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S1. Number of required qubits in the circuit and the general algorithm 
 
In this section, we describe how to estimate the m value, as well as the total number of 
qubits for different circuits. To do so, in each circuit, we first need to estimate the largest 
possible positive value and smallest possible negative value. This estimation is based on 
the Hamiltonian and the energy table associated with the system of study.  
 
Each value in the circuit is represented by a set of qubits shown in Fig. S1-A. One can 
simply check that using n qubits, we can show 2n numbers. For example, by using 6 
qubits, we can show 64 numbers, i.e., 0 to 63. However, if we need to show both negative 
and positive numbers, the most left qubit is devoted to the sign, as shown in Fig. S1-A. 
Thus, we can show numbers from −32 to +31 using six qubits.  

 
FIG. S1. A) Schematic representation of 7 qubits. B) Schematic representation of a system with 6 interacting 
residues and 5 interactions.  

 
Here, we focus on a system in the SP model with six designable sites and five 
interactions, as shown in Fig. S1-B. Using the energy table in the Fig. 2-A of the main text 
(and Fig. S5- B), the largest energy value is +4, and the smallest is −4. Since we have 
five interactions, the extremes of the total energy of a set can be −20 and +20. Now, if we 
subtract these numbers from Eth = −19, the range of values in the circuit will be from +39 
to −1. Based on the calculations described earlier, using six qubits to represent numbers 
is insufficient for +39 to −1 range, as it can show −32 to +31 in a standard implementation. 
However, using seven qubits can represent numbers in the −64 to +63 range that covers 
our +39 to −1values.  
 
In our circuits, 𝑞 = 𝑛 + #_𝑤𝑜𝑟𝑘_𝑞𝑢𝑏𝑖𝑡𝑠 (Fig. S2-A). To calculating the total number of 

qubits required for the circuit in Fig. S1-B, we first calculate the number of n qubits. Since, 
n = 3 × s, and s=6 for 6 designable sites, thus n = 18 (Fig. S2-B).  
The #_𝑤𝑜𝑟𝑘_𝑞𝑢𝑏𝑖𝑡𝑠, which is 2𝑚 + 1, is describe as following:  

1. We allocate four qubits sets, one with 18 (generally 3 × 𝑠) qubits labelled as 

“var_qubits”, one with a single qubit (required by the adder) labelled as “o_qubit” 
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and two sets, each with 7 (generally m) qubits, labelled as “a_qubits” and 
“b_qubits”.  

2. The energy of the interaction 1 − 2 is put in the a_qubits.  
3. The energy of the interaction 1 − 3 is put in the b_qubits.  
4. The value in the a_qubits is added to b_qubits and put into a_qubits (using 

quantum ripple adder).  
5. The energy of the interaction 1 − 3 is cleaned from the b_qubits (to inter the next 

value).  
6. The energy of the interaction 1 − 4 is put in the b_qubits.  
7. The value in the a_qubits is added to b_qubits and put into a_qubits (now we have 

1-2, 1-3 and 1-4 adde together). 
8. The energy of the interaction 1 − 4 is cleaned from the b_qubits.  
9. The energy of the interaction 4 − 5 is put in the b_qubits.  
10. The value in the a_qubits is added to b_qubits and put into a_qubits.  
11. The energy of the interaction 4 − 5 is cleaned from the b_qubits.  
12. The energy of the interaction 4 − 6 is put in the b_qubits.  
13. The value in the a_qubits is added to b qubits and put into a_qubits.  

Now, we have added all energies in the configuration. We only need 18 qubits for n and 
7 + 7 qubits for the a_qubits + b_qubits and 1 qubit for the o_qubit, in total 33 qubits.  

 
FIG. S2. General representation of qubits in our algorithms. A) qubits representation in the whole circuit. B) 
n qubits for 6 designable site/residues system. 
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