderson the transferred film
	D16	VEGFA	ccgggaccctccactcctg	GGULU	Endogenous target site of human
	D17	VEGFA	aggggggtgccgaggaccgaag	GGCACC	Endogenous target site of human
	D18	VEGFA	tctcga ggta gcccca gcccgg	GGATCC	Endogenous target site of human
	D19	VEGFA	aggaaacgacctgggaccacct	GTTCCC	Endogenous target site of human
	D20	VEGFA	ctgtcccctcctga gccca tgg	GCAACC	Endogenous target site of human
	D21	AAVS1	atccaaaccaaataaataacct	GGGGCC	Endogenous target site of human
	D22	VEGFA	aagggtgagtctcaggccacag	GGACCC	Endogenous target site of human
	 D23	EMX1	aatotootootooaaatooa	TGGCCC	Endogenous target site of human
	D24	CDINIOD		ACCCCC	Endogenous target site of human
	D24	GRINZD	cccalcaagcigggciccaagg	AGGGCC	Endogenous target site of human
	DZ5	AAVSI	tgggtttgagagaggaggggct	GGGGCC	Endogenous target site of numan
	D26	GRIN2B	tttacaatgagagacaatactg	GCATCC	Endogenous target site of human
Figure4E	E1	AAVS1	gccgtctctctcctgagtccgg	ACCACT	Endogenous target site of human
	E2	AAVS1	cccctggaagatgccatgacag	GGGGCT	Endogenous target site of human
	E3	AAVS1	gtggctaaagccagggagacgg	GGTACT	Endogenous target site of human
	E4	AAVS1	agaagactagctgagctctcgg	ACCCCT	Endogenous target site of human
	E5	AAVS1	atagaccectgaacceacaga	AATCCT	Endogenous target site of human
	E6	AAVS1	tatcaggagagtaggaaggagg	AGGCCT	Endogenous target site of human
	E7	AAV/S1	ctagaaaactaataagaagagg	ATCTCT	Endogenous target site of human
	E7	VECEA		ACTOCT	Endogenous target site of human
	EO	VEGFA	lolocagacoolacologooc	AGIGCI	Endogenous target site of human
	E9	EMIXI	tgcggtgacagagcaagtgctg	GGGGCI	Endogenous target site of numan
	E10	VEGFA	aaagcgacaggggcaaagtgag	TGACCT	Endogenous target site of human
	E11	EMX1	gcagggcagtgcggggacaccg	GGGGCT	Endogenous target site of human
	E12	VEGFA	ga gtcctca cga a a ctga gggt	GAACCT	Endogenous target site of human
	E13	GRIN2B	gtgaagggtagtaagatatatg	AGACCT	Endogenous target site of human
	E14	GRIN2B	aacagagttagctgcaatccag	TGGTCT	Endogenous target site of human
	F15	VEGEA	actacatacaaataccaaaa	TGAGCT	Endogenous target site of human
	E16	EMX1	ctaa aaca aaca aa aca aa acca a	CAAGCT	Endogenous target site of human
Figure6B	c-1	BACALNT2	tataacacetteaaceteeaa	AAAGCT	Target site of ReGAINT2 avon2
Figureop	sy1			ACCACC	Target site of DeC ALNT2
	sg2	B4GALN12		ACGACC	Target site of BeGALN12 exon3
	sg3	B4GALN12	ggatgcctacgacccgcgtgac	CICCCC	Target site of BeGALN12 exon3
	sg4	B4GALNT2	acccgcgtgacctccccgcagt	GAACCT	Target site of BeGALNT2 exon3
	sg1	CMAH	aagaaaatggagttttgcttct	AGAACT	Target site of CMAH exon3
	sg2	CMAH	tgcttctagaactaaatcctcc	TAACCC	Target site of CMAH exon3
	sq3	CMAH	taa cccgtgggattca gaa ccc	AGATCT	Target site of CMAH exon3
	sa4	СМАН	agaacccagatctcctgaagat	TTGGCT	Target site of CMAH exon3
Figure6D	H1	FMX1	gtagetggaetaeaggeatge	ACCACC	Endogenous target site of human
riguroop	H2	EMX1	actototacionectotacioa	ACCCCT	Endogenous target site of human
	112			ACACCT	Endogenous target site of human
	п. 	EIVIAL		ACACCI	
	H4	EMIXI	lgiciagggggccigiaggaac		Endogenous target site of numan
	H5	EMX1	agccattttcctaatatgatgg	GCATCC	Endogenous target site of human
