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S5. Computational costs in the circuits 
 
I: quantum circuit 
 
To find the number of gates for each step of Grover’s algorithm implemented in our 
circuits, deep knowledge of each step is required. To this end, we investigate the SP 
model circuits.  
 
The number of computations in the initialization step (#𝑜𝑓𝑄𝑖𝑛𝑖𝑡.) is equivalent of number 
of H-gates used, which is n (Fig. S7-C). Thus, #𝑜𝑓𝑄𝑖𝑛𝑖𝑡.~𝒪(𝑛) = 𝒪(log2( 𝑁)).  
 
Next, we need to calculate the cost of computation for the oracle, i.e., #𝑜𝑓𝑄𝑜𝑟𝑐𝑙.. Here, the 

computation cost consists of introducing energies to the work qubit, adding them up and 
negating the answer states, and finally cleaning up the gates (Fig. 1-b in the main text).  
 
To introduce energies, we use the 6-control-1-NOT gates represented in Fig. S7-C. The 
maximum required 6-control-1-NOT gates will be used to represent value of –1 in the 
circuit, which requires applying 7 (as m=7) of the 6-control-1-NOT gates. For the other 
values in the pair-wise energy table, lesser number of the gates are required. However, 
to be on the safe side, we will assume all values in the energy table are –1. For each 
value, we require some X gates as shown in Fig. S7-C. Similarly, we consider the 
maximum number of X gates that is required, which is 12 (as 2 × 2 ×
⌈𝑙𝑜𝑔2(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠)⌉, which is a constant for our circuits) gates for the H1-
H1 pair. Thus, introduce energy values each time we require 

8 × 8 × [𝑚 × (6𝐶𝑋) + 12 × X] (Eq. S1) 
gates, where 6CX represents the 6-control-1-NOT gates. From Eq. 1, Eq. 2 and Eq. 3 in 
the main text, we have that 𝑚~ 𝒪(log2 (log2 𝑁)), which simplifies the Eq. S1 to 
~ 𝒪(log2 (log2 𝑁)) × (6𝐶𝑋). It is not possible for current quantum computers to implement 
the 6-control-1-NOT gates as a single gate, which is a task for future quantum computers 
with fully connected qubit mappings. From the Nielsen-Chuang book on “Quantum 
computation and quantum information”, we have that an n-contol-1-X gate can be 
decomposed into 2(n–1) CCX gates, where each CCX can be decomposed into 15 single 
and CX gates. Thus, Eq. S1 with decomposition of 6𝐶𝑋 simplifies to ~ 𝒪(log2 (log2 𝑁)) ×
𝒪(log2 𝑁) ≈ 𝒪(log2 (log2(𝑁)) × log2(𝑁)). Thus, the number of computations required for 
introducing the energies to the circuit is ~𝒪(log2 (log2(𝑁)) × log2(𝑁)). Note that for a fully 

connected mapping, this number will be ~𝒪(log2 (log2(𝑁)) instead of 
~𝒪(log2 (log2(𝑁)) × log2(𝑁)). For the SP,s=2 system with any Eth value, the introducing 
the energy is done once (description is provided in the algorithm part of section I of the 
supplementary data). However, for each bond i in the structure, we need to introduce the 
energies for them. However, for s>2 (i.e., i>1) we need to clean qubits from values of the 
previous bond (by re-applying the gates used to introduce them in the first place) and add 
the new bond’s energy values (algorithm part of section I of the supplementary data). This 
requires applying the introducing the energy step 2𝑖 − 1 times, where 𝑖~𝒪(log2(𝑁)). 

Thus, the total cost of the introducing energies at worst case scenario will be 
~𝒪(log2 (log2(𝑁)) × log2(𝑁)) × 𝒪(log2(𝑁)) ≈ 𝒪[log2 (log2(𝑁)) × (log2(𝑁))2]. 
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Then, there is the cost of adders, which is discussed briefly in the main text and changes 
as ~𝒪(𝑚) ≈ 𝒪(log2((log2(𝑁))). Thus, to add the energies together, each time an 
~𝒪(log2((log2(𝑁))) computation is implemented in the circuit. Since energies of each 

interaction i is added to find the Etot, the computation cost is ~𝒪(log2 (log2(𝑁)) × 𝑖 ≈
𝒪(log2((log2(𝑁))) × 𝒪(log2(𝑁)) ≈ 𝒪(log2((log2(𝑁)) × log2(𝑁)).   
 
After summing the energies between all designable sites, circuits subtract the Etot from 
the Eth, which adds another ~𝒪(log2(log2(𝑁))) computation to the system (same as adder 
function). 
 
For the negation, a single CZ gate is used for negating the answer states. Finally, the 
work qubits are cleaned by applying the inverse of the functions initially implemented, 
meaning that all computations applied before the negating process will duplicated. 
 
