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Supplementary Note 1: Low emittance principles 22 

The photon beam brilliance is inversely proportional to the electron beam emittance εx 1: 23 ߝ௫ = ܥ ௫ܬଶߛ ଶܫହܫ ௫ܬ       = 1 −  ଶ 24ܫସܫ

with ܥ a constant, ܬ௫ the horizontal damping partition number, γ  the relativistic Lorentz factor 25 
and In the synchrotron radiation integrals defined as follows, respectively: 26 ܫସ = ∮ ఎఘೣ ቀ ଵఘమ + 2݇ଵቁ ଶܫ            ݏ݀ = ∮ ଵఘమ ହܫ      ݏ݀ = ∮ ℋೣ|ఘ|య  27  ݏ݀

ρ is the bending radius of the dipoles, k1 the quadrupole strength and ηx the horizontal 28 
dispersion function. The integrals run over the whole lattice. ℋ௫ is defined by the horizontal 29 
twiss parameters βx, αx, and γx and by ηx and ηx’, the horizontal dispersion function and its 30 
derivative along the beam trajectory 1. 31 ℋ௫ = ௫ᇱଶߟ௫ߚ + ௫ᇱߟ௫ߟ௫ߙ2 +  ௫ଶ 32ߟ௫ߛ

 33 

For a classic double-bend achromat 2      these equations reduce to: 34 

.݉]௫ߝ 35  [݀ܽݎ = 5.036 ∗ 10ିଵଷܧଶ[ܸ݁ܩଶ]ߠଷ[degଷ] 36 

 37 

where E is the electron beam energy and ϴ the average angle per dipole. 38 

Low emittance can therefore be achieved with: 39 

1) low βx, and ηx at dipoles to reduce ℋ௫, 40 

2) a large number of low-angle (θ) dipoles and 41 

3) combined function magnets with focusing gradient k1 and bending angle to increase ܬ௫. 42 

 43 
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Supplementary Note 2:  45 

Supplementary Figures 1a-c shows a comparison of different synchrotron light source lattice 46 
cells for storage rings with E0 = 6 GeV and 32 cells. The figures also show the electron beam 47 
emittance (εx) for the different lattice cells. The characteristics of the considered lattice cells 48 
are given below. 49 

 50 

 51 
 52 

 53 
 54 

 55 
Supplementary Figure 1: comparison of different synchrotron light source lattice cells 56 
for storage rings with E0 = 6 GeV and 32 cells. Supplementary Figures 1a, b and c are for the 57 
Double-Bend-Achromat (DBA), Multi-Bend-Achromat (MBA) and Hybrid-Multi-Bend-58 
Achromat (HMBA) lattice cells, respectively. 59 

 60 

  61 

 

a) DBA     ex ~ 4000 pm.rad 

b) MBA     ex ~ 300 pm.rad 

c) HMBA    ex ~ 133 pm.rad 



Double-Bend-Achromat (DBA) (first light in 1992).   εx ~ 4000 pm.rad  62 

Characteristics:  63 

1) small horizontal β and dispersion at dipoles (see Supplementary Note 1) 64 

2) large dispersion at sextupoles. 65 

Multi-Bend-Achromat (MBA) (first light in 2015). εx ~ 300 pm.rad 66 

Characteristics:  67 

1) more dipoles with less field (see Supplementary Note 1) 68 

2) dipole-quadrupoles (Jx>1), 3) octupoles (see Supplementary Note 1). 69 

Hybrid-Multi-Bend-Achromat (HMBA) (first light 2019). εx ~ 133 pm.rad 70 

Characteristics:  71 

1) all features of MBA  72 

2) two large localized dispersion bumps as in DBA to increase sextupole efficiency 73 

3) almost exact -I transformation (see Supplementary Note 4) between sextupoles pairs to 74 
locally cancel sextupolar aberrations 75 

4) longitudinal gradient dipoles to increase dispersion at sextupoles 76 

5) increased dipole filling ratio. 77 
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Supplementary Note 3: Natural chromaticity correction 79 

Given a lattice layout (DBA, MBA, HMBA) with dipoles and quadrupoles, the sextupoles are 80 
set such that the natural chromaticity ߦ௫,௬introduced by the integrated quadrupole strengths 81 
(ܾଶܮ) is neutralized or overcompensated using sextupoles with integrated strength ܾ ଷܮ to allow 82 
as large as possible off-momentum phase space stability and thus long lifetimes and stable high 83 
charge bunches. In this case the chromaticity is defined as 84 

௫,௬ߦ = 14πቌ 2ܾଷߟܮ௫,௬ߚ௫,௬ −  ܾଶߚܮ௫,௬ேೠೌ


ேೞೣ
 ቍ, 85 

where ߟ௫,௬and ߚ௫,௬ are the horizontal and vertical dispersion and ߚ-functions and ௦ܰ௫௧ and 86 ܰ௨ௗ the number of sextupoles and quadrupoles present in the lattice. This determines the 87 
sextupole strengths, (ܾଷܮ) excluding further non-linear optimization, that are inversely 88 
proportional to the dispersion and β-functions at sextupoles. Large β-functions and dispersion 89 
at the sextupoles will therefore allow to reduce their strengths 1. 90 