	H6	EMX1	caaaataattggcccagggctc	ACCACT	Endogenous target site of human
	H7	EMX1	tcga cctcctgggctcga ga ga	TCTTCC	Endogenous target site of human
	H8	EMX1	tgtcta gcctca tgtgttctgc	TCACCT	Endogenous target site of human
	H9	EMX1	tggccttggggcgtcaggaggc	CCAACC	Endogenous target site of human
	H10	EMX1	gaa ca catga ggcta ga ca ggt	ACAACT	Endogenous target site of human
	H11	AAVS1	coottettataggeotacate	ATCACC	Endogenous target site of human
	H12	AAVS1	ccactgagactgagactga	CCGGCC	Endogenous target site of human
	1112	EMV1	teastatteeaataaastteaa	ACTOCT	Endogenous target site of human
	П13	EIVIAL		ACTOCI	
	H14	EMIXI	ataagatotoguucoouo	ACICCC	Endogenous target site of numan
Figure S8C	F1	EMX1	gaacacatgaggctagacaggt	ACAACT	Endogenous target site of human
	F2	EMX1	agtgtctagggggcctgtagga	ACCCCT	Endogenous target site of human
	F3	EMX1	tgtcta gggggcctgta gga a c	CCCTCC	Endogenous target site of human
	F4	EMX1	ataagatctctgttttcccttc	ACTCCC	Endogenous target site of human
	F5	EMX1	agccattttcctaatatgatgg	GCATCC	Endogenous target site of human
	F6	FMX1	caccacatatottatctcattt	ACTCCT	Endogenous target site of human
	F7	EMX1	agcagttaatatttatcaaaag	CCTACT	Endogenous target site of human
	EQ	EMY1	caaaataattooccegoooto	ACCACT	Endogenous target site of human
	F0		tega estectagaetega ga ga	TCTTCC	Endogenous target site of human
	13			COLLOG	Endogenous target site of human
	FIU	EIVIXI	rððrorrððððrðreg dag dag	CCAACC	Endogenous target site of human
Figure S9A-C	J1	AAVS1	gtgaactggagtgtgacagcct	GGGGCC	Endogenous target site of human
	J2	AAVS1	cttcctccaccctgcatagccc	TGGGCC	Endogenous target site of human
	J3	AAVS1	atatcgccaggtgaggcaaggg	AGGGCC	Endogenous target site of human
]4	AAVS1	tga ga a tggtgcgtccta ggtg	TTCACC	Endogenous target site of human
	J5	AAVS1	aagcetgagegeeteteetegg	CTTGCC	Endogenous target site of human
	16	VEGEA		GGCCCC	Endogenous target site of human
	17	VEGEA	adddddtoccaadaccoaad	GGCACC	Endogenous target site of human
	18	VEGEA	tetegagatageeeageega	GGATCCA	Endogenous target site of human
Figure S9D	10	VEOR		GCAACC	Endogenous target site of human
	19	VEGFA	cigicocolociga goodagg	ACCOCC	Endogenous target site of numan
	K1	MEIVIXI	yyuyyaaggtgagctaagcag	AGGCCC	Endogenous target site of Mouse
	K2	mEMX1	taggatggtttcatgccgggga	TGTGCC	Endogenous target site of Mouse
	K3	mEMX1	ccggctctgacggtgcacccgg	CACACC	Endogenous target site of Mouse
	K4	mTh	gtggtcttgggagagagcccca	TGATCC	Endogenous target site of Mouse
	K5	mTh	gagtaggacttaggaagccaca	GGGACC	Endogenous target site of Mouse
	K6	mTh	actaggacgttcctagaaccca	GGACCC	Endogenous target site of Mouse
	K7	mRNF2	aggccagcttggaactacatag	AGACCC	Endogenous target site of Mouse
	K8	mRNF2	aagaagccaaggatocaagtog	TTTGCC	Endogenous target site of Mouse
	KO	mEMY1	atronanacostanacana	GGTGCT	Endogenous target site of Mouse
	KJ			GGCACT	Endogenous target site of Mouse
	KTO CI	min • • • • • • •	atycayctaagaagtatgaagg	COCOCT	Endogenous target site of Mouse
Figure 59D	GI	AAVSI	ccaccaacyccyacygtatcag	UGUUCI	Endogenous target site of human
	G2	AAVS1	ccccttcttgtaggcctgcatc	ATCACC	Endogenous target site of human
	G3	AAVS1	ccactgagcactgaaggcctgg	CCGGCC	Endogenous target site of human