Thus, the total number of computation used in the oracle is 2 ×
[𝑐𝑜𝑠𝑡_𝑒𝑛𝑒𝑟𝑔𝑦_𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑐𝑜𝑠𝑡_𝑎𝑑𝑑𝑒𝑟𝑠_𝐸𝑡𝑜𝑡 + 𝑐𝑜𝑠𝑡_𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡_𝐸𝑡ℎ + 𝑐𝑜𝑠𝑡_𝐶𝑍_𝑔𝑎𝑡𝑒]. 
Using the values provided in previous discussions in this section, the cost of the oracle 
will be 
~𝒪 [(log2 (log2(𝑁)) × (log2(𝑁))2) + (log2((log2(𝑁)) × log2(𝑁)) + log2(log2(𝑁))], 
or 

~𝒪[log2(log2(𝑁)) × ((log2(𝑁))2 + log2(𝑁) + 1)] 
 
Finally, we should consider the cost of computation in the diffuser step (#𝑜𝑓𝑄𝑑𝑖𝑓𝑓.). From 

the Nielsen-Chuang book on “Quantum computation and quantum information”, we can 
see that the diffuser is composed of 2(n+1) H-gates, 2n X-gates and one (n-1)-control-1-
NOT gate. The H-gates and X-gates each require ~𝒪 (log2(𝑁)) computations. However, 
based on the previous discussions in this section, for the (n-1)-control-1-NOT gate we 
require 2((𝑛 − 1) − 1)𝐶𝐶𝑋 gates, which leads to ~𝒪 (log2(𝑁)) gates. Thus, in general 

#𝑜𝑓𝑄𝑑𝑖𝑓𝑓.~𝒪 (log2(𝑁)). 

 
The total cost of a quantum algorithm will be calculated as,  #𝑜𝑓𝑄𝑡𝑜𝑡 = #𝑜𝑓𝑄𝑖𝑛𝑖𝑡. +

√𝑁 × (#𝑜𝑓𝑄𝑜𝑟𝑐𝑙. + #𝑜𝑓𝑄𝑑𝑖𝑓𝑓.). Using the discussions in this section, the #𝑜𝑓𝑄𝑡𝑜𝑡 will 

require  

~𝒪 [(log2(𝑁)) + √𝑁 × {[log2(log2(𝑁)) × ((log2(𝑁))2 + log2(𝑁) + 1)] + log2(𝑁)}] gates. 
(Fig. S6). 
 
II: classic circuit 
 
Since we do not have any information on implementing the energies in the classical 
circuits, we ignore its cost in our calculations. Thus, only the adder circuit cost remains. 
In a classic algorithm, the circuits require adders to add the energy values provided in the 
energy tables for each interaction. Using a similar-to-quantum adder requires ~𝒪(𝑚) ≈
𝒪(log2(log2(𝑁))) computations. Applying running it for each interaction i, requires 
~𝒪(log2(𝑁)) computation. Thus, the total cost of an adder circuit, and in general the cost 
of computation for classic circuit (#𝑜𝑓𝐶), is ~𝒪(log2(log2(𝑁)) × log2(𝑁)), similar to 
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quantum circuits. In addition, there is a cost of subtracting the Etot from the Eth, which 
adds another ~𝒪(log2(log2(𝑁))). 
 
The total number of computations for classic algorithm is #𝑜𝑓𝐶𝑡𝑜𝑡 = 𝒪(𝑁) × (#𝑜𝑓𝐶), which 
is simplified as ~𝒪(𝑁 × [(log2(log2(𝑁)) × log2(𝑁)) + log2(log2(𝑁))]), which could be 
simplified as ~𝒪(𝑁 × [log2(log2(𝑁)) × (log2(𝑁) + 1)]) (Fig. S6) 

 
III: comparing quantum and classic 
 
Based on the data provided in Fig. S6, we can see that from the small N values (i.e., 
N>56), the number of computations in the classic realm surpasses the quantum realm. 
The smallest system we have for the SP model with s=2 has n=6 and N=64 showing that 
even for the smallest system the quantum algorithm has lower quantum computation. 

 
FIG. S6. Comparison between the number of gates for classic and quantum algorithms. 

 
III: MR model 
 
For the MR model, the #ofQinit. and the #ofQdiff. are the same as the SP model. Even in 
the #ofQorcl. the introducing the energy, subtracting the Etot from Eth and the negation steps 
are identical to the SP model. The only difference is that for the SP model the energy 
values in the energy table are simply added to find the Etot, while in the MR model, these 
values are multiplied with the d-1. Since the same procedure with the same computational 
cost does occurs in the classical version of the MR model, the general computational cost 
will still be much higher for the classical model, compared to the quantum MR model. 
 