For the specific case of low emittance lattices that generally feature small dispersion (low 91 
dipole fields) and small β-functions, this can lead to strong sextupole strength, potentially 92 
reaching technological limits. 93 
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Supplementary Note 4: The −ܫ transformation between sextupoles 95 

With  ܾଷܮ  the sextupole integrated strength and x,x’,y,y’ the position and angle in the 96 
horizontal and vertical planes, the electron-optical effect of a sextupole can be 97 
represented as a coordinates transformation by the transfer matrix ℳ௦: 98 

൮ݔݔᇱݕݕᇱ൲ = ℳ௦ ൮ݔݔ′ݕݕ′൲ ,൮ݕݕ′ݔݔ′൲ = ൮ 1 0−0.5ܾଷݔܮ 1 0 00.5ܾଷݕܮ 0         0          0        0          0   1   0    ܾଷݔܮ   1൲൮
 ′൲, 99ݕݕ′ݔݔ

 100 

If the matrix representing the region of the lattice between two consecutive sextupoles is 101 
exactly −ܫ (minus identity), as shown in supplementary Fig. 2, and we neglect the 102 
presence of other sextupoles, then 103 ℳ௧ = ℳ௦ሺݔ,ݕ). ሺ−ॴ).ℳ௦ሺ−ݔ,ݕ) =  104 ܫ−

the distortions introduced by the first sextupole at first order are cancelled by the 105 
sextupole with identical field at the other side of the -I region. 106 

 107 

 108 

Supplementary Figure 2:  Lattice functions and magnet layout for the Hybrid Multi-Bend 109 
Achromat (HMBA) Synchrotron standard cell. The Dipoles, quadrupoles, sextupoles, 110 
multipoles and diagnostic elements along the cell (position s) are shown as violet, pink, light 111 
green, dark green and black symbols respectively. The βx, βz, and ηx parameters are shown as 112 
blue, red and orange lines respectively. Reproduced by permission 3. 113 

 114 

The −ܫ transformation is obtained by tuning the quadrupoles gradients such that the 115 
optics phase advance is an odd multiple of π (φx=3π, φy=π). The effect of the −116 ܫ 
transformation between sextupole pairs is shown by electron beam tracking simulation 117 
for the HMBA cell in the figure below (Supplementary Fig. 3). 118 



 119 

Supplementary Figure 3: electron beam tracking simulation for the HMBA cell 120 

When moving away from the phase advances (φx=3π, φy=π) generating the −121 ܫ 
transformation, either the Touschek lifetime 4 or the injection efficiency are negatively 122 
affected. The presence of interleaved sextupoles, makes the optimum phase advances 123 
deviate slightly from the theoretical (φx=3π, φy=π). 124 
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Supplementary Note 5: Undulator radiation 126 

 127 

Undulators create a periodic magnetic field perpendicular to the electron path, which introduces 128 
by the Lorentz force a periodic transverse undulation of the electron trajectory.  The radiations 129 
emitted at each period interfere. This leads to a photon spectrum with narrow intense peaks. In 130 
such case, the photon spectrum shows narrow intense peaks 5, 6, 7 (harmonics) at specific photon 131 
energies. An undulator is characterised by its deflection parameter, defined as 132 

ܭ       = బబଶ   133 

where e is the elementary charge, B0 and λ0  are the undulator peak magnetic field and period 134 
length, m the electron mass and c the speed of light. The resonant wavelength on-axis is  135 

    = బଶ మ ቀ1 + మଶ ቁ 136 

n being the harmonic number and γ  the relativistic Lorentz factor. The photon flux reaches a 137 
maximum at ࡷ ≈ 1.2 for the fundamental and at higher K values for higher harmonics. For a 138 
Gaussian photon beam and a single electron, the diffraction limited X-ray source size and 139 
divergence are respectively  140 

 = ටܮ ൗ   and  ᇱ = ට ൗܮ2  141 

L being the undulator length and λ the X-ray wavelength. 142 

 143 
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Supplementary Note 6: Spectral flux, coherence and brilliance 145 

 146 

A single electron produces transversally coherent radiation. 147 

However, the finite electron bunch size 148 ߪ௫,௬ = ට߳௫,௬ ߚ௫,௬ +  ாଶ  149ߜ௫,௬ଶߟ 

and divergence  150 ߪ′௫,௬ = ටߝ௫,௬ ௫,௬ + ௫,௬ ᇱ ଶ  ா ଶ  151 

Eδ  being the energy spread of the electron beam, result in partially coherent radiation 8 with 152 

photon source size   , = ඥଶ + ,ଶ and divergence  ᇱ, = ට ᇱଶ +  ᇱ,ଶ.  153 

In practice, the radiation is coherent in the vertical plane and partially coherent in the horizontal 154 
plane, due to the ellipsoidal shape of the electron beam. 155 

The apparent brilliance of the source, defined as = ி
 ᇲೊೊ ᇲ , combines the spectral flux F and 156 

the source sizes and divergences: high brilliance means a large number of photons in a small 157 
phase space volume, i.e. a large coherent flux. The brilliance can be interpreted as the 158 
distribution of photons in the phase space and is linked to the Wigner distribution of the electric 159 
field 9, 10, 11, 12, 13, 14, 15, 16, 17. 160 
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Supplementary Note 7: Sources of errors in storage rings 162 
 163 
The design of a particle accelerator is based on an ideal model that assumes a perfectly aligned 164 
machine without magnetic field errors. In reality, misalignments and field errors, mostly 165 
determined by the mechanical tolerances of the magnets and the calibration of the current-to-166 
field transfer functions, cannot be avoided. These are estimated during the design phase and 167 
the so-called design parameters represent the average of multiple seeds of errors. 168 
We generally classify machine imperfections from the multipoles excited by such errors, and 169 
consequently the magnet type used to correct them: 170 
 171 

• dipole errors will introduce beam displacements throughout the storage ring that can 172 
be described as follows 1: 173 Δݑ = ܯଵଶሺݏ|ݏ)Θ  174 

 175 
where ∆ݑ is the displacement of the beam at the location ݏ due to many dipole-field errors 176 Θ at locations ݏ, and ܯଵଶ is the transfer matrix from the perturbation ݏ to the observation 177 
point ݏ. The main contribution to dipole-field errors are unwanted dipole-field components, 178 
quadrupole misalignments or beam offset in quadrupole magnets. 179 
 180 

Quadrupole-field errors will introduce a betatron tune shift and linear optics 181 
perturbations that will break the lattice properties described in the previous section and 182 
consequently degrade the lifetime, injection efficiency and emittance of the machine. The main 183 
contributors to quadrupole-field errors are unwanted quadrupole field components, sextupole 184 
misalignments or beam offset in sextupole magnets. 185 
 186 
Reducing these errors enables the storage ring to operate closer to the ideal model, and thus 187 
improve performance. The strength of the corrections applied to bring the machine towards its 188 
ideal model is therefore a good indicator of how well the components have been manufactured 189 
and the storage ring assembled. 190 

191 



Supplementary Note 8: Orbit and optics correction 192 

Good control of the closed orbit and linear optics are essential to achieve the design 193 
performance of the accelerator. The closed orbit is measured using beam position monitors and 194 
then minimized using dipole correctors. To do so, Single Value Decomposition inversion 18 is 195 
used to minimize to sum of the squares of the orbit distortions at the beam position monitors 1 : 196 (ݑ − Δݑ)ଶ = ݑ) Θ)ଶ ܯ−  197 

where ݑ is the measured position at monitor ݉, ܯ is the orbit response matrix of all the 198 
correctors ݊ and Θ are the vectors of the strength applied to the dipole correctors to minimize 199 
perturbations. Similarly, linear optics are corrected using quadrupole correctors by inverting a 200 
matrix of the beam response to quadrupole perturbations. 201 

Supplementary Figure 4: Magnetic corrections applied to ESRF-EBS storage ring. 202 

The figure shows the magnetic corrections applied to the ESRF-EBS storage ring. All 203 
corrections are below the expected values from the error model as shown in Supplementary 204 
Table 3. 205 



 206 

Supplementary Table 3:  207 

Measured and model rms corrections, closed orbit and optics errors. 208 

 unit Measured Model 

Gradient corr. [m-1] 1.7 10-3 2.6 10-3 

Dipole corr. [H/V] μrad 65/30 160/120 

β-beating % 1-2 ±2 1 

Closed orbit [H/V] μm 55/55 140/80 

 209 

 210 
 211 
 212 
Supplementary Figure 5: Undulator deflection parameter versus period, for different 213 
undulator technologies. In a first approximation, the peak magnetic field varies as  214 
∝ ܤ  (݃ߨ−))ݔܧ ⁄  ), where g  is the magnetic gap. The parameter K  varies with  , 215 
resulting in small deflections, limited flux and poor tunability at short periods. At the ESRF, 216 
most of the undulators are installed around a 10 mm vacuum chamber with a minimum gap of 217 
11 mm. Prototype vacuum chambers with 8 mm thickness will be installed for tests, allowing 218 
the installation of undulators with a gap of 9 mm. The CPMUs are operated at gaps in the 5 to 219 
6 mm range, depending on their length. Operated at 77 K in most cases, they compete with 220 
Super-Conducting Undulators  operated at helium temperature due to their smaller magnetic 221 
gaps. Reducing the vertical size of the beam by means of a mini-β setup would allow to install 222 
devices with ultra-small gap. The minimum gap of such devices is not determined yet but is 223 
expected to be at least in the 3.5 to 4 mm range. 224 
___________________________________________________________________________ 225 
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